NO137891B - PROCEDURES FOR THE PREPARATION OF AROMATIC HYDROXYALDEHIDS - Google Patents

PROCEDURES FOR THE PREPARATION OF AROMATIC HYDROXYALDEHIDS Download PDF

Info

Publication number
NO137891B
NO137891B NO1089/72A NO108972A NO137891B NO 137891 B NO137891 B NO 137891B NO 1089/72 A NO1089/72 A NO 1089/72A NO 108972 A NO108972 A NO 108972A NO 137891 B NO137891 B NO 137891B
Authority
NO
Norway
Prior art keywords
hydroxy
acid
solution
oxidation
toluene
Prior art date
Application number
NO1089/72A
Other languages
Norwegian (no)
Other versions
NO137891C (en
Inventor
Kurt Bauer
Werner Steuer
Original Assignee
Haarmann & Reimer Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haarmann & Reimer Gmbh filed Critical Haarmann & Reimer Gmbh
Publication of NO137891B publication Critical patent/NO137891B/en
Publication of NO137891C publication Critical patent/NO137891C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0061Essential oils; Perfumes compounds containing a six-membered aromatic ring not condensed with another ring
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • C07C45/292Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups with chromium derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • C07C45/296Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups with lead derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/31Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with compounds containing mercury atoms, which may be regenerated in situ, e.g. by oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/52Unsaturated compounds containing hydroxy or O-metal groups a hydroxy or O-metal group being bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings

Description

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av aromatiske hydroksyaldehyder, som inneholder hydroksygruppér: i den aromatiske rest i 2-, 3- eller 4-stilling og eventuelt er substituert med ytterligere hydroksygrupper samt med C-^-Cg-alkoksygrupper, halogen eller C-^-Cg-alkylrester. The invention relates to a process for the production of aromatic hydroxyaldehydes, which contain hydroxy groups: in the aromatic residue in the 2-, 3- or 4-position and optionally substituted with further hydroxy groups as well as with C-^-Cg-alkyl groups, halogen or C-^ -C 6 alkyl residues.

Fra US-patent nr. 2.062.205 er det kjent en fremgangsmåte til fremstilling av aromatiske hydroksyaldehyder ved samtidig oksydasjon og dekarboksylering av hydroksyaryl, glykolsyrer i alkalisk medium. Fremgangsmåten ifølge oppfinnelsen ad-skiller seg fra denne fremgangsmåte ved at man omsetter hydroksyarylglykolsyrene ikke i alkalisk medium, men i sure medier, US patent no. 2,062,205 discloses a method for the production of aromatic hydroxyaldehydes by simultaneous oxidation and decarboxylation of hydroxyaryl, glycolic acids in an alkaline medium. The method according to the invention differs from this method in that the hydroxyarylglycolic acids are reacted not in an alkaline medium, but in an acidic medium,

;hvis pH-verdi ligger under 5 med oksydasjonsmidler. Ved fremgangsmåten ifølge oppfinnelsen fåes de aromatiske hydroksyaldehyder på en vesentlig enklere måte i løpet av vesentlige kortere reaksjonstider og i forbedrede utbytter enn etter frem-gangsmåtene som arbeider i alkaliske medier, da ved oksydas.j onen i alkaliske medier det fremkommer,store mengder av metallhydrok-sydslam som nedsetter reaksjonshastigheten og vanskeliggjørSopp-arbeidelsen av reaksjonsblandingen så sterkt at den. ikke mere er gjennomførbar teknisk praktisk. ;if the pH value is below 5 with oxidizing agents. In the method according to the invention, the aromatic hydroxyaldehydes are obtained in a significantly simpler way during significantly shorter reaction times and in improved yields than according to the methods that work in alkaline media, since large amounts of metal hydroxide are produced during the oxidation in alkaline media - southern mud which reduces the reaction rate and makes the Sopp processing of the reaction mixture so difficult that it. no more is feasible technically practical.

En ytterligere ulempe ved de kjente fremgangsmåter består i at ved arbeider i alkalisk miljø og' den ved reaksjons-avslutningen nødvendige surgjøring dannes minst 2 mol salt pr. A further disadvantage of the known methods is that when working in an alkaline environment and the acidification required at the end of the reaction, at least 2 mol of salt are formed per

mol hydroksyaldehyd, som belaster avvannet som avfall. Det funn at oksydasjonen av hydroksyarylglykolsyrene også lar seg gjennom-føre i sure medier var derfor overraskende, fordi det er kjent at de fri hydroksyarylglykolsyrer, slik de foreligger i de sure medier, er ustabile.' Den kjente ustabilitet av de fri hydroksyarylglykolsyrer er grunnen til at hittil har oksydasjonen bare blitt foretatt i alkaliske medier, dvs. i medier hvori syrene foreligger i form av deres stabile salter. moles of hydroxyaldehyde, which burdens the wastewater as waste. The finding that the oxidation of the hydroxyarylglycolic acids can also be carried out in acidic media was therefore surprising, because it is known that the free hydroxyarylglycolic acids, as they exist in the acidic media, are unstable. The known instability of the free hydroxyarylglycolic acids is the reason why the oxidation has so far only been carried out in alkaline media, i.e. in media in which the acids exist in the form of their stable salts.

Oppfinnelsen vedrører altså en fremgangsmåte til fremstilling av aromatiske hydroksyaldehyder som inneholder hydroksygrupper i den aromatiske rest i 2-, 3- eller I-stilling og eventuelt er substituert med ytterligere hydroksygrupper samt med G-L-Cg-alkoksygrupper, halogen eller C^-Cg-alkylrester ved samtidig oksydasjon av dekarboksylering av hydroksyarylglykolsyrer som inneholder hydroksygruppen i den aromatiske rest i 2-, 3- eller 4-stilling og eventuelt er substituert med ytterligere hydroksygrupper samt med C-^-Cg-alkoksygrupper, halogen eller C^-Cg-alkylrester, idet fremgangsmåten er karakterisert ved at man omsetter hydroksyarylglykolsyrer i vandig medium med oksydasjonsmidler ved en pH-verdi lavere enn 5» The invention thus relates to a method for the production of aromatic hydroxyaldehydes which contain hydroxy groups in the aromatic residue in the 2-, 3- or I-position and are optionally substituted with further hydroxy groups as well as with G-L-Cg alkoxy groups, halogen or C 1-Cg alkyl residues by simultaneous oxidation of decarboxylation of hydroxyarylglycolic acids which contain the hydroxy group in the aromatic residue in the 2-, 3- or 4-position and optionally substituted with further hydroxy groups as well as with C-^-Cg alkoxy groups, halogen or C^-Cg-alkyl residues, in that the method is characterized by reacting hydroxyarylglycolic acids in an aqueous medium with oxidizing agents at a pH value lower than 5"

De i fremgangsmåten ifølge oppfinnelsen anvendte aromatiske glykolsyrer kan inneholde hydroksygruppen i den aromatiske rest i 2-, 3- eller 4-stilling. De kan videre også inneholde flere hydroksygrupper og-ytterligere substituenter, The aromatic glycolic acids used in the method according to the invention may contain the hydroxy group in the aromatic residue in the 2-, 3- or 4-position. Furthermore, they can also contain several hydroxy groups and additional substituents,

som f.eks. alkoksygrupper, .halogener, fortrinnsvis klor eller brom eller alkylrester, som fortrinnsvis har inntil 6 karbon-atomer. Eksempler på ,slike forbindelser er følgende: 4-hydroksy-fenylglykolsyre, 4-hydroksy-3-metoksy-fenylglykolsyre, 4-hydroksy-3-etoksy-fenylglykolsyre, 4-hydroksy-2-metoksy-fenylglykolsyre , 4-hydroksy-3,5-dimetoksy-fenylglykolsyre, 4-hydroksy-2-klor-fenylglykolsyre, 4-hydroksy-3-klor-fenylglykolsyre, 4-hydroksy-3,5-diklor-fenylglykolsyre, 4-hydroksy-3-brom-fenylglykolsyre 4-hy droksy-3-me tyl-f enylglykolsyre , 4-hy droksy-3,5~ dimetylfenylglykolsyre, 4^hydroksy-3,5-dietyl-fenylglykolsyre 4-hydroksy-3j 5-ditert.-butyl-fenylglykolsyre, 3~hydroksy-fenylglykolsyre, 3-hydroksy-4-metoks'y-fenyl-glykolsyre, 3-hydroksy-4-klor-fenylglykolsyre, 3-hydroksy-4-metyl-fenylglykolsyre, 2-hydroksy-fenylglykolsyre, 2-hydroksy-4-metoksy-fenylglykolsyre, 2-hydroksy-4-metyl-fenylglykolsyre, 3,4-dihydroksy-fenylglykolsyre, 4-hydroksy-2,3-benzo-fenyl-glykolsyre eller 2-hydroksy-5,6-benzo-fenylglykolsyre eller a-naftylglykolsyre. like for example. alkoxy groups, halogens, preferably chlorine or bromine or alkyl radicals, which preferably have up to 6 carbon atoms. Examples of such compounds are the following: 4-hydroxy-phenylglycolic acid, 4-hydroxy-3-methoxy-phenylglycolic acid, 4-hydroxy-3-ethoxy-phenylglycolic acid, 4-hydroxy-2-methoxy-phenylglycolic acid, 4-hydroxy-3, 5-dimethoxy-phenylglycolic acid, 4-hydroxy-2-chloro-phenylglycolic acid, 4-hydroxy-3-chloro-phenylglycolic acid, 4-hydroxy-3,5-dichloro-phenylglycolic acid, 4-hydroxy-3-bromo-phenylglycolic acid 4-hy hydroxy-3-methyl-phenylglycolic acid, 4-hydroxy-3,5-dimethylphenylglycolic acid, 4-hydroxy-3,5-diethyl-phenylglycolic acid 4-hydroxy-3j 5-di-tert.-butyl-phenylglycolic acid, 3-hydroxy- phenylglycolic acid, 3-hydroxy-4-methoxy-phenyl-glycolic acid, 3-hydroxy-4-chloro-phenylglycolic acid, 3-hydroxy-4-methyl-phenylglycolic acid, 2-hydroxy-phenylglycolic acid, 2-hydroxy-4-methoxy- phenylglycolic acid, 2-hydroxy-4-methyl-phenylglycolic acid, 3,4-dihydroxy-phenylglycolic acid, 4-hydroxy-2,3-benzo-phenyl-glycolic acid or 2-hydroxy-5,6-benzo-phenylglycolic acid or α-naphthylglycolic acid.

Spesielt foretrukne utgangsmaterialer til anvendelse ved fremgangsmåten ifølge oppfinnelsen er 4-hydroksy-fenylglykolsyre, 4-hydroksy-3-metoksy-fenylglykolsyre, 4-hydroksy-3-etoksy-fenylglykolsyre. Particularly preferred starting materials for use in the method according to the invention are 4-hydroxy-phenylglycolic acid, 4-hydroxy-3-methoxy-phenylglycolic acid, 4-hydroxy-3-ethoxy-phenylglycolic acid.

De nevnte forbindelser kan eksempelvis fåes idet The aforementioned compounds can, for example, be obtained by

man omsetter glykolsyre med det tilsvarende feno'1. glycolic acid is reacted with the corresponding pheno'1.

Det er ikke ubetinget nødvendig å anvende de aromatiske glykolsyrer i ren tilstand fra omsetningen, men de aromatiske glykolsyrer kan også anvendes således som de frem-kommer ved fremstillingen for fremgangsmåten ifølge oppfinnelsen. It is not absolutely necessary to use the aromatic glycolic acids in their pure state from the reaction, but the aromatic glycolic acids can also be used as they appear during the preparation for the method according to the invention.

Eksempelvise representanter på oksydasjonsmidler Exemplary representatives of oxidizing agents

i det nevnte området er reduserbare metallsalter som f.eks. kobber-(II)-salter, kvikksølv-(Il)-salter, jern-(III)-salter, nikkel-(III)-salter, kobolt-(III)-salter, krom-(VI)-salter, bly-(IV)-salter, iridium-(IV)-salter og palladium-(II)-salter. samt alkalihalogenater som f.eks. alkaliklorater, alkalibromater, alkalij"odater eller alkalinitrater . in the mentioned area are reducible metal salts such as e.g. copper (II) salts, mercury (II) salts, iron (III) salts, nickel (III) salts, cobalt (III) salts, chromium (VI) salts, lead (IV) salts, iridium-(IV) salts and palladium-(II) salts. as well as alkali halides such as alkali chlorates, alkali bromates, alkali iodates or alkali nitrates.

Fortrinnsvis finner det anvendelse kobber-(II)-salter, kvikksølv-(II)-salter, jern-(III)-salter, nikkel-(III)-salter, kobolt-( III) ^.salter eller alkaliklorater. Copper (II) salts, mercury (II) salts, iron (III) salts, nickel (III) salts, cobalt (III) salts or alkali chlorates are preferably used.

Spesielt foretrukket er kobber-(II)-sulfat, kobber-(II)-klorid, kvikksølv-(II)-acetat, jern-(III)-klorid, jern-(III)-sulfat, nikkel-(III)-fosfat, kobolt-(III)-klorid, kaliumklorat eller natriumklorat. Particularly preferred are copper (II) sulfate, copper (II) chloride, mercury (II) acetate, iron (III) chloride, iron (III) sulfate, nickel (III) phosphate , cobalt (III) chloride, potassium chlorate or sodium chlorate.

Til omsetning med hydroksyarylglykolsyrene ved fremgangsmåten ifølge oppfinnelsen anvendes oksydasjonsmiddel . An oxidizing agent is used for reaction with the hydroxyarylglycolic acids in the method according to the invention.

i ekvivalente mengder eller i overskudd, f.eks. 4 ekvivalenter, fortrinnsvis ekvivalente mengder eller i overskudd inntil 2 ekvivalenter. in equivalent amounts or in excess, e.g. 4 equivalents, preferably equivalent quantities or in excess up to 2 equivalents.

Selvsagt kan de nevnte reduserbare metallsalter Of course, the mentioned reducible metal salts can

også anvendes i ønskelig blanding. Det har vist seg spesielt egnet å anvende kaliumklorat eller natriumklorat i blanding med jern-, kobolt-, nikkelsulfat eller -klorid. can also be used in the desired mixture. It has proven particularly suitable to use potassium chlorate or sodium chlorate in mixture with iron, cobalt, nickel sulphate or chloride.

De reduserbare metallsalter kan selvsagt også frembringes under reaksjonen in situ i et redokssystem, eksempelvis idet man anvender en blanding av natriumklorat og jernsulfat. The reducible metal salts can of course also be produced during the reaction in situ in a redox system, for example by using a mixture of sodium chlorate and iron sulphate.

Spesielt foretrekkes for fremgangsmåten ifølge oppfinnelsen oksydasjonsmidler, som har redokspotensialer.i området på EQ = +0,17 volt inntil EQ = +1,84 volt. Particularly preferred for the method according to the invention are oxidizing agents, which have redox potentials in the range of EQ = +0.17 volts up to EQ = +1.84 volts.

I en spesiell utførelsesform av fremgangsmåten ifølge oppfinnelsen foregår omsetningen i vandig, sur oppløs-ning, katalytisk under anvendelse av oksygen som oksydasjonsmiddel. Som katalysator finner det fortrinnsvis anvendelse palladium eller platina. In a particular embodiment of the method according to the invention, the reaction takes place in an aqueous, acidic solution, catalytically using oxygen as an oxidizing agent. Palladium or platinum is preferably used as a catalyst.

I en ytterligere spesiell utførelsesform av fremgangsmåten ifølge oppfinnelsen, i stedet for det for det an-gitte potensialområde nevnte kjemiske oksydasjonsmiddel, selvsagt også omsetningen foregår i vandig, sur oppløsning ved anodisk oksydasjon. In a further special embodiment of the method according to the invention, instead of the chemical oxidizing agent mentioned for the specified potential range, of course the reaction also takes place in an aqueous, acidic solution by anodic oxidation.

Fremgangsmåten ifølge oppfinnelsen gjennomføres i surt medium, fortrinnsvis ved pH-verdier på 0 - 5, spesielt foretrukket ved pH-verdier på 0,3 - 3. Vanligvis er en spesiell syretilsetning overflødig da de anvendte hydroksyarylglykolsyrer i vandig medium har en tilstrekkelig egenaciditet, og dessuten frigjøres i løpet av oksydasjonen i mange tilfeller en tilstrekkelig mengde syre som f.eks. saltsyre eller svovel-, syre. Hvis det imidlertid er nødvendig kan pH-verdien inn-stilles ved tilsetning av den tilsvarende mengde av en mineral-syre, eksempelvis halvkonsentrert svovelsyre. The method according to the invention is carried out in an acidic medium, preferably at pH values of 0 - 5, particularly preferred at pH values of 0.3 - 3. Usually a special acid addition is superfluous as the hydroxyarylglycolic acids used in an aqueous medium have a sufficient intrinsic acidity, and furthermore, during the oxidation, in many cases, a sufficient amount of acid is released, e.g. hydrochloric or sulfuric acid. If necessary, however, the pH value can be adjusted by adding the corresponding amount of a mineral acid, for example semi-concentrated sulfuric acid.

De i vann lett oppløselige hydroksyaromatiske glykolsyrer lar seg oksydere av disse oksydasjonsmidler i sur, homogen vandig oppløsning ved værelsestemperatur eller for-høyet temperatur, f.eks. inntil 150°C, fortrinnsvis 50 til 100°C under avspaltning av C02 hurtig og praktisk talt kvantita-tivt til de tilsvarende aromatiske hydroksyaldehyder. The water-soluble hydroxyaromatic glycolic acids can be oxidized by these oxidizing agents in acidic, homogeneous aqueous solution at room temperature or elevated temperature, e.g. up to 150°C, preferably 50 to 100°C during rapid and practically quantitative decomposition of CO2 into the corresponding aromatic hydroxyaldehydes.

Syre- og oksydasjonsfølsomme aldehyder, som vanillin og etylvanillin, lar seg i nærvær av med vann ikke blandbare oppløsningsmidler, hvorav de tilsvarende glykolsyrer knapt opptas, f.eks. benzen og toluen, unndra den sure oksyda-sj onsoppløsning og isoleres fra ekstraktet på vanlig måte. Acid- and oxidation-sensitive aldehydes, such as vanillin and ethyl vanillin, can be dissolved in the presence of water-immiscible solvents, of which the corresponding glycolic acids are hardly absorbed, e.g. benzene and toluene, remove the acidic oxidation solution and isolate from the extract in the usual way.

Den sure oksydas"jonsoppløsning kan regenereres elektrokjemisk eller ved oksydasjon med luftoksygen eller med andre egnede oksydasjonsmidler. The acidic oxidation solution can be regenerated electrochemically or by oxidation with atmospheric oxygen or with other suitable oxidizing agents.

Overraskende opptrer på tross av arbeidsmåten i surt medium ingen kondensasjonsprodukter. Surprisingly, despite the way of working in an acidic medium, no condensation products appear.

Forbindelsene ifølge oppfinnelsen kan eksempelvis finne anvendelse som smak- og luktstoffer. The compounds according to the invention can, for example, find use as flavoring and odorants.

Den generelle anvendbarhet.av foreliggende fremgangsmåte .til fremstilling av aromatiske hydroksyaldehyder anskueliggjøres av følgende eksempler: The general applicability of the present method for the production of aromatic hydroxyaldehydes is illustrated by the following examples:

Eksempel 1. Example 1.

10 g 4-hydroksy-3-metoksy-fenylglykolsyre (molekylvekt 198) oppløses i 100 g vann og blandes ved 75 - 80°C i løpet av 20 til 30 minutter med 82 g av en vandig 20%- ig FeCl-j-oppløsning idet det starter en livlig CC^-utvikling som avslutter etter ytterligere 30 minutter og idet omsetningen foregår ved en pH-verdi mellom 2 og 0,8. Fra den sure oksyda-sj onsoppløsningen krystalliserer fra avkjøling hovedmengden av det dannede 4-hydroksy-3-metoksybenzaldehyd fullstendig ut. Med benzen eller toluen lar 14-hydroksy-3-metoksy-benzaldehyder seg fullstendig ekstrahere fra oksydasjonsoppløsningen. Ekstraktet vaskes med litt vann, deretter avdestilleres oppløs-ningsmidlet så vidt at fra moderluten kan 4-hydroksy-3-metoksy-benzaldehyd felles med cykloheksan eller lettbensin i krystallinsk form. 10 g of 4-hydroxy-3-methoxy-phenylglycolic acid (molecular weight 198) is dissolved in 100 g of water and mixed at 75 - 80°C during 20 to 30 minutes with 82 g of an aqueous 20% FeCl-j solution as a lively CC^ development starts which ends after a further 30 minutes and as the reaction takes place at a pH value between 2 and 0.8. From the acidic oxidation solution, the main amount of the formed 4-hydroxy-3-methoxybenzaldehyde completely crystallizes out on cooling. With benzene or toluene, 14-hydroxy-3-methoxy-benzaldehydes can be completely extracted from the oxidation solution. The extract is washed with a little water, then the solvent is distilled off to such an extent that 4-hydroxy-3-methoxy-benzaldehyde can be combined with cyclohexane or light petrol in crystalline form from the mother liquor.

Utbytte: 7,2 g 4-hydroksy-3-metoksybenzaldehyd Yield: 7.2 g of 4-hydroxy-3-methoxybenzaldehyde

= 95% av det teoretiske. = 95% of the theoretical.

Analyse: Smeltepunkt 79 til 80°C, etter CO-tall og tynnsjiktkromatogram ren 4-hydroksy-3-metoksybenzaldehyd (CO-tallet frem-kommer av en måleanalytisk aldehydbe-; Analysis: Melting point 79 to 80°C, according to CO number and thin-layer chromatogram pure 4-hydroxy-3-methoxybenzaldehyde (the CO number appears from a measuring analytical aldehyde test;

stemmelse etter oksymeringsmetoden). Eksempel 2. 10 g 4-hydroksy-3-metoksy-fenylglykolsyre oppløses i 100 g vann og blandes ved 100°C i løpet av 30 minutter med 86 g av en vandig 20%- ig oppløsning av CuC^ • 2 F^O idet det foregår en måtelig CC^-utvikling som avslutter etter ytterligere 2 timer ved 100 C og ved omsetningen foregår ved en pH-verdi på 1,8 - 0,8. Opparbeidelsen av den sure -oksydasjons-oppløsning foregår som angitt i eksempel 1. state according to the oxymation method). Example 2. 10 g of 4-hydroxy-3-methoxy-phenylglycolic acid are dissolved in 100 g of water and mixed at 100°C during 30 minutes with 86 g of an aqueous 20% solution of CuC^ • 2 F^O as a moderate CC^ development takes place which ends after a further 2 hours at 100 C and the reaction takes place at a pH value of 1.8 - 0.8. The preparation of the acidic oxidation solution takes place as indicated in example 1.

Utbytte: 6,8 g 4-hydroksy-3-metoksybensaldehyd Yield: 6.8 g of 4-hydroxy-3-methoxybenzaldehyde

= 89$ av det teoretiske. = 89$ of the theoretical.

Analyse: Smeltepunkt 78 til 79°C, rent ifølge CO-tall og tynnsjiktkromatogram. Eksempel 3. Analysis: Melting point 78 to 79°C, pure according to CO number and thin layer chromatogram. Example 3.

Oksydasjon av det rå kondensasjonsprodukt av Guajacol + glykol-. syre. Oxidation of the crude condensation product of Guajacol + glycol-. acid.

a) En sur vandig oppløsning av 4-hydroksy-3-metoksy-fenylglykolsyre som ble dannet ifølge eksempel 3b oppvarmes a) An acidic aqueous solution of 4-hydroxy-3-methoxy-phenylglycolic acid which was formed according to example 3b is heated

med 2000 ml toluen inntil tilbakeløpstemperatur 85 til 86°C with 2000 ml of toluene until reflux temperature 85 to 86°C

og blandes under omrøring med 800 g jern-(Ill)-sulfat pcrsjons-vis i løpet av 1 time, idet det foregår en livlig C02-utvikling og idet omsetningen foregår ved en pH-verdi på 2 - 0,8. Toluen-oppløsningen adskilles og blandingen omrøres med friskt toluen and mixed with stirring with 800 g of iron (II) sulphate portionwise over the course of 1 hour, with lively CO 2 evolution taking place and the reaction taking place at a pH value of 2 - 0.8. The toluene solution is separated and the mixture is stirred with fresh toluene

en ytterligere time ved 85°C og de to faser skilles igjen. Deretter omrøres blandingen i tredje time uten toluen ved 100°C til avsluttende C02~utvikling og ekstraheres deretter fullstendig med toluen. Opparbeidelse av toluenekstraktene foregår som i eksempel 1. Utbytte: 265 g 4-hydroksy-3-metoksybenzaldehyd = 86$ av den teoretiske mengde (beregnet på omsatt guajacol ifølge eksempel 3b). a further hour at 85°C and the two phases separate again. The mixture is then stirred for a third hour without toluene at 100°C until final CO 2 evolution and then extracted completely with toluene. Processing of the toluene extracts takes place as in example 1. Yield: 265 g of 4-hydroxy-3-methoxybenzaldehyde = 86% of the theoretical amount (calculated on converted guaiacol according to example 3b).

Analyse: Smeltepunkt 77 til 78°C, renhetsgrad ifølge CO-tall Analysis: Melting point 77 to 78°C, degree of purity according to CO number

og tynnsjiktkromatogram 97%. and thin layer chromatogram 97%.

b) Fremstilling av det anvendte material: 356 g 50%-ig vandig glyoksylsyre (2,4 mol) nøytraliseres ved 15 til b) Preparation of the material used: 356 g of 50% aqueous glyoxylic acid (2.4 mol) is neutralized at 15 to

25°C med 1920 g 5%- ig natronlut, blandes deretter med en opp-løsning av 372 g guajacol (3 mol) i 1200 g 10%- ig natronlut under omrøring og hensettes 36 timer ved 15 til 25°C. Deretter surgjøres den alkaliske kondensasjonsblanding med 50^-ig svovelsyre under avkjøling til pH 4 til 5. Fra den sure oppløsning ekstraheres med toluen 124,5 g ikke omsatt guajacol. Eksempel 4. 25°C with 1920 g of 5% caustic soda, then mixed with a solution of 372 g of guaiacol (3 mol) in 1200 g of 10% caustic soda with stirring and allowed to stand for 36 hours at 15 to 25°C. The alkaline condensation mixture is then acidified with 50% sulfuric acid while cooling to pH 4 to 5. From the acidic solution, 124.5 g of unreacted guaiacol is extracted with toluene. Example 4.

9,3 g 4-hydroksy-fenylglykolsyre som monohydrat (molekylvekt 186) oppvarmes i 50 g vann og blandes i første rekke ved 75' til 80°C i løpet av 20 til 30 minutter med 82 g av en vandig 20%-ig FeCl-j-oppløsning idet det starter en livlig C02-utvikling som er avsluttet etter ytterligere 30 minutter ved 100°C og idet omsetningen foregår ved en pH-verdi på 2 - 0,8. Fra den sure oksydasjonsoppløsning krystalliserer ved avkjøling til 0°C hovedmengden av det dannede 4-hydroksy-benzaldehyd og frasuges. Fra den kalde, vandige moderlut fjernes resterende 4-hydroksy-benzaldehyd ved gjentatt ekstrahering med benzen. Til den således dannede benzenske oppløsning haes hovedmengden av p-hydroksy-benzaldehydet, benzenet avdampes sterkt og rent 4-hydroksy-benzaldehyd utfelles krystallinsk med lettbensin eller cykloheksan. 9.3 g of 4-hydroxy-phenylglycolic acid as monohydrate (molecular weight 186) is heated in 50 g of water and mixed first at 75' to 80°C during 20 to 30 minutes with 82 g of an aqueous 20% FeCl -j solution as a lively C02 evolution starts which is finished after a further 30 minutes at 100°C and as the reaction takes place at a pH value of 2 - 0.8. The main amount of the formed 4-hydroxybenzaldehyde crystallizes from the acidic oxidation solution on cooling to 0°C and is sucked off. Residual 4-hydroxybenzaldehyde is removed from the cold, aqueous mother liquor by repeated extraction with benzene. The main quantity of the p-hydroxy-benzaldehyde is added to the benzene solution thus formed, the benzene is strongly evaporated and pure 4-hydroxy-benzaldehyde is precipitated crystalline with light petrol or cyclohexane.

Utbytte: 5,2 g 4-hydroksy-benzaldehyd = 85% av det teoretiske. Analyse: Smeltepunkt 115 til ll6°C, uten forurensning ifølge Yield: 5.2 g of 4-hydroxybenzaldehyde = 85% of the theoretical. Analysis: Melting point 115 to 116°C, without contamination according to

CO-tall 100% etter tynnsjiktkromatogram. CO number 100% according to thin layer chromatogram.

Eksempel 5- Example 5-

Oksydasjon av det rå kondensasjonsprodukt av fenol og glyoksylsyre. Oxidation of the crude condensation product of phenol and glyoxylic acid.

a) En sur, vandig oppløsning av 4-hydroksy-fenylglykol-syrer som.ble dannet ifølge eksempel 5b, blandes ved 75 til 80°C under omrøring med 800 g jern-(III)-sulfat porsjonsvis i løpet av 1 time, idet det foregår en livlig CC^-utvikling som er avsluttet ved 100°C etter en ytterligere time og idet omsetningen foregår ved en pH-verdi på 2 - 0,8. Pra den sure oksydasjonsoppløsningen utvinnes som i eksempel 4 p-hydroksy-benzaldehyd. Da det rå kondensasjonsprodukt av fenol med glyoksylsyre ved siden av 4-hydroksy-fenylglykolsyre også inneholder mindre mengder av 2-hydroksyfenylglykolsyre oppstår ved oksydasjonen også litt salicylaldehyd, som etter utfelling av 4-hydroksybenzaldehydet, som i eksempel 4 forblir i moderluten. a) An acidic, aqueous solution of 4-hydroxy-phenylglycol acids which was formed according to example 5b, is mixed at 75 to 80°C with stirring with 800 g of iron (III) sulfate in portions over the course of 1 hour, a lively CC^ evolution takes place which is finished at 100°C after a further hour and as the reaction takes place at a pH value of 2 - 0.8. From the acidic oxidation solution, p-hydroxybenzaldehyde is recovered as in example 4. Since the crude condensation product of phenol with glyoxylic acid next to 4-hydroxy-phenylglycolic acid also contains smaller amounts of 2-hydroxyphenylglycolic acid, a little salicylaldehyde is also produced during the oxidation, which after precipitation of the 4-hydroxybenzaldehyde, which in example 4 remains in the mother liquor.

Utbytte: 197 g 4-hydroksy-benzaldehyd = 81% av det teoretiske. Yield: 197 g of 4-hydroxybenzaldehyde = 81% of the theoretical.

17 g av en blanding av 17 g of a mixture of

20? 4-hydroksy-benzaldehyd og 20? 4-hydroxy-benzaldehyde and

Q0% salicylaldehyd = 7% av den teoretiske mengde Q0% salicylaldehyde = 7% of the theoretical amount

(beregnet på omsatt fenol ifølge eksempel 5b). (calculated on converted phenol according to example 5b).

b) Fremstilling av det anvendte material: 336 g 53%-ig vandig glyoksylsyre (2,4 mol) nøytraliseres ved_15 til b) Preparation of the material used: 336 g of 53% aqueous glyoxylic acid (2.4 mol) is neutralized at 15 to

25°C med 1920 g 5%- ig natronlut, blandes deretter med en opp-løsning av 282 g fenol (3 mol) i 1200 g 10%-ig natronlut under omrøring og hensetter 36 timer ved 15 til 25°C Deretter sur-gjøres den alkaliske kondensasjonsblanding med 50%-ig svovelsyre under avkjøling til pH 4 til 5. Fra den sure oppløsning ekstraheres med benzen 95 g ikke omsatt fenol. 25°C with 1920 g of 5% caustic soda, then mix with a solution of 282 g of phenol (3 mol) in 1200 g of 10% caustic soda with stirring and leave for 36 hours at 15 to 25°C. the alkaline condensation mixture is made with 50% sulfuric acid while cooling to pH 4 to 5. From the acidic solution, 95 g of unreacted phenol is extracted with benzene.

Eksempel 6. Example 6.

11,5 g 4-hydroksy-3_etoksy-fenylglykolsyre som monohydrat (molekylvekt 230) oppløses i 100 ml vann. Den sure oppløsning (pH 2) oversjiktes med 100 ml toluen og blandingen oppvarmes til 75 til 80°C. Under omrøring tilsettes ved denne temperatur 56,7 g 30%-ig FeCl^-oppløsning i løpet av 20 minutter, idet det starter en livlig CC^-utvikling. Deretter kokes blandingen ytterligere i 20 minutter under tilbakeløp (85 til 86°C). Etter adskillelse av toluenfasen oppvarmes den gjenblivne vandige oppløsning til kokning, idet det i løpet av 10 wiiutter utvikles den resterende CC^-mengde. Oksydasjons-oppløsningen er etter avsluttet oksydasjon saltsur (pH 1) og ekstraheres fullstendig med toluen. De forenede toluenoppløs-ninger vaskes med litt vann, filtreres deretter og oppløsnings-midlet avdestilleres såvidt at det fra moderluten med cykloheksan eller lettbensin kan utfelles 4-hydroksy-3-etoksy-benzalde- 11.5 g of 4-hydroxy-3-ethoxy-phenylglycolic acid as monohydrate (molecular weight 230) is dissolved in 100 ml of water. The acidic solution (pH 2) is overlaid with 100 ml of toluene and the mixture is heated to 75 to 80°C. While stirring, at this temperature, 56.7 g of a 30% FeCl₂ solution is added over the course of 20 minutes, as lively CC₂ evolution begins. The mixture is then boiled for a further 20 minutes under reflux (85 to 86°C). After separation of the toluene phase, the remaining aqueous solution is heated to boiling, the remaining amount of CC^ being developed in the course of 10 minutes. After oxidation, the oxidation solution is hydrochloric acid (pH 1) and is extracted completely with toluene. The combined toluene solutions are washed with a little water, then filtered and the solvent is distilled off to the extent that 4-hydroxy-3-ethoxy-benzalde can be precipitated from the mother liquor with cyclohexane or light petrol.

hyd i krystallinsk form. hyd in crystalline form.

Utbytte: 7,7 g = 93% av det teoretiske. Yield: 7.7 g = 93% of the theoretical.

Analyse: Smeltepunkt 75 til 76°C, ifølge CO-tall og tynnsjiktkromatogram praktisk talt rent 4-hydroksy-3-etoksy-benzaldehyd. Analysis: Melting point 75 to 76°C, according to CO number and thin layer chromatogram practically pure 4-hydroxy-3-ethoxy-benzaldehyde.

Eksempel 7- Example 7-

10 g 4-hydroksy-3-metoksy-fenylglykolsyre (molekylvekt 198) oppløses i 100 g vann. Den vandige, sure oppløsning (pH 2) oversjiktes med 100 ml toluen og oppvarmes under omrør-ing til 75 til 85°C. Fra 75°C tilsettes i første rekke en oppløsning av 0,5 g FeCl-j i 1 g vann, deretter inndoseres en oppløsning av 2,1 g KCIO^ i 38 g vann i løpet av 10 minutter, idet det atarter en kraftig C02-utvikling, som slutter ved 85°C etter 30 minutter. Oksydasjonsoppløsningen har etter avsluttet oksydasjon en pH-verdi på omtrent 1. Etter fjerning av toluenekstraktet oppvarmes den vandige oksydasjonsoppløsning ved 95 til 100°C inntil C02-utviklingen er avsluttet etter 20 til 30 minutter. 10 g of 4-hydroxy-3-methoxy-phenylglycolic acid (molecular weight 198) is dissolved in 100 g of water. The aqueous, acidic solution (pH 2) is overlaid with 100 ml of toluene and heated with stirring to 75 to 85°C. From 75°C, a solution of 0.5 g of FeCl-j in 1 g of water is first added, then a solution of 2.1 g of KCIO^ in 38 g of water is dosed over the course of 10 minutes, as a strong C02 is released -development, which ends at 85°C after 30 minutes. The oxidation solution has a pH value of approximately 1 after oxidation has been completed. After removal of the toluene extract, the aqueous oxidation solution is heated at 95 to 100°C until CO 2 evolution has ended after 20 to 30 minutes.

Fra den sure oksydasjonsoppløsning krystalliserer ved avkjøling hovedmengden av det dannede U-hydroksy-3-metoksy-benzaldehyd fullstendig ut. Med benzen eller toluen lar 4-hydroksy-3-metoksybenzaldehydet seg fullstendig ekstrahere fra oksydasjonsoppløsningen. Ekstraktet vaskes med litt vann, deretter avdestilleres oppløsningsmidlet såvidt at det fra moderluten kan utfelles i krystallinsk form 4-hydroksy-3-metoksybenzaldehyd med cykloheksan. Utbytte: 5j3 g krystallisert 4-hydroksy-3-metoksybenzaldehyd. From the acidic oxidation solution, the main amount of the formed U-hydroxy-3-methoxy-benzaldehyde crystallizes out completely on cooling. With benzene or toluene, the 4-hydroxy-3-methoxybenzaldehyde can be completely extracted from the oxidation solution. The extract is washed with a little water, then the solvent is distilled off to the extent that it can be precipitated from the mother liquor in crystalline form 4-hydroxy-3-methoxybenzaldehyde with cyclohexane. Yield: 5j3 g of crystallized 4-hydroxy-3-methoxybenzaldehyde.

I 1,9 g residu inneholdes ytterligere 1,4 g 4-hydroksy-3-metoksybenzaldehyd. A further 1.4 g of 4-hydroxy-3-methoxybenzaldehyde is contained in 1.9 g of residue.

Samlet utbytte: 7,6 g = 87% av det teoretiske. Total yield: 7.6 g = 87% of the theoretical.

Eksempel 8. Example 8.

a) .11j5 g 4-hydroksy-3-etoksy-fenylglykolsyre som monohydrat (molekylvekt 230) oppløses i 100 g vann. Den vandige, a) .11j5 g of 4-hydroxy-3-ethoxy-phenylglycolic acid as monohydrate (molecular weight 230) is dissolved in 100 g of water. The watery,

sure oppløsning (pH 2) oversjiktes med 100 ml toluen og oppvarmes under omrøring ved 75 - 85°C. Fra 75°C tilsettes i første rekke en oppløsning av 0,5 g FeCl-j i 1 g vann, deretter inndoseres en oppløsning av 1,82 g NaClO^ i 35 g vann i løpet av 10 minutter, idet det starter en livlig C02~utvikling, som avslutter ved 85°C etter 35 minutter. acid solution (pH 2) is overlaid with 100 ml of toluene and heated with stirring at 75 - 85°C. From 75°C, a solution of 0.5 g of FeCl-j in 1 g of water is first added, then a solution of 1.82 g of NaClO^ in 35 g of water is dosed over the course of 10 minutes, as a lively C02 starts ~development, which terminates at 85°C after 35 minutes.

Oksydasjonsoppløsningen har etter avsluttet oksydasjon en pH-verdi på omtrent 1. Etter fjerning av toluenekstraktet oppvarmes den vandige oksydasjonsoppløsning ved 95 - 100°C, inntil C^-utviklingen er avsluttet, etter 30 minutter. The oxidation solution has a pH value of approximately 1 after the oxidation has been completed. After removal of the toluene extract, the aqueous oxidation solution is heated at 95 - 100°C, until the evolution of C2 has ended, after 30 minutes.

Ekstraheringen av oksydasjonsoppløsningen med toluen og opparbeidelsen av ekstraktet foregår som i eksempel 6. Utbytte: 7>4 g 4-hydroksy-3-etoksy-benzaldehyd 90% av den The extraction of the oxidation solution with toluene and the processing of the extract takes place as in example 6. Yield: 7>4 g 4-hydroxy-3-ethoxy-benzaldehyde 90% of the

teoretiske mengde. theoretical quantity.

Analyse: Smeltepunkt 75°C, ifølge måleanalyse og'tynnsjiktkromatogram praktisk talt rent 4-hydroksy-3-etoksy-benzaldehyd. b) Et tilsvarende resultat fåes, hvis man i stedet for jernklo^rid anvender en ekvivalent mengde av jernsulfat. Analysis: Melting point 75°C, according to measurement analysis and thin-layer chromatogram practically pure 4-hydroxy-3-ethoxy-benzaldehyde. b) A similar result is obtained if, instead of iron chloride, an equivalent amount of iron sulphate is used.

Eksempel 9. Example 9.

Oksydasjon av.det rå kondensasjonsprodukt av guajacol + glyoksylsyre. Oxidation of the crude condensation product of guaiacol + glyoxylic acid.

a) En vandig, sur oppløsning av 4-hydroksy-3-metoksy-fenylglykolsyre, som ble fremstillet ifølge eksempel 9b, bringes a) An aqueous, acidic solution of 4-hydroxy-3-methoxy-phenylglycolic acid, which was prepared according to example 9b, is brought

med 37,5 g 50%-ig svovelsyre til pH-verdi 0,8 til 0,9» opp-" varmes med 931 ml toluen til tilbakeløpstemperatur 85 til 86°C og blandes under omrøring med en blanding av 66 g 10%-ig jern-(Il)-sulfatoppløsning og 372 g 5%-ig natriumkloratoppløsning porsjonsvis i løpet av en time, idet det foregår en livlig C02-utvikling. Oksydasjonsoppløsningen har etter avsluttet oksydasjon en pH-verdi på omtrent 1. Toluenoppløsningen adskilles og blandingen omrøres med friskt toluen en ytterligere time ved 85°C og de to faser skilles igjen. Deretter blir blandingen i tredje time omrørt ytterligere uten toluen ved 100°C.til avsluttende C02_utvikling og deretter ekstrahert fullstendig med toluen. Opparbeidelsen av toluenekstraktet foregår som i eksempel 1. with 37.5 g of 50% sulfuric acid to a pH value of 0.8 to 0.9. 100 g of iron (II) sulfate solution and 372 g of 5% sodium chlorate solution in portions over the course of one hour, with lively CO 2 evolution taking place. The oxidation solution has a pH value of approximately 1 after oxidation is complete. The toluene solution is separated and the mixture is stirred with fresh toluene for a further hour at 85°C and the two phases are separated again. The mixture is then stirred for a third hour without toluene at 100°C until final C02 evolution and then extracted completely with toluene. The processing of the toluene extract takes place as in example 1 .

Utbytte: 47,5 g 4-hydroksy-3-metoksyfenylglykolsyre = 95% av den teoretiske mengde (beregnet på omsatt guajacol ifølge Yield: 47.5 g of 4-hydroxy-3-methoxyphenylglycolic acid = 95% of the theoretical amount (calculated on converted guaiacol according to

eksempel 9b). example 9b).

Analyse: Smeltepunkt 77 til 78°C, renhetsgrad ifølge CO-tall Analysis: Melting point 77 to 78°C, degree of purity according to CO number

og tynnsjiktkromatogram ca. 95%. and thin-layer chromatogram approx. 95%.

b) Fremstilling av det anvendte material: 50 g 50%-ig vandig glyoksylsyre (0j34 mol) nøytraliseres ved 15 til b) Preparation of the material used: 50 g of 50% aqueous glyoxylic acid (0.34 mol) is neutralized at 15 to

25°C med 225 g 7%- ig natronlut, blandes deretter med en oppløs-ning av 63 g guajacol (0,46 mol) i 319 g 7%-ig natronlut under 25°C with 225 g of 7% caustic soda, then mixed with a solution of 63 g of guaiacol (0.46 mol) in 319 g of 7% caustic soda under

omrøring og hensettes i 36 timer ved 15 til 25°C. Deretter bringes den alkaliske kondensasjonsblanding med 75 g 60%-ig svovelsyre til en pH-verdi på ca. 3- Fra den sure oppløsning ekstraheres med toluen 21 g ikke omsatt guajacol. stirring and leave for 36 hours at 15 to 25°C. The alkaline condensation mixture is then brought to a pH value of approx. 75 g of 60% sulfuric acid. 3- From the acidic solution, 21 g of unreacted guaiacol are extracted with toluene.

c) Tilsvarende resultater fåes når man som oksydasjonsmiddel i stedet for jern-(II)-sulfatoppløsning anvender c) Corresponding results are obtained when iron (II) sulphate solution is used as an oxidizing agent instead

en kobolt-(II)-sulfatoppløsning eller en nikkel-(Il)-sulfat-oppløsning. a cobalt (II) sulfate solution or a nickel (II) sulfate solution.

Sammenligningseksempler■ Comparative examples■

Forsøk 1. (Tilsvarende foregående eksempel 2). Experiment 1. (Similar to previous example 2).

10 g 4-hydroksy-3-metoksy-fenylglykolsyre,- fremstillet av glykolsyre og guajacol tilsvarende eksempel 4 (US-patent nr. 2.062.205) ble oppløst i 100 ml vann og ved 100°C 10 g of 4-hydroxy-3-methoxy-phenylglycolic acid, prepared from glycolic acid and guaiacol corresponding to example 4 (US patent no. 2,062,205) was dissolved in 100 ml of water and at 100°C

i løpet av 30 minutter blandet med 86 ml av en vandig 20%-ig oppløsning av CuC^ . 2 P^O. Etter ytterligere 2 timers om-røring ved 100°C ble det avkjølt og den klare reaksjonsbland-ing ekstrahert flere ganger med benzen. De forenede organiske faser ble vasket med litt vann og oppløsningsmidlet fjernet. during 30 minutes mixed with 86 ml of an aqueous 20% solution of CuC^ . 2 P^O. After a further 2 hours of stirring at 100°C, it was cooled and the clear reaction mixture was extracted several times with benzene. The combined organic phases were washed with a little water and the solvent removed.

Utbytte: 6,9 g (90% av det teoretiske) vanillin. Forsøk 2. (Tilsvarende eksempel 4 i US-patent nr. 2.062.205). Yield: 6.9 g (90% of theoretical) vanillin. Experiment 2. (Corresponding to example 4 in US patent no. 2,062,205).

10 g 4-hydroksy-3-metoksy-fenylglykolsyre ble med natronlut (15%-ig) innstillet til pH '8 og blandet med 25 g 10 g of 4-hydroxy-3-methoxy-phenylglycolic acid was adjusted to pH 8 with caustic soda (15%) and mixed with 25 g

kobber-(II)-sulfat og 70 ml natronlut (15%-ig). Reaksjonsblandingen ble oppvarmet 2\ time ved 100°C, deretter ble det dannede kobberslam frafiltrert. Filtra,et ble fra avkjøling surgjort og ekstrahert flere ganger med benzen. De forenede organiske faser ble vasket med litt vann og oppløsningsmidlet fjernet. copper (II) sulphate and 70 ml caustic soda (15%). The reaction mixture was heated for 2 hours at 100°C, then the formed copper sludge was filtered off. After cooling, the filtrate was acidified and extracted several times with benzene. The combined organic phases were washed with a little water and the solvent removed.

Utbytte: 4 g (52% av det teoretiske) vanillin. Yield: 4 g (52% of theoretical) vanillin.

Ved anvendelse av CuC^ som oksydasjonsmiddel istedenfor CuSOjj ble det oppnådd samme utbytte. By using CuC^ as oxidizing agent instead of CuSOjj, the same yield was obtained.

Claims (3)

1. Fremgangsmåte til fremstilling av aromatiske hydroksyaldehyder som inneholder hydroksygrupper i den aromatiske rest i 2-, 3- eller 4-stilling og eventuelt er substituert med ytterligere hydroksygrupper samt med O^-Cg-alkoksygrupper, halogen eller C-^-Cg-alkylrester ved samtidig oksydasjon og dekarboksylering av hydroksyarylglykolsyrer som inneholder hydroksygruppen i den.aromatiske rest i 2-, 3- eller 4-stilling og eventuelt er substituert med ytterligere hydroksygrupper samt med C-^-Cg-alkoksygrupper av halogen eller C-^Cg-alkylrester, karakterisert ved at man omsetter hydroksyarylglykolsyrene i vandig medium med oksydasjonsmidlet ved en pH-verdi lavere enn 5.1. Process for the preparation of aromatic hydroxyaldehydes which contain hydroxy groups in the aromatic residue in the 2-, 3- or 4-position and are optionally substituted with further hydroxy groups as well as with O^-Cg alkoxy groups, halogen or C-^-Cg alkyl residues by simultaneous oxidation and decarboxylation of hydroxyarylglycolic acids which contain the hydroxy group in the aromatic residue in the 2-, 3- or 4-position and which are optionally substituted with further hydroxy groups as well as with C-^-Cg alkoxy groups of halogen or C-^Cg-alkyl residues , characterized by reacting the hydroxyarylglycolic acids in an aqueous medium with the oxidizing agent at a pH value lower than 5. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at man arbeider i et pH-område fra 0,3 til 3-2. Method according to claim 1, characterized in that one works in a pH range from 0.3 to 3- 3. Fremgangsmåte ifølge krav 1-2, karakterisert ved at man anvender kaliumklorat eller natriumklorat i blanding med jern-, kobolt-, nikkel-sulfat eller -klorid.3. Method according to claims 1-2, characterized in that potassium chlorate or sodium chlorate is used in a mixture with iron, cobalt, nickel sulphate or chloride.
NO1089/72A 1971-03-31 1972-03-29 PROCEDURE FOR THE PREPARATION OF AROMATIC HYDROXYALDEHIDS NO137891C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2115551A DE2115551C3 (en) 1971-03-31 1971-03-31 Process for the production of aromatic hydroxyaldehydes

Publications (2)

Publication Number Publication Date
NO137891B true NO137891B (en) 1978-02-06
NO137891C NO137891C (en) 1978-05-16

Family

ID=5803351

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1089/72A NO137891C (en) 1971-03-31 1972-03-29 PROCEDURE FOR THE PREPARATION OF AROMATIC HYDROXYALDEHIDS

Country Status (14)

Country Link
AT (1) AT326636B (en)
BE (1) BE781466A (en)
CA (1) CA969556A (en)
CH (1) CH566952A5 (en)
CS (1) CS156536B2 (en)
DD (1) DD95227A5 (en)
DE (1) DE2115551C3 (en)
DK (1) DK132400C (en)
FR (1) FR2132364B1 (en)
GB (1) GB1377243A (en)
IT (1) IT952421B (en)
NL (1) NL7204369A (en)
NO (1) NO137891C (en)
PL (1) PL84513B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2376112A1 (en) * 1976-12-30 1978-07-28 Hoechst France PROCESS FOR MANUFACTURING NEW A-CHLOROARYLACETIC ACIDS AND A-CHLOROARYLACETIC ACIDS OBTAINED BY THIS PROCESS
GB1576334A (en) * 1977-05-26 1980-10-08 Ici Ltd N-alkyl and n,n-dialkyl derivatives thereof process for the manufacture of p-hydroxyphenylglycine and
JPS54125635A (en) * 1978-02-20 1979-09-29 Diamalt Ag Manufacture of 44hydroxyphenylacetic acid
SE441524B (en) * 1978-05-19 1985-10-14 Ici Ltd SOLID SODIUM OR POTASSIUM P-HYDROXIMANDELATE MONOHYDRATE AND SET FOR ITS PREPARATION
FR2440350A1 (en) * 1978-11-03 1980-05-30 Hoechst France PROCESS FOR PRODUCING RACEMIC PARAHYDROXYMANDELIC ACID
FR2456722A1 (en) * 1979-05-14 1980-12-12 Hoechst France CRYSTALLIZED SODIUM PARFORMYLPHENOLATE, PROCESS FOR THE PREPARATION THEREOF AND APPLICATION THEREOF
FR2427322A1 (en) * 1979-06-15 1979-12-28 Hoechst France RACEMIC CRYSTALLIZED SODIUM PARAHYDROXYMANDELATE, ITS PREPARATION PROCESS AND ITS APPLICATION TO THE PREPARATION OF CRYSTALLIZED SODIUM PARAFORMYLPHENOLATE
FR2461693A1 (en) * 1979-07-24 1981-02-06 Brichima Spa Hydroxy and alkoxy aromatic aldehyde prepn. - by oxidn. of phenyl glycolic acid deriv. by air or oxygen in presence of copper catalyst
WO1981000404A1 (en) * 1979-08-09 1981-02-19 Beecham Group Ltd Process for the isolation of a solid salt of p-hydroxy-mandelic acid;some salts of p-hydroxymandelic acid
GB9121656D0 (en) * 1991-10-11 1991-11-27 Ici Plc Chemical process
FR2931476B1 (en) * 2008-05-22 2012-12-28 Rhodia Operations PROCESS FOR SEPARATING PHENOLIC COMPOUND IN SOLIFIED FORM
FR2950886B1 (en) 2009-10-02 2011-10-28 Rhodia Operations PROCESS FOR SEPARATING PHENOLIC COMPOUNDS IN SALIVED FORM
CN111848377B (en) * 2020-08-18 2022-12-06 重庆化工职业学院 Preparation method of ethyl vanillin

Also Published As

Publication number Publication date
SU437270A3 (en) 1974-07-25
PL84513B1 (en) 1976-04-30
BE781466A (en) 1972-10-02
GB1377243A (en) 1974-12-11
DK132400C (en) 1976-05-03
DE2115551C3 (en) 1980-01-10
CA969556A (en) 1975-06-17
FR2132364A1 (en) 1972-11-17
CH566952A5 (en) 1975-09-30
DK132400B (en) 1975-12-01
NL7204369A (en) 1972-10-03
DE2115551A1 (en) 1972-10-12
CS156536B2 (en) 1974-07-24
AT326636B (en) 1975-12-29
FR2132364B1 (en) 1976-03-05
DE2115551B2 (en) 1979-05-17
IT952421B (en) 1973-07-20
ATA261272A (en) 1975-03-15
DD95227A5 (en) 1973-01-20
NO137891C (en) 1978-05-16

Similar Documents

Publication Publication Date Title
Ratcliffe et al. Improved procedure for oxidations with the chromium trioxide-pyridine complex
JP2830211B2 (en) Method for producing β-hydroxyketones
NO137891B (en) PROCEDURES FOR THE PREPARATION OF AROMATIC HYDROXYALDEHIDS
Herbst The reaction between α-ketonic acids and α-amino acids
Yates et al. Preparation of phenyldiazomethane
US4163759A (en) Process for preparing aromatic hydroxyaldehydes
Fieser et al. The n-methylformanilide synthesis of aldehydes
GB2104516A (en) m-Alkyl phenol derivatives and their use in copper extraction
Kohler et al. The reaction between highly phenylated compounds and organic magnesium compounds
US4453017A (en) Process for the methylation of phenolic compounds with trimethyl phosphate
US2671808A (en) Processes for preparing polycyclic alpha, beta-unsaturated ketones
US2640083A (en) Manufacture of vanillin and its homologues
US2529186A (en) Preparation of cinnamaldehyde
US4072722A (en) Process for preparing dihydric phenol derivatives
Dey 222. The jaborandi alkaloids. Part I. The synthesis of homo-and iso homo-pilopic acids and of r-pilocarpidine and r-iso pilocarpidine by new methods and the resolution of r-pilocarpine
Aroskar et al. Aromatic polyfluoro-compounds. Part XLI. Some reactions of pentafluorobenzaldehyde
GROVENSTEIN Jr et al. Reaction of 2-Phenylquinoxaline and of 2, 3-Diphenylquinoxaline with Dimethyl Acetylenedicarboxylate1
DE2702088C2 (en) Process for the autoxidation of a cycloalkanone to give the corresponding cycloalkane-1,2-dione
Rice The isomeric esters of benzoylacrylic acid
US2116016A (en) Glyoxal-semi-acetals
US2691039A (en) Stilbene-alpha-ketol compounds and process for making the same
CA1054635A (en) Process for manufacture of 3,5-ditert. butyl-4-hydroxybenzaldehyde from 3,5-ditert.butyl-4-hydroxybenzyl alcohol
Geissman et al. The Reaction between Cyclic β-Diketones and Grignard Reagents. II. 8, 8-Dimethylperinaphthindandione-7, 91
Jenkins Benzoin Reduction. I. The Mechanism of Ketone Formation. The Case of Benzanisoin
Adams et al. Amine bisulfite addition products of aldehydes and ketones. I