NO137210B - PROCEDURES FOR THE PREPARATION OF L-TRYPTOPHANE BY CULTIVATING A CORYNEBACTERIUM GLUTAMICUM MICRO-ORGANISM - Google Patents

PROCEDURES FOR THE PREPARATION OF L-TRYPTOPHANE BY CULTIVATING A CORYNEBACTERIUM GLUTAMICUM MICRO-ORGANISM Download PDF

Info

Publication number
NO137210B
NO137210B NO214473A NO214473A NO137210B NO 137210 B NO137210 B NO 137210B NO 214473 A NO214473 A NO 214473A NO 214473 A NO214473 A NO 214473A NO 137210 B NO137210 B NO 137210B
Authority
NO
Norway
Prior art keywords
atcc
tryptophan
corynebacterium glutamicum
tyrosine
phenylalanine
Prior art date
Application number
NO214473A
Other languages
Norwegian (no)
Other versions
NO137210C (en
Inventor
Kiyoshi Nakayama
Hiroshi Hagino
Original Assignee
Kyowa Hakko Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5217672A external-priority patent/JPS4913382A/ja
Priority claimed from JP47114236A external-priority patent/JPS5119037B2/ja
Application filed by Kyowa Hakko Kogyo Kk filed Critical Kyowa Hakko Kogyo Kk
Publication of NO137210B publication Critical patent/NO137210B/en
Publication of NO137210C publication Critical patent/NO137210C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte til fremstilling av L-tryptofan ved dyrking av en mikroorganisme av arten Corynebacterium glutamicum. The present invention relates to a method for producing L-tryptophan by cultivating a microorganism of the species Corynebacterium glutamicum.

L-tryptofan er en aminosyre som er essensiell for er- L-tryptophan is an amino acid that is essential for er-

næringen av en rekke dyr. Den har funnet kommersiell anvendelse som for- og fødevareadditiver og lignende. the nutrition of a variety of animals. It has found commercial use as forage and food additives and the like.

Hittil har L-tryptofan blitt fremstilt ved slike fremgangsmåter som er beskrevet i US patenter nr. 2 999 051, nr. 3 293 141, Until now, L-tryptophan has been produced by such methods as are described in US patents no. 2,999,051, no. 3,293,141,

og nr. 3 385 762, japansk utlagt søknad nr. 4632/64, fransk patent nr. 1 437 998 og DT-OS nr. 2 037 763 (1972) hvori en L-tryptofan-produserende mikroorganisme dyrkes i et næringsmedium inneholdende indol eller antranilsyre. En slik fremgangsmåte krever imidlertid et dyrt forstadium, dvs. indol eller antranil- and No. 3,385,762, Japanese Laid-Open Application No. 4632/64, French Patent No. 1,437,998 and DT-OS No. 2,037,763 (1972) in which an L-tryptophan-producing microorganism is grown in a nutrient medium containing indole or anthranilic acid. However, such a method requires an expensive precursor, i.e. indole or anthrani-

syre, og derfor medfører fremgangsmåten ufordelaktig høye material-omkostninger. Siden forstadiene dessuten har en inhiberende virkning på mirkoorganismenes vekst,.kan det ikke tilsettes store mengder derav til dyrkningsmediet, hvilket i betydelig grad reduserer den akkumulerte mengde sluttprodukt. acid, and therefore the method entails disadvantageously high material costs. Since the precursors also have an inhibitory effect on the micro-organisms' growth, large amounts of them cannot be added to the culture medium, which significantly reduces the accumulated amount of final product.

Andre kjente fremgangsmåter inkluderer gjæringen av histidin-krevende mutant mikroorganismer (US patent nr. 3 594 279); en mutant mikroorganisme, som er resistent overfor 5~metyltryptofan (fransk publikasjon nr. 2 059 715); og en mutant av Brevibacterium flavum nr. 2247, dvs. Br. flavum 12-555, som krever fenylalanin og tyrosin og er resistent overfor 5~metyltryptofan (Nihon Nogei Kagakukai Annual Meeting for 1971, Abstract of Lectures, side 153). Nevnte franske publikasjon nr. 2 059 715 angir også at L-tryptofan-produksjonen av mikroorganismer, som er resistente overfor 5-mety1-DL-tryptofan, kan forøkes ved å indusere et fenylalanin- og/eller tyrosinkrav hos mikroorganismen eller ved å indusere en resistens overfor forbindelser analoge med fenylalanin eller tyrosin. Bortsett fra publikasjonens ut-øvelseseksempler som er begrenset til mikroorganismer med resistens overfor 5_metyl-DL-tryptofan og et behov for fenylalanin eller tyrosin for veksten, er det imidlertid ingen angivelse av spesifikke mutanter eller av metoder for oppnåelse av mutanter som har en slik resistens overfor forbindelser analoge med fenylalanin eller tyrosin. Videre er utbyttene av L-tryptofan ved dyrking av mutantene ifølge de ovennevnte publikasjoner ca. 500 mg/l, når gjæringen utføres i kolber. Selv når gjæringen utføres i stor målestokk under optimale betingelser er utbyttet kun ca. 1.9 g/l (Nihon Nogei Kagakukai Annual Meeting for 1971, Abstract of Lectures, side 153). Slike utbytter er så lave at det er praktisk talt umulig å utnytte fremgangsmåtene i industriell målestokk. Som en følge av dette er det behov for en forbedret fremgangsmåte til industriell fremstilling av L-tryptofan. Other known methods include the fermentation of histidine-requiring mutant microorganisms (US Patent No. 3,594,279); a mutant microorganism which is resistant to 5-methyltryptophan (French publication no. 2 059 715); and a mutant of Brevibacterium flavum No. 2247, i.e. Br. flavum 12-555, which requires phenylalanine and tyrosine and is resistant to 5-methyltryptophan (Nihon Nogei Kagakukai Annual Meeting for 1971, Abstract of Lectures, page 153). Said French publication No. 2,059,715 also states that L-tryptophan production by microorganisms resistant to 5-methyl-DL-tryptophan can be increased by inducing a phenylalanine and/or tyrosine requirement in the microorganism or by inducing a resistance to compounds analogous to phenylalanine or tyrosine. However, apart from the publication's practice examples which are limited to microorganisms with resistance to 5-methyl-DL-tryptophan and a requirement for phenylalanine or tyrosine for growth, there is no indication of specific mutants or of methods for obtaining mutants having such resistance to compounds analogous to phenylalanine or tyrosine. Furthermore, the yields of L-tryptophan when growing the mutants according to the above-mentioned publications are approx. 500 mg/l, when the fermentation is carried out in flasks. Even when the fermentation is carried out on a large scale under optimal conditions, the yield is only approx. 1.9 g/l (Nihon Nogei Kagakukai Annual Meeting for 1971, Abstract of Lectures, page 153). Such yields are so low that it is practically impossible to utilize the methods on an industrial scale. As a result, there is a need for an improved process for the industrial production of L-tryptophan.

Ifølge foreliggende oppfinnelse er det således tilveiebragt en fremgangsmåte til fremstilling av L-tryptofan ved dyrking av en mikroorganisme av arten Corynebacterium glutamicum i et vandig næringsmedium -.inneholdende kilder for karbon, nitrogen, uorganiske næringsstoffer og nødvendige vekstfaktorer, hvoretter det i dyrkningsvæsken dannede L-tryptofan utvinnes fra denne, karakterisert ved at det som mikroorganisme anvendes en av stammene Corynebacterium glutamicum ATCC 21842, ATCC 21843, ATCC 21844, ATCC 21845, ATCC 21846, ATCC 21847, ATCC 21848, ATCC 21849, ATCC 21850 og ATCC 21851. According to the present invention, a method is thus provided for the production of L-tryptophan by cultivating a microorganism of the species Corynebacterium glutamicum in an aqueous nutrient medium - containing sources of carbon, nitrogen, inorganic nutrients and necessary growth factors, after which the L- tryptophan is extracted from this, characterized in that one of the strains Corynebacterium glutamicum ATCC 21842, ATCC 21843, ATCC 21844, ATCC 21845, ATCC 21846, ATCC 21847, ATCC 21848, ATCC 21849, ATCC 21850 and ATCC 21851 is used as a microorganism.

Corynebacterium glutamicum er en art av mikroorganismer tilhørende slekten Corynebacterium som vanligvis er karakterisert ved rette til svakt kurvede staver med uregelmessig fargede segmenter, noen ganger granuler. De viser ofte kølleformede oppsvulminger. Knekkdelinger frembringer vinkelformede og pali-sade- ( stakitt ) -arrangementer av celler. Ikke-motile med unn-tagelser blant plantepatogener. Gram-positive, men noen ganger mister unge og gamle celler fargen lett. Granuler konstant Gram-positive. Vanligvis helt aerobe, men mikroaerofile eller endog anaerobe arter forekommer. Katalase-positive. Kan i noen tilfeller flytendegjøre gelatin. Produserer i enkelte tilfeller nitriler fra nitrater. Forgjærer i noen tilfeller sukkerstoffer,. men produserer sjelden, hvis i det hele tatt, en høy surhetsgrad. Mange arter oksyderer glukose fullstendig til C02 og H^O uten Corynebacterium glutamicum is a species of microorganism belonging to the genus Corynebacterium which is usually characterized by straight to slightly curved rods with irregularly colored segments, sometimes granules. They often show club-shaped swellings. Cleavage divisions produce angular and palisade (picket) arrangements of cells. Non-motile with exceptions among plant pathogens. Gram-positive, but sometimes young and old cells lose their color easily. Granules constantly Gram-positive. Usually completely aerobic, but microaerophilic or even anaerobic species occur. Catalase-positive. Can in some cases liquefy gelatin. In some cases produces nitriles from nitrates. In some cases ferments sugars. but rarely, if ever, produces a high degree of acidity. Many species oxidize glucose completely to C02 and H^O without

å produsere merkbar gass. Corynebacterium glutamicum er et synonym for Micrococcus glutamicum angitt i US patent nr. 3 003 925. to produce noticeable gas. Corynebacterium glutamicum is a synonym for Micrococcus glutamicum stated in US patent no. 3,003,925.

De mikroorganismer som benyttes ved foreliggende fremgangsmåte er mutanter (analogresistente mutanter) av L-tryptofan-produserende stammer av Corynebacterium glutamicum. Stammene har behov for fenylalanin og tyrosin (herunder mutanter av en såkalt "lekkende" type) og er i stand til som deres moderstammer å The microorganisms used in the present method are mutants (analogue-resistant mutants) of L-tryptophan-producing strains of Corynebacterium glutamicum. The strains require phenylalanine and tyrosine (including mutants of a so-called "leaky" type) and are able, like their parent strains, to

vokse i et minimumsmedium (bestående av 1% glukose, 0, 1% (NH^)H2P0^, 0,02$ KC1, 0,02% MgSO^. 7H20, 30 yg/1 biotin, 10 mg/l vitamin B-^-h<y>droklorid, 1 ml/l av en oppløsning av sporemetallsalter grow in a minimal medium (consisting of 1% glucose, 0.1% (NH^)H2P0^, 0.02$ KC1, 0.02% MgSO^. 7H20, 30 yg/1 biotin, 10 mg/l vitamin B- ^-hydrochloride, 1 ml/l of a solution of trace metal salts

(en vandig oppløsning inneholdende 88 mg Na^B^O^.lOH^O, 37 mg (NH4)6.Mo702l|.4H20, 72 mg MnCl2.4H20, 970' mg FeCl3.6H20, (an aqueous solution containing 88 mg Na^B^O^.lOH^O, 37 mg (NH4)6.Mo7O2l|.4H20, 72 mg MnCl2.4H20, 970' mg FeCl3.6H20,

8.8 mg ZnSOi|.7H20 og 20 mg CuSO^'. 5H20 per liter og 2% agar) blandet med fenylalanin og tyrosin. 8.8 mg ZnSOi|.7H 2 O and 20 mg CuSO^'. 5H20 per liter and 2% agar) mixed with phenylalanine and tyrosine.

I forbindelse med den nevnte•resistens overfor analoge In connection with the aforementioned•resistance to analogues

til tyrosin eller fenylalanin skal det bemerkes at visse av disse analoge enkelte ganger har en felles struktur. F.eks. kan 4-fluorfenylalanin betraktes som en tyrosin-analog såvel som en fenylalanin-analog. I. overensstemmelse hermed må det forståes to tyrosine or phenylalanine, it should be noted that some of these analogues sometimes have a common structure. E.g. 4-fluorophenylalanine can be considered a tyrosine analog as well as a phenylalanine analog. I. accordance with this must be understood

at den nødvendige resistens kan være til en analog med både tyrosin og fenylalanin. that the necessary resistance may be to an analogue of both tyrosine and phenylalanine.

Som■gjæringsmedium kan det ved foreliggende fremgangsmåte anvendes ethvert syntetisk eller -naturlig medium, bare det inneholder en passende karbonkilde, en nitrogenkilde, uorganiske materialer og spormengder av næringsstoffer som er nødvendige for den bestemte mutantstamme. Any synthetic or natural medium can be used as a fermentation medium in the present method, as long as it contains a suitable carbon source, a nitrogen source, inorganic materials and trace amounts of nutrients that are necessary for the particular mutant strain.

Enhver karbonkilde og nitrogenkilde kan benyttes i mediet, bare den kan utnyttes av mikroorganismen. Som karbonkilde kan f.eks. anvendes karbohydrater, slik som glukose, fruktose, saccarose, maltose og mannose, sukkeralkoholer slik som sorbitol, mannitol, glycerol, stivelse, stivelsehydrolysatvæske og melasse. Videre kan det anvendes forskjellige organiske syrer slik som pyrodruesyre, melkesyre, eddiksyre, fumarsyre og glukonsyre, og lavere alkoholer slik som etanol. Any carbon source and nitrogen source can be used in the medium, as long as it can be utilized by the microorganism. As a carbon source, e.g. carbohydrates, such as glucose, fructose, sucrose, maltose and mannose, sugar alcohols such as sorbitol, mannitol, glycerol, starch, starch hydrolyzate liquid and molasses are used. Furthermore, various organic acids such as pyruvic acid, lactic acid, acetic acid, fumaric acid and gluconic acid can be used, and lower alcohols such as ethanol.

Som nitrogenkilde er følgende stoffer egnet: ammoniakk, forskjellige uorganiske og organiske ammoniumsalter, slik som ammonium-klorid, ammoniumsulfat, ammoniumkarbonat og ammoniumacetat, urea og andre nitrogenholdige materialer og nitrogenholdige organiske materialer slik som pepton, "NZ-Amin", kjøttekstrakt, gjærekstrakt, støpe-vann, kaseinhydrolysat, fiskemel eller oppløsningsprodukter derav og krysalishydrolysat. As a nitrogen source, the following substances are suitable: ammonia, various inorganic and organic ammonium salts, such as ammonium chloride, ammonium sulfate, ammonium carbonate and ammonium acetate, urea and other nitrogenous materials and nitrogenous organic materials such as peptone, "NZ-Amin", meat extract, yeast extract, casting water, casein hydrolyzate, fishmeal or dissolution products thereof and chrysalis hydrolyzate.

Som uorganiske materialer kan anvendes monokaliumdihydrogen-fosfat, dikaliummonohydrogenfosfat, magnesiumsulfat, natriumklorid, jern(II)sulfat, mangansulfat og kalsiumkarbonat. Monopotassium dihydrogen phosphate, dipotassium monohydrogen phosphate, magnesium sulphate, sodium chloride, iron (II) sulphate, manganese sulphate and calcium carbonate can be used as inorganic materials.

Med hensyn til de vitaminer og aminosyrer som er nødvendige for mutantstammenes vekst, må de selvfølgelig være tilstede i mediet. Det er imidlertid ikke nødvendig at de tilsettes til mediet for seg, bare de tilføres til mediet sammen med andre komponenter som beskrevet ovenfor, dvs. at visse naturlige bestanddeler kan medføre en tilfreds-stillende mengde av de spesifikke vektsfremmende faktorer. With regard to the vitamins and amino acids that are necessary for the growth of the mutant strains, they must of course be present in the medium. However, it is not necessary that they are added to the medium separately, only that they are added to the medium together with other components as described above, i.e. that certain natural components can result in a satisfactory amount of the specific weight-promoting factors.

Dyrkingen utføres under aerobe betingelser slik som rysting eller lufting-omrøring. En egnet dyrkningstemperatur er vanligvis 20° -' 4d°C. Det er ønskelig å holde mediets pH-verdi omkring nøytrali-tet under hele dyrkingen for å oppnå et høyt utbytte, men disse tem-peratur- og pH-betingelser er ikke avgjørende for utførelsen av foreliggende fremgangsmåte. Dyrkingen utføres vanligvis i 2 - 5 dager hvorved det akkumuleres en betydelig mengde L-tryptofan i mediet. Cultivation is carried out under aerobic conditions such as shaking or aeration-stirring. A suitable cultivation temperature is usually 20° - 4d°C. It is desirable to keep the medium's pH value around neutrality during the entire cultivation in order to achieve a high yield, but these temperature and pH conditions are not decisive for the execution of the present method. Cultivation is usually carried out for 2 - 5 days, whereby a significant amount of L-tryptophan accumulates in the medium.

Etter fullførelse av dyrkingen fjernes cellene og L-tryptofan utvinnes fra dyrkningsvæsken ved hjelp av enhver velkjent metode slik som behandling med aktiv-kull og behandling med ioneutvekslerharpiks. After completion of the cultivation, the cells are removed and L-tryptophan is recovered from the culture liquid by any well-known method such as treatment with activated carbon and treatment with ion exchange resin.

For å oppnå mutantstammer som er egnet for anvendelse ved foreliggende fremgangsmåte, muteres bakterier tilhørende arten Corynebacterium glutamicum kunstig til fenylalanin- og tyrosin-krevende stammer. Disse mutantstammer muteres deretter igjen med kunstige midler. De resulterende mutantstammer dyrkes deretter på minimum agarmedium blandet med minst en tryptofan-analog og minst en analog' av fenylalanin eller tyrosin i en konsentrasjon som ikke er lavere enn den som normalt ville inhibere veksten av moderstammen. In order to obtain mutant strains suitable for use in the present method, bacteria belonging to the species Corynebacterium glutamicum are artificially mutated into phenylalanine- and tyrosine-requiring strains. These mutant strains are then mutated again by artificial means. The resulting mutant strains are then grown on minimum agar medium mixed with at least one tryptophan analog and at least one analog of phenylalanine or tyrosine at a concentration not lower than that which would normally inhibit the growth of the parent strain.

Fra kolonier som er dyrket på dette medium, isoleres de ønsk-ede stammer. F.eks. er utviklingen av mutantstammer av den fenylalanin- og tyrosin-krevende bakterie, Corynebacterium glutamicum KY 9456, ATCC 21854, vist nedenfor. From colonies grown on this medium, the desired strains are isolated. E.g. is the development of mutant strains of the phenylalanine- and tyrosine-requiring bacterium, Corynebacterium glutamicum KY 9456, ATCC 21854, shown below.

Stammen (KY 9456, ATCC 21854) gjennomgår vekstinhibering av tryptofan-analoge' og fenylalanin-analoge og tyrosin-analoge i de i tabell 1 angitte konsentrasjoner når den dyrkes i minimum agar-mediet blandet med fenylalanin og tyrosin. The strain (KY 9456, ATCC 21854) undergoes growth inhibition by tryptophan analogues and phenylalanine analogues and tyrosine analogues in the concentrations indicated in Table 1 when grown in the minimum agar medium mixed with phenylalanine and tyrosine.

De i tabell 1 angitte verdier viser de minimale vekstinhiberende vekstkonsentrasjoner av den ovennevnte analoge. De er bestemt som følger. Corynebacterium glutamicum KY 9456, ATCC 21854, dyrkes natten over på et buljong-agar-skråsubstrat. De således oppnådde celler suspenderes i en isotonisk natriumkloridoppløsning og en por-sjon av den resulterende suspensjon inneholdende 10 6 - 10 7 celler spredes jevnt over et agar-plate-minimumsmedium supplert med en av de ovennevnte analoge i en Petri-skål (85 mm i diameter) og dyrkes ved 30°C i 3 dager. Inhiberingsgraden bedømmes ved iakttagelse av veksten på mediet. The values given in Table 1 show the minimal growth inhibitory growth concentrations of the above analogue. They are determined as follows. Corynebacterium glutamicum KY 9456, ATCC 21854, is grown overnight on a broth agar slant substrate. The cells thus obtained are suspended in an isotonic sodium chloride solution and a portion of the resulting suspension containing 10 6 - 10 7 cells is spread evenly over an agar plate minimum medium supplemented with one of the above analogues in a Petri dish (85 mm in diameter) and grown at 30°C for 3 days. The degree of inhibition is assessed by observing the growth on the medium.

Under hensyn til MIC-bestemmelsen på moderstammen sorteres With regard to the MIC determination on the mother strain, it is sorted

de analog-resistente stammer ved spredning av cellene av en ytter-ligere mutert stamme av Corynebacterium glutamicum KY 9456, ATCC 21854, på et minimums-agarmedium supplert med en tryptofan-analog og en fenylalanin-analog eller tyrosin-analog i en konsentrasjon over den vekstinhiberende konsentrasjon for moderstammen. Etter en passende inkubasjonstid isoleres celler fra kolonier, som har vært i stand til å dannes på mediet. Disse celler dyrkes deretter på egnet måte for utvikling av mikrobe populasjoner til industrielle formål. the analog-resistant strains by spreading the cells of an extreme mutant strain of Corynebacterium glutamicum KY 9456, ATCC 21854, on a minimum agar medium supplemented with a tryptophan analog and a phenylalanine analog or tyrosine analog in a concentration above growth inhibitory concentration for the mother strain. After a suitable incubation time, cells are isolated from colonies which have been able to form on the medium. These cells are then cultivated in a suitable manner for the development of microbe populations for industrial purposes.

Som medium til frasortering av den analogresistente mutant anvendes vanligvis et fast agarmedium inneholdende de analoge, en karbonkilde, nitrogenkilde, uorganiske salter, tyrosin, fenylalanin, biotin, vitamin B^^ og spormengder av andre næringsstoffer, som er nød-vendige for veksten av moderbakterien. Hva angår spornæringsstoffene kan det benyttes naturlige materialer som normalt inneholder nærings-stoffene . A solid agar medium containing the analogues, a carbon source, nitrogen source, inorganic salts, tyrosine, phenylalanine, biotin, vitamin B^^ and trace amounts of other nutrients, which are necessary for the growth of the mother bacterium, is usually used as a medium for sorting out the analogue-resistant mutant. . As regards trace nutrients, natural materials can be used which normally contain the nutrients.

Mutantstammer av Corynebacterium glutamicum oppnådd ved hjelp av den ovennevnte frasorteringsprosess er blitt deponert i American Type Culture Collection, Rockville, Maryland, og er fritt tilgjengelige for offentligheten. Disse stammer er blitt tildelt aksesjonsnummerne ATCC 21342 til ATCC 21851. Mutant strains of Corynebacterium glutamicum obtained by the above screening process have been deposited in the American Type Culture Collection, Rockville, Maryland, and are freely available to the public. These strains have been assigned the accession numbers ATCC 21342 to ATCC 21851.

Mutantstammene av Corynebacterium glutamicum, som anvendes ved foreliggende fremgangsmåte, kan produsere L-tryptofan i meget høyere utbytter enn andre L-tryptofan-produserende stammer av Corynebacterium glutamicum som er benyttet ved de kjente fremgangsmåter. Spesielt viser en sammenligning av de foreliggende mutantstammer med stammen fra japansk utlagt søknad nr. 14395/63 (tyrosin- og fenylalanin-krevende stamme av Corynebacterium glutamicum) og stammen fra US patent nr. 3 594 279 (histidin-krevende stamme av Corynebacterium glutamicum) som vist i nedenstående eksempel 1, at den foreliggende bakterie produserer L-tryptofan i et utbytte som er fra omkring 15 til omkring 20 ganger høyere enn det til de kjente stammer. Den franske publikasjon nr 2 059 715 angir at L-tryptofanutbyttet ved hjelp av Corynebacterium acetoglutamicum AJ-3293 (med behov for fenylalanin og tyrosin og resistens overfor 5-metyltryptofan) er 0.186 mg/ml og L-tryptofanutbyttet'ved hjelp av Micrococcus glutamicus AJ-3295 (med resistens overfor 5~metyltryptofan) er 0.0235 mg/ml. Nihon Nogei Kagakukai Annual Meeting for 1971j Abstract og Lectures (side 153) angir at L-tryptofan-utbyttet ved hjelp av Brevibacterium flavum 12-555 (som har behov for fenylalanin og tyrosin og har resistens overfor 5-metyltryptofan) er 1.9 g/l når gjæringen utføres i stor målestokk under optimale betingelser. I motsetning til dette kan en mutantstamme av Corynebacterium glutamicum, som benyttes ved foreliggende fremgangsmåte, og som har behov for fenylalanin og tyrosin og har resistens overfor minst en tryptofan-analog og overfor minst en tyrosin-analog eller fenylalanin-analog eller begge deler, produsere L-tryptofan i utbytter som er uventet meget høyere enn de som oppnåes med de kjente bakterier. Således representerer foreliggende fremgangsmåte en meget fordelaktig industriell prosess for fremstilling av. L-tryptofan. The mutant strains of Corynebacterium glutamicum, which are used in the present method, can produce L-tryptophan in much higher yields than other L-tryptophan-producing strains of Corynebacterium glutamicum which are used in the known methods. In particular, a comparison of the present mutant strains with the strain from Japanese laid-off application no. 14395/63 (tyrosine- and phenylalanine-requiring strain of Corynebacterium glutamicum) and the strain from US patent no. 3,594,279 (histidine-requiring strain of Corynebacterium glutamicum) shows as shown in example 1 below, that the present bacterium produces L-tryptophan in a yield that is from about 15 to about 20 times higher than that of the known strains. The French publication No. 2 059 715 states that the L-tryptophan yield by means of Corynebacterium acetoglutamicum AJ-3293 (with a need for phenylalanine and tyrosine and resistance to 5-methyltryptophan) is 0.186 mg/ml and the L-tryptophan yield by means of Micrococcus glutamicum AJ -3295 (with resistance to 5-methyltryptophan) is 0.0235 mg/ml. Nihon Nogei Kagakukai Annual Meeting for 1971j Abstract and Lectures (page 153) states that the L-tryptophan yield using Brevibacterium flavum 12-555 (which requires phenylalanine and tyrosine and has resistance to 5-methyltryptophan) is 1.9 g/l when the fermentation is carried out on a large scale under optimal conditions. In contrast, a mutant strain of Corynebacterium glutamicum used in the present method, which requires phenylalanine and tyrosine and has resistance to at least one tryptophan analog and to at least one tyrosine analog or phenylalanine analog or both, can produce L-tryptophan in yields that are unexpectedly much higher than those obtained with the known bacteria. Thus, the present method represents a very advantageous industrial process for the production of L-tryptophan.

Fremgangsmåten ifølge oppfinnelsen illustreres nærmere ved de nedenstående eksempler. The method according to the invention is illustrated in more detail by the following examples.

Eksempel 1 Example 1

I dette eksempel anvendes en L-tryptofan-produserende mutantstamme av Corynebacterium glutamicum, som har b^hov for tyrosin og fenylalanin og har resistens overfor 5-rnety ltryptof an, 6-f luortrypto-fan og 4-fluorfenylalanin, nemlig stammen Corynebacterium glutamicum Trp-1, ATCC 21842. Mutantstammen dyrkes i et podemedium inneholdende 2 % glukose, 1 % pepton, 1 % gjærekstrakt og 0.3 % NaCl ved 30°C i In this example, an L-tryptophan-producing mutant strain of Corynebacterium glutamicum is used, which requires tyrosine and phenylalanine and has resistance to 5-methyltryptophan, 6-fluorotryptophan and 4-fluorophenylalanine, namely the strain Corynebacterium glutamicum Trp -1, ATCC 21842. The mutant strain is grown in an inoculum containing 2% glucose, 1% peptone, 1% yeast extract and 0.3% NaCl at 30°C in

24 timer. 1 ml av den resulterende podekultur innpodes i 10 ml av et gjæringsmedium med følgende sammensetning i en 250 ml Erlenmeyer-kolbe: 24 hours. 1 ml of the resulting inoculum is inoculated into 10 ml of a fermentation medium of the following composition in a 250 ml Erlenmeyer flask:

Dyrkingen utføres ved 30°C i 4 dager med rysting, hvorved det produseres L-tryptofan i et utbytte på 3.6 mg/ml. The cultivation is carried out at 30°C for 4 days with shaking, whereby L-tryptophan is produced in a yield of 3.6 mg/ml.

2 liter av den resulterende dyrkningsvæske underkastes sentri-fugering for å fjerne mikrobecellene og CaCO^3, og den resulterende overvæske sendes gjennom et lag av en sterk sur kationutvekslerhar-piks , handelsbetegnelse "Diainon SK-104" (H+<->form), for adsorbsjon av L-tryptofanen. Etter vasking med vann underkastes harpiksen en 2 liters of the resulting culture fluid is subjected to centrifugation to remove the microbe cells and CaCO^3, and the resulting supernatant is passed through a layer of a strong acid cation exchange resin, trade name "Diainon SK-104" (H+<->form), for adsorption of L-tryptophan. After washing with water, the resin is subjected to a

: .eluering med, 0.5 N vandig ammoniakk og det resulterende eluat kon-sentreres for oppnåelse av rå krystaller av.L-tryptofan. De rå krystaller oppløses i en liten mengde varm 50 % vandig etanol. Den resulterende oppløsning avfarges med aktiv-kull og avkjøles, hvorved det utkrystalliseres 3-5 g L-tryptofan. : elution with 0.5 N aqueous ammonia and the resulting eluate is concentrated to obtain crude crystals of L-tryptophan. The crude crystals are dissolved in a small amount of warm 50% aqueous ethanol. The resulting solution is decolorized with activated carbon and cooled, whereby 3-5 g of L-tryptophan are crystallized.

Når moderstammen til denne mutantstamme, dvs. Corynebacterium glutamicum KY 9456 , ATCC 21854, som har behov for tyrosin og fenylalanin, og Corynebacterium glutamicum KY 9104, ATCC 21334, som har behov for histidin (US patent nr. 3 594 279), dyrkes under de samme betingelser er utbyttene av L-tryptofan henholdsvis 0.2 mg/ml og 0.2 mg/ml. When the parent strain of this mutant strain, i.e., Corynebacterium glutamicum KY 9456, ATCC 21854, which requires tyrosine and phenylalanine, and Corynebacterium glutamicum KY 9104, ATCC 21334, which requires histidine (US Patent No. 3,594,279), are grown under under the same conditions, the yields of L-tryptophan are respectively 0.2 mg/ml and 0.2 mg/ml.

Eksempel 2 Example 2

I dette eksempel anvendes L-tryptofan-produserende mutantstammer av Corynebacterium glutamicum som har de i nedenstående tabell 2 angitte egenskaper. Hver av disse stammer dyrkes i det i eksempel 1 beskrevne podemedium i 24 timer. En ml av hver av de således fremstilte podekulturer overføres i 250 ml Erlenmeyer-kolber inneholdende 10 ml av et gjæringsmedium bestående av: In this example, L-tryptophan-producing mutant strains of Corynebacterium glutamicum are used which have the properties indicated in Table 2 below. Each of these strains is cultivated in the inoculum medium described in example 1 for 24 hours. One ml of each of the seed cultures thus prepared is transferred into 250 ml Erlenmeyer flasks containing 10 ml of a fermentation medium consisting of:

Dyrkingen utføres ved 30°C i 4 dager under rysting. Resul-tatene er angitt i tabell 2. Cultivation is carried out at 30°C for 4 days with shaking. The results are shown in table 2.

phe : krever fenylalanin phe : requires phenylalanine

tyr : krever tyrosin bull : requires tyrosine

5MT : resistent overfor 5-mety ltryptof an 5MT : resistant to 5-methyl tryptophan

6FT : resistent overfor 6-fluortryptofan 6FT : resistant to 6-fluorotryptophan

4MT : resistent overfor 4-metyltryptof an 4MT : resistant to 4-methyltryptoph an

Trphx : resistent overfor tryptofan-hydroksamat Trphx : resistant to tryptophan hydroxamate

4AP : resistent overfor 4-aminofenylalanin 4AP : resistant to 4-aminophenylalanine

Tyrhx : resistent overfor tyrosm-hydroksamat Tyrhx : resistant to tyrosm hydroxamate

Phehx : resistent overfor fenylalanm-hydroksamat Phehx : resistant to phenylalan hydroxamate

3 AT : resistent overfor 3~aminptyrosin 3 AT : resistant to 3~amine ptyrosine

4FP : resistent overfor 4-fluorfenylalanin 4FP : resistant to 4-fluorophenylalanine

3FP : resistent overfor 3-fluorfenylalanin 3FP : resistant to 3-fluorophenylalanine

2FP<r> : resistent overfor 2-fluorfenylalanin 2FP<r> : resistant to 2-fluorophenylalanine

Eksempel 3 Example 3

I dette eksempel dyrkes Corynebacterium glutamicum Trp-10, ATCC 21851 i 24 timer i et podemedium inneholdende 7 % rørsukker-melasse (b regnet som glukose), 0.3 % maisstøpevann, 0.1 % KH^PO^, 0.1 % I^HPC^, 0.05 % MgSOj4.7H20 og 0.9 % soyabønnekake-dekomposat In this example, Corynebacterium glutamicum Trp-10, ATCC 21851 is grown for 24 hours in an inoculum medium containing 7% cane sugar-molasses (b calculated as glucose), 0.3% corn molasses, 0.1% KH^PO^, 0.1% I^HPC^, 0.05 % MgSOj4.7H20 and 0.9% soybean cake compost

(oppnådd ved å dekomponere soyabønnekake med 6N svovelsyre og nøytra-lisere dekomposatet med vandig ammoniakk, beregnet som soyabønnekake). 300 ml av podemediet innpodes deretter i 3 liter av et gjæringsmedium med følgende sammensetning i en 5 liters gjæringsbeholder: (obtained by decomposing soybean cake with 6N sulfuric acid and neutralizing the decomposed with aqueous ammonia, calculated as soybean cake). 300 ml of the pod medium is then inoculated into 3 liters of a fermentation medium with the following composition in a 5 liter fermentation container:

Dyrkingen utføres ved 30°C med en luftingshastighet på 3 l/min. og under omrøring med 600 omdr./min. i 72 timer. Som resultat produseres 16.8 mg/ml L-tryptofan. Cultivation is carried out at 30°C with an aeration rate of 3 l/min. and while stirring at 600 rpm. for 72 hours. As a result, 16.8 mg/ml L-tryptophan is produced.

Claims (1)

Fremgangsmåte til fremstilling av L-tryptofan ved dyrking av en mikroorganisme av arten Corynebacterium glutamicum i et vandig næringsmedium inneholdende kilder for karbon, nitrogen, uorganiske næringsstoffer og nødvendige vekstfaktorer, hvoretter det i dyrkningsvæsken dannede L-tryptofan utvinnes fra denne, karakterisert ved at det som mikroorganisme anvendes en av stammene Corynebacterium glutamicum ATCC 21842,Process for the production of L-tryptophan by growing a microorganism of the species Corynebacterium glutamicum in an aqueous nutrient medium containing sources of carbon, nitrogen, inorganic nutrients and necessary growth factors, after which the L-tryptophan formed in the culture liquid is extracted from this, characterized in that the microorganism used is one of the strains Corynebacterium glutamicum ATCC 21842, ATCC 21843, ATCC 21844, ATCC 21845, ATCC 21846, ATCC 21847,ATCC 21843, ATCC 21844, ATCC 21845, ATCC 21846, ATCC 21847, ATCC 21848, ATCC 21849, ATCC 21850 og ATCC 21851.ATCC 21848, ATCC 21849, ATCC 21850 and ATCC 21851.
NO214473A 1972-05-27 1973-05-24 PROCEDURES FOR THE PREPARATION OF L-TRYPTOPHANE BY CULTIVATING A CORYNEBACTERIUM GLUTAMICUM MICRO-ORGANISM NO137210C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5217672A JPS4913382A (en) 1972-05-27 1972-05-27
JP47114236A JPS5119037B2 (en) 1972-11-16 1972-11-16

Publications (2)

Publication Number Publication Date
NO137210B true NO137210B (en) 1977-10-10
NO137210C NO137210C (en) 1978-01-18

Family

ID=26392794

Family Applications (1)

Application Number Title Priority Date Filing Date
NO214473A NO137210C (en) 1972-05-27 1973-05-24 PROCEDURES FOR THE PREPARATION OF L-TRYPTOPHANE BY CULTIVATING A CORYNEBACTERIUM GLUTAMICUM MICRO-ORGANISM

Country Status (9)

Country Link
CA (1) CA997292A (en)
DK (1) DK133055C (en)
ES (1) ES415211A1 (en)
FR (1) FR2189510B1 (en)
GB (1) GB1427612A (en)
IT (1) IT991605B (en)
NL (1) NL7307353A (en)
NO (1) NO137210C (en)
SE (1) SE393398B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3464934D1 (en) * 1983-04-13 1987-08-27 Ajinomoto Kk Process for the production of l-tryptophan by a fermentation process
JPS60176593A (en) * 1984-02-22 1985-09-10 Kyowa Hakko Kogyo Co Ltd Preparation of l-tryptophan
CN112251477B (en) * 2020-11-19 2022-10-28 乐康珍泰(天津)生物技术有限公司 Method for improving fermentation yield and saccharic acid conversion rate of L-phenylalanine

Also Published As

Publication number Publication date
IT991605B (en) 1975-08-30
FR2189510A1 (en) 1974-01-25
FR2189510B1 (en) 1976-04-23
CA997292A (en) 1976-09-21
DK133055B (en) 1976-03-15
NO137210C (en) 1978-01-18
ES415211A1 (en) 1976-06-01
SE393398B (en) 1977-05-09
NL7307353A (en) 1973-11-29
DK133055C (en) 1976-08-23
GB1427612A (en) 1976-03-10

Similar Documents

Publication Publication Date Title
JP3698758B2 (en) Method for producing L-leucine by fermentation
JP3006926B2 (en) Method for producing L-threonine by fermentation method
KR960016135B1 (en) Process for producing l-isoleucine
US3849251A (en) Process for producing l-tryptophan
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
US2978383A (en) Method for the production of 1-glutamic acid
SU1719433A1 (en) Method of l-alanine preparation
US2978384A (en) Method for the production of 1-glutamic acid
NO137210B (en) PROCEDURES FOR THE PREPARATION OF L-TRYPTOPHANE BY CULTIVATING A CORYNEBACTERIUM GLUTAMICUM MICRO-ORGANISM
US3689359A (en) Method for producing citric acid
CA1192157A (en) Fermentative preparation of l-leucine
US4271267A (en) Preparation of L-trytophan by fermentation
JP3100763B2 (en) Method for producing L-arginine by fermentation
US4560652A (en) Process for producing L-tryptophan by fermentation
HUT61598A (en) Process for producing l-threonine
JP3006907B2 (en) Method for producing L-alanine by fermentation method
KR0146493B1 (en) Process for producing l-alanine by fermentation
US2902409A (en) Production of lysine, arginine, and glutamic acids
HU215248B (en) Process for producing l-lysine
KR900000938B1 (en) Process for preparing l-glutamic acid by fermentation
JP2578496B2 (en) Production method of inosine by fermentation method
US3623951A (en) Method for producing l-glutamic acid
JPS60164493A (en) Preparation of l-phenylalanine
JPH03290195A (en) Production of d-isocitric acid by fermentation
JPS61260891A (en) Production of l-threonine by fermentation method