NO135985B - - Google Patents

Download PDF

Info

Publication number
NO135985B
NO135985B NO3634/71A NO363471A NO135985B NO 135985 B NO135985 B NO 135985B NO 3634/71 A NO3634/71 A NO 3634/71A NO 363471 A NO363471 A NO 363471A NO 135985 B NO135985 B NO 135985B
Authority
NO
Norway
Prior art keywords
fluorine
hypofluorite
stated
atom
nucleophile
Prior art date
Application number
NO3634/71A
Other languages
Norwegian (no)
Other versions
NO135985C (en
Inventor
R H Hesse
D H R Barton
Original Assignee
Res Inst Medicine Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Res Inst Medicine Chem filed Critical Res Inst Medicine Chem
Publication of NO135985B publication Critical patent/NO135985B/no
Publication of NO135985C publication Critical patent/NO135985C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/20Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D239/22Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • C07D239/545Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals with other hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/553Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals with other hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms with halogen atoms or nitro radicals directly attached to ring carbon atoms, e.g. fluorouracil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Fremgangsmåte for fremstilling av Method of manufacture of

5-fluoruracilderivater. 5-fluorouracil derivatives.

Denne oppfinnelse angår en fremgangsmåte for fremstilling This invention relates to a method for manufacturing

av 5-fluoruracilderivater. of 5-fluorouracil derivs.

Det har vist seg at 5-fluoruracil, 5-fluoruridin og for-skjellige beslektede 5-fluorerte pyrimidiner har cytotoksiske egen-skaper som er nyttige til behandling av visse typer kreft og visse typer virusinfeksjoner. Tidligere er disse fremstilt ved en total syntese som omfatter flere reaksjonstrinn og forholdsvis lavt tot-alt utbytte. Det har vist seg at visse pyrimidiner slik som uracil, kan fluoreres i 5-stilling under anvendelse av visse elektro-file fluoreringsmidler. It has been shown that 5-fluorouracil, 5-fluorouridine and various related 5-fluorinated pyrimidines have cytotoxic properties which are useful in the treatment of certain types of cancer and certain types of viral infections. In the past, these have been produced by a total synthesis that includes several reaction steps and a relatively low overall yield. It has been found that certain pyrimidines such as uracil can be fluorinated in the 5-position using certain electrophilic fluorinating agents.

Dette er i motsetning til tidligere forsøk på halogenering This is in contrast to previous attempts at halogenation

av uracil, f.eks. klorering, hvor videre eliminering og addisjon av halogen finner sted for å gi produker som ikke lett skal anvendes for fremstilling av 5-kloruracilderivater. of uracil, e.g. chlorination, where further elimination and addition of halogen takes place to give products which are not readily used for the preparation of 5-chlorouracil derivatives.

Selvom uracilderivater er praktisk talt inerte overfor det kjente fluoreringsmiddel perklorylfluorid, har vi funnet at omsetning med et hypofluoritt, hvor fluoroksygruppen er kovalent bundet til en inert, elektrontiltrekkende gruppe, innfører fluor glatt i 5-stilling. Et beslektet middel som er funnet egnet, er elementært fluor fortynnet med en inert gass. Although uracil derivatives are practically inert to the known fluorinating agent perchloryl fluoride, we have found that reaction with a hypofluorite, where the fluorooxy group is covalently bound to an inert, electron-withdrawing group, introduces fluorine smoothly in the 5-position. A related agent which has been found suitable is elemental fluorine diluted with an inert gas.

Det antaes at fluor først adderer elektrofilt i 5-stilling for å danne et karboniumion med en positiv ladning i 6-stilling, It is assumed that fluorine first adds electrophilically in the 5-position to form a carbonium ion with a positive charge in the 6-position,

som derefter eliminerer hydrogen fra 5-stillingen for å dann en 5,6-dobbeltbinding og/eller bindes til et nukleofil som er tilstede i reaksjonsmediet, for å danne et 6-substituert 5-fluor-5,6-dihydro-pyrimidin; denne forbindelse kan lett bringes til å eliminere 6-substituénten sammen med 5-hydrogenet, f.eks. ved oppvarmning, for which then eliminates hydrogen from the 5-position to form a 5,6-double bond and/or binds to a nucleophile present in the reaction medium to form a 6-substituted 5-fluoro-5,6-dihydro-pyrimidine; this compound can easily be brought to eliminate the 6-substituent together with the 5-hydrogen, e.g. by heating, for

å danne det ønskede 5,6-dihydroprodukt. to form the desired 5,6-dihydro product.

I henhold til oppfinnelsen tilveiebringes således en.fremgangsmåte for fremstilling av forbindelser med formelen (hvor R eir en alkylgruppe, et hydrogenatom eller en monosakkaridrest) , og fremgangsmåten karakteriseres med at en forbindelse med formelen: According to the invention, a method is thus provided for the preparation of compounds with the formula (where R is an alkyl group, a hydrogen atom or a monosaccharide residue), and the method is characterized by the fact that a compound with the formula:

(hvor R har de ovenfor angite betydninger) omsettes med et fluor-alkyl-hypofluoritt hvor. alkyldelen inneholder minst to fluoratomer pr. karbonatom, eller omsettes med elementært fluor fortynnet med en inert gass, for å innføre et fluoratom i 5-stillingen, fulgt, når et atom eller en gruppe innføres i 6-stillingen, av eliminering av nevnte gruppe sammen med hydrogenatomet i 5-stilling for å danne den ønskede 5,6-dobbeltbinding. (where R has the meanings given above) is reacted with a fluoro-alkyl-hypofluorite where. The alkyl part contains at least two fluorine atoms per carbon atom, or reacted with elemental fluorine diluted with an inert gas, to introduce a fluorine atom in the 5-position, followed, when an atom or group is introduced in the 6-position, by elimination of said group together with the hydrogen atom in the 5-position for to form the desired 5,6-double bond.

I formlene I og II har alkylgruppen betegnet med R fortrinnsvis 1-6 karbonatomer,. så som metyl, etyl, butyl-, eller heksyl. Når R er en monosakkaridrest kan den f.eks. være en 1-ri-bonyl-, 1-(2-deoksyribosyl)- eller arabinosyl-rest. Det tilstede-værende nukleofil kan f.eks. omfatte hydroksylioner fra vann, al-koksylioner fra alkanoler, karboksylationer fra en karboksylsyre eller halogenidioner, særlig fluoridioner fra fluoreringsmidlet. Vi har funnet at slike 6-substituerte produkter er forholdsvis stabile, og eftersom de ikke har en 5,6-dobbeltbinding er de forholdsvis lite utsatt for angrep av andre midler. Det er derfor hensiktsmessig å utføres omsetningen i nærvær av et nukleofil for å sikre dannelsen av 6-substituert-5-fluor-5,6-dihydrouracil som vanligvis dannes med høyt utbytte og kan lett omdannes til det ønskede 5-fluoruracil. In the formulas I and II, the alkyl group denoted by R preferably has 1-6 carbon atoms. such as methyl, ethyl, butyl, or hexyl. When R is a monosaccharide residue, it can e.g. be a 1-ribonyl, 1-(2-deoxyribosyl) or arabinosyl residue. The present nucleophile can e.g. include hydroxyl ions from water, alkyl ions from alkanols, carboxylations from a carboxylic acid or halide ions, especially fluoride ions from the fluorinating agent. We have found that such 6-substituted products are relatively stable, and since they do not have a 5,6-double bond, they are relatively little exposed to attack by other agents. It is therefore appropriate to carry out the reaction in the presence of a nucleophile to ensure the formation of 6-substituted-5-fluoro-5,6-dihydrouracil which is usually formed in high yield and can easily be converted to the desired 5-fluorouracil.

Omsetningen utføres fortrinnsvis i et oppløsningsmiddel The reaction is preferably carried out in a solvent

for pyrimidinet, hensiktsmessig et polart oppløsningsmiddel, så for the pyrimidine, suitably a polar solvent, so

som vann, et hydrat av et perfluorketon så som heksafluoraceton, eller trifluoreddiksyre. Vann foretrekkes. Med oppløsningsmidler som kan være tilstede, omfatter f.eks. alkanoler, fortrinnsvis C^_5» så som metanol eller etanol; lavere alifatiske syre (fortrinnsvis C^_g) så som eddiksyre eller propionsyre; eller estere av fosforsyre eller forsfonsyre. De fleste av de ovennevnte opp-løsningsmiddelsystemer vil inneholde nukleofiler som er egnet til å danne de ovenfor nevnte stabile 6-substituerte derivater. I tillegg skal det legges merke til at når F anvendes som reaksjonskomponent, vil F -ioner også virke som nukleofiler. Når en hypofluoritt-reaksjonskompbnent anvendes og denne omfatter en perfluor-alkylgruppe så som i trifluormetyl-hypofluoritt, vil spaltning av perfluoralkoksyanioner som frigjøres ved reaksjonen, også gi F . Hvis omsetningen utføres i vann, vil således vanligvis det første reaksjonsprodukt hovedsakelig være et 5-fluor-6-hydroksy-5,6-di-hydrouracil, men det vil også inneholde en mindre mengde (f.eks. 5-10%) 5,6-difluoro-5,6-dihydrouracil. Begge disse 6-substituerte produkter som imidlertid lett omdannes til det ønskede 5-fluoruracil, f.eks. ved oppvarming, i de tilfeller hvor man har de enklere, varmestabile uraciler så som uracil, hvor oppvarming i vakuum gir 5-fluoruracil som et sublimat, eller i de tilfeller hvor man har such as water, a hydrate of a perfluoroketone such as hexafluoroacetone, or trifluoroacetic acid. Water is preferred. With solvents that may be present, e.g. alkanols, preferably C₁-₅₀, such as methanol or ethanol; lower aliphatic acids (preferably C 2 -g ) such as acetic acid or propionic acid; or esters of phosphoric acid or phorsphonic acid. Most of the above-mentioned solvent systems will contain nucleophiles suitable for forming the above-mentioned stable 6-substituted derivatives. In addition, it should be noted that when F is used as a reaction component, F ions will also act as nucleophiles. When a hypofluorite reaction compound is used and this comprises a perfluoroalkyl group such as in trifluoromethyl hypofluorite, cleavage of perfluoroalkoxy anions released by the reaction will also give F . Thus, if the reaction is carried out in water, the first reaction product will usually be mainly a 5-fluoro-6-hydroxy-5,6-dihydrouracil, but it will also contain a smaller amount (e.g. 5-10%) 5 ,6-difluoro-5,6-dihydrouracil. Both of these 6-substituted products which, however, are easily converted to the desired 5-fluorouracil, e.g. by heating, in cases where one has the simpler, heat-stable uracils such as uracil, where heating in a vacuum gives 5-fluorouracil as a sublimate, or in cases where one has

mer sammensatte og varmefølsomme utgangsmaterialer, ved oppvarmning av det første produkt i et oppløsningsmiddel med et hydrogenfluorid-og/eller vann-fjernende middel, f.eks. en molekylsikt, etylenoksyd, natrium- eller kaliumfluorid eller natrium- eller kaliumacetat. Dannelsen av tilnærmet de samme produkter med både hypofluoritt-reaks jonskomponen ten og elementært fluor tyder på at det dreier seg om den samme reaksjonsmekanisme. more complex and heat-sensitive starting materials, by heating the first product in a solvent with a hydrogen fluoride and/or water-removing agent, e.g. a molecular sieve, ethylene oxide, sodium or potassium fluoride or sodium or potassium acetate. The formation of approximately the same products with both the hypofluorite reaction component and elemental fluorine suggests that the same reaction mechanism is involved.

Hypofluoritt-reaksjonskomponentene er fluoralkyl-hypoflu-oritter, som inneholder minst 2 fluoratomer pr. karbonatom i alkyldelen. Foretrukne reaksjonskomponenter av denne type er trifluormetyl-, perfluorpropyl-, perfluorisopropyl-, perfluor-t-butyl-, monoklorheksafluorpropyl- eller perfluor-t-pentyl-hypofluoritt eller 1,2-difluoroksytetrafluoretan eller 1,1-difluoroksydifluormetan. Den mest foretrukne reaksjonskomponent er trifluormetyl-hypofluoritt.. The hypofluorite reaction components are fluoroalkyl hypofluorites, which contain at least 2 fluorine atoms per carbon atom in the alkyl part. Preferred reaction components of this type are trifluoromethyl, perfluoropropyl, perfluoroisopropyl, perfluoro-t-butyl, monochlorohexafluoropropyl or perfluoro-t-pentyl hypofluorite or 1,2-difluorooxytetrafluoroethane or 1,1-difluorooxydifluoromethane. The most preferred reaction component is trifluoromethyl hypofluorite.

Når fluoreringsmidlet er en flyktig væske, kan det hensiktsmessig føres inn i reaksjonsblandingen i gassform, eller det kan oppløses i en inert væske, så som klortrifluormetan eller andre fluorerte hydrokarboner, som hensiktsmessig også bærer en klorsubstituent. When the fluorinating agent is a volatile liquid, it can conveniently be introduced into the reaction mixture in gaseous form, or it can be dissolved in an inert liquid, such as chlorotrifluoromethane or other fluorinated hydrocarbons, which conveniently also carry a chlorine substituent.

Reaksjonstemperaturen holdes fortrinnsvis forholdsvis lav, f.eks. i området -78 til +40°C. Omsetningen ved romtemperatur er rask og glatt. Omsetningen kan f.eks. felles ved hjelp av kjerne-magnetisk resonans-spaktroskopi eller tynnskiktkromatografi. The reaction temperature is preferably kept relatively low, e.g. in the range -78 to +40°C. The turnover at room temperature is fast and smooth. The turnover can e.g. common by means of nuclear magnetic resonance spectroscopy or thin-layer chromatography.

Når elementær fluor anvendes som fluoreringsmiddel, bør gassen fortynnes med en inert gass, så som nitrogen eller argon, When elemental fluorine is used as a fluorinating agent, the gas should be diluted with an inert gas, such as nitrogen or argon,

og konsentrasjonen av fluor i gassen er fortrinnsvis 1 til 50 vol-umprosent. Generelt anvendes lavere reaksjonstemperaturer enn de som er optimale for hypofluoritt-reaksjonskomponentene, men omsetningen kan reguleres ved romtemperatur. and the concentration of fluorine in the gas is preferably 1 to 50% by volume. In general, lower reaction temperatures are used than those that are optimal for the hypofluorite reaction components, but the conversion can be regulated at room temperature.

De 6-substituerte 5-fluor-5,6-dihydrouraciler så som 5 , 6-dif luor-5 , 6-dihydro-uraciler o'g 5-f luor-6-hydroksy-5 , 6-dihydro-uraciler, er nye forbindelser med den generelle formel: The 6-substituted 5-fluoro-5,6-dihydrouracils such as 5,6-difluoro-5,6-dihydrouracils and 5-fluoro-6-hydroxy-5,6-dihydrouracils are new compounds with the general formula:

hvor R 1, R 2 og R 3 har de ovenfor angitte betydninger, og R 4 er where R 1 , R 2 and R 3 have the meanings given above, and R 4 is

resten av. et nukleofil, f.eks. et fluoratom eller en hydroksyl-gruppe. the rest of. a nucleophile, e.g. a fluorine atom or a hydroxyl group.

De følgende eksempler skal tjene til å illustrere oppfinnelsen ytterligere. Alle smeltepunkter ble tatt på Kofler varmeplate og er angitt ukorrigert, PMR-spektra ble oppnådd ved The following examples shall serve to further illustrate the invention. All melting points were taken on a Kofler hot plate and are stated uncorrected, PMR spectra were obtained at

6GM Hz under anvendelse av et Varian T-60 spektrometer og er angitt som vekslinger nedover fra indre tetrametylsilan(er). FMR-spektra 6GM Hz using a Varian T-60 spectrometer and are indicated as downshifts from internal tetramethylsilane(s). FMR spectra

ble oppnådd ved 56,4M Hz på det ovennevnte instrument og er angitt was obtained at 56.4M Hz on the above instrument and is indicated

som vekslinger fra indre CFCl^-CF^OF er et kraftig oksydasjonsmiddel, og selvom vi ikke har støtt på noen vanskeligheter ved anvendelse derav, bør forholdsregler taes. Alle omsetninger bør utføres med tilstrekkelig avskjerming, opphopning av reaksjonskomponenten i nærvær av oksyderbare stoffer bør unngåes, materiale for håndtering av reaksjonskomponenten bør bestå av glass, "Teflon", "Kei-F" eller passivisert metall, og ikke under noen omstendighet bør PVC, gummi, polyetylen eller lignende stoffer anvendes. I.R.-spektra ble oppnådd med et Perkin-Elmer modell 137 spektrometer. Oppløsninger av CF^OF ble fremstilt ved å føre den gassformige reaksjonskomponent inn i CFClg ved -78°C. Prøvemengder ble behandlet med et overskudd av vandig Kl, og konsentrasjonen av CF3OF ble beregnet ved filtrering av den frigjorte I2; CF3OF+2KI+H20 I2+2KF+2HF+C02. as exchanges from internal CFCl^-CF^OF is a powerful oxidizing agent, and although we have encountered no difficulties in its use, precautions should be taken. All transactions should be carried out with adequate shielding, accumulation of the reaction component in the presence of oxidizable substances should be avoided, material for handling the reaction component should consist of glass, "Teflon", "Kei-F" or passivated metal, and under no circumstances should PVC, rubber, polyethylene or similar substances are used. I.R. spectra were obtained with a Perkin-Elmer model 137 spectrometer. Solutions of CF₂OF were prepared by passing the gaseous reaction component into CFClg at -78°C. Aliquots were treated with an excess of aqueous Kl, and the concentration of CF3OF was calculated by filtering the released I2; CF3OF+2KI+H2O I2+2KF+2HF+CO2.

EKSEMPEL 1 EXAMPLE 1

Fluorering av uracil med CF^ OF Fluorination of uracil with CF^ OF

Uracil (0,336 g, 3mmol) i en blanding av trifluoreddiksyre Uracil (0.336 g, 3 mmol) in a mixture of trifluoroacetic acid

(6 ml) og vann (20 ml) ble satt til en oppløsning av trifluormetyl-hypofluoritt (4,5 mmol) i CFCl3 (50 ml) ved -78°C i et trykkar. (6 mL) and water (20 mL) were added to a solution of trifluoromethyl hypofluorite (4.5 mmol) in CFCl 3 (50 mL) at -78°C in a pressure vessel.

Det utfelte uracil ble oppløst påny i det vandige lag da blandingen ble oppvarmet til romtemperatur. Blanding ble kraftig omrørt i 15 timer. Overskudd av CF^OF ble fjernet ved nitrogen, og oppløsnings-midlet ble fjernet under redusert trykk. Det faste residuum ble sublimert ved 210 - 230°C under redusert trykk (0,5 mm Hg) for å The precipitated uracil was redissolved in the aqueous layer when the mixture was warmed to room temperature. The mixture was vigorously stirred for 15 hours. Excess CF₂OF was removed under nitrogen, and the solvent was removed under reduced pressure. The solid residue was sublimed at 210 - 230°C under reduced pressure (0.5 mm Hg) to

gi urenset 5-fluoruracil (0,365 g, 94%) sm.p. 260-70°C. Omkrystal-lisering fra metanol-eter ga rent 5-fluoruracil (0,33 g, 85%) sm.p. 282-3°C, blandet sm.p. (med autentisk 5-fluoruracil) 282-3°C. give impure 5-fluorouracil (0.365 g, 94%) m.p. 260-70°C. Recrystallization from methanol-ether gave pure 5-fluorouracil (0.33 g, 85%) m.p. 282-3°C, mixed m.p. (with authentic 5-fluorouracil) 282-3°C.

PMR, FMR, IR og U.V.-spektra var identiske med spektrene for autentisk 5-fluoruracil. PMR, FMR, IR and U.V. spectra were identical to those of authentic 5-fluorouracil.

Ved en tilsvarende fluorering som ovenfor ble råproduktene ikke utsatt for varme, men de ble isteden adskilt ved preparativ tynnskiktkromatografi (silicagel "GF 254", metanol: kloroform, 20:80) til fraksjoner med Rf 0,5 (5-fluoruracil) og en fraksjon med R^In a similar fluorination as above, the crude products were not exposed to heat, but were instead separated by preparative thin-layer chromatography (silica gel "GF 254", methanol:chloroform, 20:80) into fractions with Rf 0.5 (5-fluorouracil) and a fraction with R^

0,3 (som ved oppvarmning ble omdannet kvantitativt til 5-fluoruracil): V^fi 3300(s), 1720(s), 1475(m), 1250(m) , 1140(m), 1080(m), 880(m) , 0.3 (which on heating was converted quantitatively to 5-fluorouracil): V^fi 3300(s), 1720(s), 1475(m), 1250(m) , 1140(m), 1080(m), 880 (m) ,

cm" cm"

800(m). Proton-NMR viste et sammensatt mønster av resonanser fra 5-6 ppm (AB-mønster i et ABX-system). FMR hadde <f> = +207,6 ppm 800(m). Proton NMR showed a complex pattern of resonances from 5-6 ppm (AB pattern in an ABX system). FMR had <f> = +207.6 ppm

(bred dublett J=45 Hz). Massespektret hadde molekylærion ved m/e 148<+>; nøyaktig masse m/e 148,0291 (beregnet for C4H5FN203, m/e 148,0284). Dette produkt var 5-fluor-6-hydroksy-5,6-dihydrouracil. Analyse: C.H.FH O. (broad doublet J=45 Hz). The mass spectrum had molecular ion at m/e 148<+>; exact mass m/e 148.0291 (calculated for C4H5FN2O3, m/e 148.0284). This product was 5-fluoro-6-hydroxy-5,6-dihydrouracil. Analysis: C.H.FH O.

EKSEMPEL 2 EXAMPLE 2

Fluorering av uracil med fluor Fluorination of uracil with fluorine

Fluorgass fortynnet liberalt med nitrogen ble ført ved romtemperatur inn i en kraftig omrørt oppløsning av uracil (150 mg, 1,34 mmol) i vann (50 ml). Efter at utgangsmaterialet var for-svunnet (NMR-kontroll, ca. 2,5 mmol F^) ble oppløsningsmidlet fjernet under redusert trykk, og residuet ble sublimert for å gi 5-fluoruracil (95 mg, 0,74 mmol, 55% utbytte) identifisert ved sammenligning med autentisk 5-fluoruracil. Fluorine gas liberally diluted with nitrogen was introduced at room temperature into a vigorously stirred solution of uracil (150 mg, 1.34 mmol) in water (50 mL). After the starting material had disappeared (NMR control, ca. 2.5 mmol F 2 ), the solvent was removed under reduced pressure and the residue sublimed to give 5-fluorouracil (95 mg, 0.74 mmol, 55% yield ) identified by comparison with authentic 5-fluorouracil.

EKSEMPEL 3 EXAMPLE 3

En oppløsning av uridin-triacetat (0,25 g) i metanol A solution of uridine triacetate (0.25 g) in methanol

(50 ml) ble satt til en oppløsning av trifluormetyl-hypofluoritt (1,2 mmol) i CFCl3 (25 ml) ved -78°C,og blandingen ble kraftig omrørt i 5 minutter ved -78°C og derefter spylt med nitrogen. (50 mL) was added to a solution of trifluoromethyl hypofluorite (1.2 mmol) in CFCl 3 (25 mL) at -78°C, and the mixture was vigorously stirred for 5 min at -78°C and then purged with nitrogen.

Den resulterende oppløsning ble konsentrert for å gi et voks-aktig, hvitt, fast stoff, fra hvilket metanol bare kunne fjernes fullstendig ved vakuumbehandling ved 3 mm Hg natten over. The resulting solution was concentrated to give a waxy, white solid, from which methanol could only be completely removed by vacuum treatment at 3 mm Hg overnight.

Det urensede, fluorerte produkt ble oppløst i en 10% volum/volum oppløsning av trietylamin i 50% volum/volum vandig metanol, og oppløsningen ble omrørt i 48 timer ved romtemperatur og derefter konsentrert for å gi et hvitt, fast stoff. Krystallisering av dette faste stoff fra etanol ga 5-fluoruridin (0,15 g), sm.p. 178 - 181 C. The crude fluorinated product was dissolved in a 10% v/v solution of triethylamine in 50% v/v aqueous methanol, and the solution was stirred for 48 hours at room temperature and then concentrated to give a white solid. Crystallization of this solid from ethanol gave 5-fluorouridine (0.15 g), m.p. 178 - 181 C.

EKSEMPEL 4 EXAMPLE 4

Fremgangsmåten ifølge eksempel 3 ble gjentatt, bort-sett fra at uracil-2'-deoksyribosid-diacetat ble behandlet isteden-for uridin-triacetat. Det resulterende 5-fluoruracil-2'-dioksy-ribosid hadde sm.p. 150 - 152°C. The procedure according to example 3 was repeated, except that uracil-2'-deoxyriboside diacetate was treated instead of uridine triacetate. The resulting 5-fluorouracil-2'-dioxy-riboside had m.p. 150 - 152°C.

EKSEMPEL 5 EXAMPLE 5

Uridin (1 g) ble oppløst i eddiksyre (25 ml) som ble holdt ved ca 5°C og ble behandlet med elementært fluor (3% i nitrogen) under kraftig omrøring. Fluoret ble ført inn i oppløsningen inntil omsetningen var fullstendig (NMR kontrol). Overskudd av fluor ble fjernet ved å skylle oppløsningen med nitrogen. En sterkt basisk ionebytterharpiks i formiat-form (Dowex 1) (3 g) ble tilsatt. Oppløsningen ble oppvarmet ved 80°C i 15 minutter, filtrert og eddiksyren ble fjernet under redusert trykk. Krystallisering fra etanol/eter ga 5-fluoruridin, identisk med en autentisk prøve. Uridine (1 g) was dissolved in acetic acid (25 ml) which was kept at about 5°C and was treated with elemental fluorine (3% in nitrogen) with vigorous stirring. The fluorine was introduced into the solution until the reaction was complete (NMR control). Excess fluorine was removed by flushing the solution with nitrogen. A strongly basic ion exchange resin in formate form (Dowex 1) (3 g) was added. The solution was heated at 80°C for 15 minutes, filtered and the acetic acid was removed under reduced pressure. Crystallization from ethanol/ether gave 5-fluorouridine, identical to an authentic sample.

EKSEMPEL 6 EXAMPLE 6

En oppløsning av uridin-triacetat (lg) i acetonitril (25 ml) og CFCl3 (15 ml) som ble holdt ved -78°C, ble behandlet A solution of uridine triacetate (1g) in acetonitrile (25 mL) and CFCl3 (15 mL) kept at -78°C was treated

med elementært fluor (3% i nitrogen) under kraftig omrøring. Efter fullførelse av omsetningen og fjernelse av overskudd av fluor som i eksempel 5, ble reaksjonsblandingen behandlet med trietylamin with elemental fluorine (3% in nitrogen) under vigorous stirring. After completion of the reaction and removal of excess fluorine as in Example 5, the reaction mixture was treated with triethylamine

Claims (6)

1. Fremgangsmåte for fremstilling av 5-fluoruracilderivater med formelen (hvor R er en' alkylgruppe, et hydrogenatom eller en monosakkaridrest) ,karakterisert ved at en forbindelse med f o'fmelen (hvor R har de ovenfor angitte betydninger) omsettes med et fluor-alkyl-hypofluoritt hvor alkyldelen inneholder minst to fluoratomer pr. karbonatom, eller omsettes med elementært fluor fortynnet med en inert gass, for innføring av et fluoratom i 5-stillingén, fulgt, når et atom eller en gruppe er innført i 6-stillingen ved en av de foran nevnte omsetninger, av eliminering av nevnte gruppe sammen med hydrogenatomet i 5-stillingen for å danne, den ønskede 5,6-dobbeltbinding. (2 ml) og metanol (10 ml) og ble derefter lagret natten over ved romtemperatur. Oppløsningsmidlene ble fjernet under redusert trykk. Råproduktet ble oppløst i vann og behandlet med en sterkt sur ionebytterharpiks (Dowex 50) i hydrogenform. Produktet ble filtrert, oppløsningsmidlet ble fjernet og residuet ble omkrystal-lisert fra etanol/eter for å gi 5-fluoruridin, identisk med produktet ifølge eksempel 5. 1. Process for the preparation of 5-fluorouracil derivatives with the formula (where R is an alkyl group, a hydrogen atom or a monosaccharide residue), characterized in that a compound with (where R has the meanings given above) is reacted with a fluoro-alkyl-hypofluorite where the alkyl part contains at least two fluorine atoms per carbon atom, or is reacted with elemental fluorine diluted with an inert gas, to introduce a fluorine atom into the 5-position, followed, when an atom or a group is introduced into the 6-position by one of the aforementioned reactions, by elimination of said group together with the hydrogen atom in the 5-position to form the desired 5,6-double bond. (2 mL) and methanol (10 mL) and was then stored overnight at room temperature. The solvents were removed under reduced pressure. The crude product was dissolved in water and treated with a strongly acidic ion exchange resin (Dowex 50) in hydrogen form. The product was filtered, the solvent was removed and the residue was recrystallized from ethanol/ether to give 5-fluorouridine, identical to the product of Example 5. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som hypofluoritt-reaks jonskomponent anvendes trifluormetyl-hypofluoritt.2. Procedure as stated in claim 1, characterized in that trifluoromethyl hypofluorite is used as the hypofluorite reaction component. 3. Fremgangsmåte som angitt i kravene 1 og 2, karakterisert ved at elimineringen av nevnte 6-substituent utføres ved oppvarming.3. Method as stated in claims 1 and 2, characterized in that the elimination of said 6-substituent is carried out by heating. 4. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at fluoreringen utføres i nærvær av et polart oppløsningsmiddel.4. Method as stated in one of the preceding claims, characterized in that the fluorination is carried out in the presence of a polar solvent. 5. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at fluoreringen utføres i nærvær av et nukleofil, hvorved fluor adderes i 5-stillingen og nuk-leofilet adderes i 6-stillingen.5. Method as stated in one of the preceding claims, characterized in that the fluorination is carried out in the presence of a nucleophile, whereby fluorine is added in the 5-position and the nucleophile is added in the 6-position. 6. Fremgangsmåte som angitt i krav 5, karakterisert ved at det som nukleofil anvendes hydroksylion, alkoksylion, karboksylation eller halogenidion.6. Method as set forth in claim 5, characterized in that the nucleophile used is a hydroxyl ion, alkoxy ion, carboxylation or halide ion.
NO3634/71A 1970-10-05 1971-10-04 NO135985C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7823570A 1970-10-05 1970-10-05

Publications (2)

Publication Number Publication Date
NO135985B true NO135985B (en) 1977-03-28
NO135985C NO135985C (en) 1977-07-06

Family

ID=22142782

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3634/71A NO135985C (en) 1970-10-05 1971-10-04

Country Status (16)

Country Link
JP (4) JPS5432790B1 (en)
AR (1) AR199762A1 (en)
AU (1) AU454408B2 (en)
BE (1) BE773446A (en)
CA (1) CA1009657A (en)
CH (1) CH567002A5 (en)
DE (1) DE2149504A1 (en)
DK (1) DK128496B (en)
FR (1) FR2110952A5 (en)
GB (1) GB1362839A (en)
HK (1) HK15678A (en)
IL (1) IL37855A (en)
NL (1) NL7113583A (en)
NO (1) NO135985C (en)
SE (1) SE408418B (en)
ZA (1) ZA716637B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2401619C2 (en) * 1974-01-14 1986-04-03 Kailash Kumar Prof. Dr. 2359 Lentföhrden Gauri Fungistically active uracil derivatives and processes for their preparation
JPS52133994A (en) * 1976-04-29 1977-11-09 Daikin Ind Ltd Method of fluorination
JPS5640813A (en) * 1979-09-10 1981-04-17 Minolta Camera Co Ltd Electric power unit for flash emitting device
JPS58140098A (en) * 1982-01-27 1983-08-19 Daikin Ind Ltd Uridine derivative and its preparation
JPS59116934U (en) * 1983-01-27 1984-08-07 オリンパス光学工業株式会社 External power supply for strobe
JPS60190769A (en) * 1984-03-09 1985-09-28 Sagami Chem Res Center Production of 5-fluorouracil
JPH055677Y2 (en) * 1985-05-22 1993-02-15

Also Published As

Publication number Publication date
DK128496B (en) 1974-05-13
AU454408B2 (en) 1974-10-31
JPS5516583B2 (en) 1980-05-02
JPS5432790B1 (en) 1979-10-16
NO135985C (en) 1977-07-06
FR2110952A5 (en) 1972-06-02
IL37855A0 (en) 1971-12-29
IL37855A (en) 1974-12-31
GB1362839A (en) 1974-08-07
CH567002A5 (en) 1975-09-30
AU3418171A (en) 1973-04-12
DE2149504A1 (en) 1972-07-06
JPS53147082A (en) 1978-12-21
AR199762A1 (en) 1974-09-30
NL7113583A (en) 1972-04-07
ZA716637B (en) 1972-12-27
BE773446A (en) 1972-04-04
JPS53147081A (en) 1978-12-21
SE408418B (en) 1979-06-11
JPS53147080A (en) 1978-12-21
HK15678A (en) 1978-03-31
JPS58421B2 (en) 1983-01-06
CA1009657A (en) 1977-05-03

Similar Documents

Publication Publication Date Title
KR20080066021A (en) Nucleic acid base having perfluoroalkyl group and method for producing the same
NO135985B (en)
JP2776942B2 (en) Direct fluorination of fluoro-β-sultone to produce the corresponding fluorooxy-fluorosulfonyl-fluoro compound
EP3481802A1 (en) Method of synthesizing near ir, closed chain sulfo-cyanine dyes
Kamaya et al. An efficient method for α-monofluorination of carbonyl compounds with molecular fluorine: Use of α-hydroxymethylene substituent as directing and activating groups
Ishihara et al. A new effective and convenient route to fluorinated nitrogen heterocyclic compounds by the use of enol phosphates derived from f-alkyl ketones
Lang Jr et al. . beta.-Aminocinnamonitriles as potential antiinflammatory agents
FR2660923A1 (en) Reagent and process for the perhaloalkylation of a nucleophile using sulphur dioxide
Zhang et al. Synthesis of the first difunctional N-fluoro perfluoroalkylsulfonylimides, CF3SO2NFSO2 (CF2) nSO2NFSO2CF3
Van der Plas et al. Ring transformations in reactions of heterocyclic compounds with nucleophiles (XX). Conversion of 5‐nitropyrimidine into 3, 5‐dinitropyridine. A novel ring transformation
US4473691A (en) Process for preparing 5-fluorocytosine salt
DE2726258A1 (en) PROCESS FOR THE PREPARATION OF 5-FLUORURACIL
Ratsep et al. Introduction of fluorine into the C8 position of purine nucleosides
US4222968A (en) Method for synthesizing fluorocarbon halides
JPH05230044A (en) Novel crystalline polymorphism of piretanide
US3833581A (en) Vapor phase substitution fluorination of aromatics with xenon difluoride
US4322538A (en) Preparation of symmetrical tetrachloropyridine
Bi et al. Novel syntheses of 3-anilino-pyrazin-2 (1H)-ones and 3-anilino-quinoxalin-2-(1H)-ones via microwave-mediated Smiles rearrangement
EP0445642B1 (en) 2-Amino-(fluoralkoxy-pyrimidines) and process for their preparation
Katayama et al. A synthesis of 3′-α-fluoro-2′, 3′-dideoxyadenosine via a bromine rearrangement during fluorination with MOST reagent
US3770838A (en) Process for preparing fluorocarbon halides
JP2915132B2 (en) Method for producing isocyanuric acid
EP0469462B1 (en) 2-Amino-(fluoroalkoxy-1,3,5-triazines) and method for their preparation
JPS6350358B2 (en)
WO2020090948A1 (en) Cyclic-di-amp sodium salt crystal