NO135598B - - Google Patents

Download PDF

Info

Publication number
NO135598B
NO135598B NO1958/73A NO195873A NO135598B NO 135598 B NO135598 B NO 135598B NO 1958/73 A NO1958/73 A NO 1958/73A NO 195873 A NO195873 A NO 195873A NO 135598 B NO135598 B NO 135598B
Authority
NO
Norway
Prior art keywords
weight
parts
tin
compounds
silicone
Prior art date
Application number
NO1958/73A
Other languages
Norwegian (no)
Other versions
NO135598C (en
Inventor
H Naarmann
E Scharf
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19722223241 external-priority patent/DE2223241C3/en
Application filed by Basf Ag filed Critical Basf Ag
Publication of NO135598B publication Critical patent/NO135598B/no
Publication of NO135598C publication Critical patent/NO135598C/no

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/025Copolymer of an unspecified olefine with a monomer other than an olefine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/06Polystyrene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

Celleformet polyuretanplast. Cellular polyurethane plastic.

Oppfinnelsen vedrører celleformet polyuretanplast og mere spesielt en forbed- The invention relates to cellular polyurethane plastic and more particularly to a

ret metode for samtidig katalysering av reaksjonen som fører til dannelsen av dette og stabilisering av dannelsen av det fremkomne celleformede gitter. correct method for simultaneously catalyzing the reaction that leads to its formation and stabilizing the formation of the resulting cellular lattice.

Fremstillingen av celleformet polyuretanplast fra organiske stoffer som over-veiende inneholder primære hydroksylgrupper, som hydroksylpolyestere, er vel kjent. De primære hydroksylgrupper rea- The production of cellular polyurethane plastic from organic substances which predominantly contain primary hydroxyl groups, such as hydroxyl polyesters, is well known. The primary hydroxyl groups rea-

gerer tilfeldig hurtig med organiske polyisocyanater, således at polymerisasjonsre-aksjonen vil foregå samtidig med gass-frembringelsesreaksjonen mellom et orga- randomly generates rapidly with organic polyisocyanates, so that the polymerization reaction will take place at the same time as the gas production reaction between an organic

nisk polyisocyanat og vann for å gi et celleformet gitter. Det er nødvendig å modi- nic polyisocyanate and water to give a cellular lattice. It is necessary to modi-

fisere mange organiske forbindelser som inneholder hydroksylgrupper for å inkor-porere primære hydroksylgrupper i dem. Dette er særlig tilfelle ved polyhydriske polyalkylenetere som er fremstilt ved kon-densasjon av alkylenoksyder som f. eks. propylenoksyd. Den sekundære hydroksylgruppe er ikke så reaktiv med et organisk polyisocyanat som en primær hydroksylgruppe. Videre har forbindelsene med sekundære hydroksylgrupper generelt en la- fissile many organic compounds containing hydroxyl groups to incorporate primary hydroxyl groups into them. This is particularly the case with polyhydric polyalkylene ethers which are produced by condensation of alkylene oxides such as e.g. propylene oxide. The secondary hydroxyl group is not as reactive with an organic polyisocyanate as a primary hydroxyl group. Furthermore, the compounds with secondary hydroxyl groups generally have a la-

vere viskositet, hvilket bevirker at det er mere vanskelig å blande dem med orga- be viscosity, which makes it more difficult to mix them with organic

niske polyisocyanater. Følgelig er det vanskelig å justere reaksjonsgraden mellom et organisk polyisocyanat og en organisk forbindelse som inneholder sekundære hydroksylgrupper med det gassproduserende systems grad, hvilket fører til et cellefor- low polyisocyanates. Consequently, it is difficult to adjust the degree of reaction between an organic polyisocyanate and an organic compound containing secondary hydroxyl groups with the degree of the gas-producing system, leading to a cell

met produkt, således at de to er avstemt met product, so that the two are matched

mot hverandre for å danne et celleformet gitter. Det er også kjent at visse sterke katalysatorer som endometylenpiperazin og tungmetallsalter vil katalysere reaksjo- against each other to form a cellular lattice. It is also known that certain strong catalysts such as endomethylene piperazine and heavy metal salts will catalyze reactions

nen mellom en sekundær hydroksylgruppe og et organisk polyisocyanat. Bruken av disse katalysatorer alene lider av den ulempe at det resulterende produkt ikke kan få tilfredsstillende fysikalske egenska- nen between a secondary hydroxyl group and an organic polyisocyanate. The use of these catalysts alone suffers from the disadvantage that the resulting product cannot acquire satisfactory physical properties.

per. I enkelte tilfelle forskyves avstemnin- per. In some cases, voting is postponed

gen av reaksjonen til den grad at reak-sjonsproduktet undergår en begynnende stigning for å danne et celleformet pro- gene of the reaction to the extent that the reaction product undergoes an initial rise to form a cellular pro-

dukt og deretter faller sammen. duct and then collapse.

Det er oppfinnelsens gjenstand ved fremstilling av skumstoffer på isocyanatbasis av polyhydroksyl- og/eller poiykar-boksylforbindelser, polyisocyanater og eventuelt vann i nærvær av tinnforbindelser å anvende silikonforbindelser, som inneholder 4-verdig tinn, og hvori hvert tinnatom over Sn-C-bindinger er forbun- It is the object of the invention when producing foams on an isocyanate basis from polyhydroxyl and/or polycarboxyl compounds, polyisocyanates and possibly water in the presence of tin compounds to use silicone compounds, which contain 4-valent tin, and in which each tin atom over Sn-C bonds is connection

det med 1—3 organiske radikaler. that with 1-3 organic radicals.

Fra tysk patent nr. 964 988 er tinnf or-bindelser kjent som tilsetningsstoffer ved fremstilling av skumstoffer på isocyanatbasis. Det dreier seg ved disse tinnforbindelser imidlertid ikke om katalysatorer, From German patent no. 964 988, tin-form compounds are known as additives in the production of isocyanate-based foams. However, these tin compounds are not catalysts,

men om poreregulatorer og ikke om tinnforbindelser, hvori tinnatomet er direkte bundet til et karbonatom. Ved de forelig-gende tinnforbindelser katalyseres ikke bare skumdannelsesprosessen og avstem- but about pore regulators and not about tin compounds, in which the tin atom is directly bonded to a carbon atom. With the present tin compounds, not only is the foaming process catalyzed and

mes på hverandre, men det dannede skum- mes on each other, but the foam formed

stoff blir samtidig stabilisert. Tinnforbin-delsene viser videre også ved fremstilling av skumstoffet en tendens til hydrolyse, substance is simultaneously stabilized. The tin compounds also show a tendency towards hydrolysis during the production of the foam,

således at faren for en syrekorrosjon ikke består. Også betraktet for seg alene viser disse forbindelser ved lagring og anvendelse i skumfremgangsmåter ingen spalt-ningstendens. Da de dessuten er luktfrie og ufarlige, letter de håndteringen fra for-arbeidingsteknisk standpunkt. so that the risk of acid corrosion does not exist. Also considered on their own, these compounds show no tendency to split when stored and used in foam processes. As they are also odorless and harmless, they facilitate handling from a pre-processing technical point of view.

Til gjennomføring av fremgangsmåten ifølge oppfinnelsen egner seg foretrukket polyhydroksy-forbindelser som helt eller for den største del inneholder sekundære hydroksylgrupper. Som eksempler kan det anføres rene polymerisater av alkylenoksyder som propylenoksyder, butylenoksy-der, styroloksyd, epiklorhydrin eller også addisjonsproduktene av disse oksyder med 2- eller flerverdige alkoholer og fenoler som med etylenglykol, polyetylenglykoler, alkandioler og alkantrioler, alkendioler, al-kindioler, pentaerytritt, trimetylol-propan, hydrokinon, 4,4'-dioksydifenylmetan, 4,4'-dioksydifenyldimetylmetan, deres hydro-ringsprodukter, dioksynaftaliner ved mo-no- eller polyaminer av alifatisk eller aro-matisk natur, som minst har to aktive hydrogenatomer som alkylendiaminer, di-etylentriaminer, anilin, piperazin med aminoalkoholer med minst to aktive hydrogenatomer som metanolamin, N-alkyl-etanolamin, dietanolamin, N-alkyldieta-nolamih, trietanolamin med polyestere som har minst to OH-grupper som rizinus-olje, eller også på andre forbindelser med flere aktive hydrogenatomer, som f. eks. på sukker. Ved oksydenes polykondensa-sjon kan også etylenoksyd delvis medinn-kondenseres eller etterpå påkondenseres. Enskjønt de fremkomne polyhydroksyforbindelser ved lavere etylenoksydinnhold ikke vesentlig atskiller seg fra de ovennevnte polyhydroksyforbindelser med hen-syn til deres reaksjonsdyktighet overfor polyisocyanater. Polyhydroksyforbindelser med. sekundære hydroksylgrupper kan også fremstilles ved forestring av en eller flere av de ovenfor nevnte polyalkoholer som delvis inneholder sekundære hydroksylgrupper med underskuddsmengder av de vandige polykarbonsyrer som ravsyre, adipinsyre-, sebazinsyre, di- og trimeriserte fettsyrer, ftalsyrer, maleinsyrer, eller fu marsyrer, idet det ved medanvendelse av aminoalkholer samtidig kan innbygges tertiære nitrogenatomer eller karbonamid-grupper i polyesteren. Ved siden av de foretrukket egnede polyhydroksyforbindelser med sekundære hydroksylgrupper kan selvsagt også slike polyhydroksyforbindelser anvendes hvis hydroksylgrupper er av primær natur. Slike polyhydroksyforbindelser kan f. eks. fåes ved forestring av de ovenfor anførte primære polyalkoholer eller også aminoalkoholer med de allerede an-førte polykarbonsyrer. Videre hører til denne gruppe dessuten de forskjelligste typer av polyestere slik de f. eks. avledes fra etylenglykol, tetrahydrofuran eller også tiodiglykol eller også de forskjelligste polyacetaler. Polyhydroxy compounds which entirely or for the most part contain secondary hydroxyl groups are preferably suitable for carrying out the method according to the invention. Examples include pure polymers of alkylene oxides such as propylene oxides, butylene oxides, styrene oxide, epichlorohydrin or also the addition products of these oxides with di- or polyhydric alcohols and phenols such as with ethylene glycol, polyethylene glycols, alkanediols and alkanetriols, alkenediols, alkynediols, pentaerythritol . , di-ethylenetriamines, aniline, piperazine with amino alcohols with at least two active hydrogen atoms such as methanolamine, N-alkyl-ethanolamine, diethanolamine, N-alkyldieta-nolamih, triethanolamine with polyesters having at least two OH groups such as castor oil, or also on other compounds with more active hydrogen atoms, such as on sugar. During the polycondensation of the oxides, ethylene oxide can also be partially co-condensed or subsequently condensed. Although the resulting polyhydroxy compounds at lower ethylene oxide content do not differ significantly from the above-mentioned polyhydroxy compounds with regard to their reactivity towards polyisocyanates. Polyhydroxy compounds with. secondary hydroxyl groups can also be produced by esterification of one or more of the above-mentioned polyalcohols which partially contain secondary hydroxyl groups with deficit amounts of the aqueous polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, di- and trimerized fatty acids, phthalic acids, maleic acids, or fumaric acids, as by co-using amino alcohols, tertiary nitrogen atoms or carbonamide groups can be incorporated into the polyester at the same time. Alongside the preferably suitable polyhydroxy compounds with secondary hydroxyl groups, such polyhydroxy compounds can of course also be used if the hydroxyl groups are of a primary nature. Such polyhydroxy compounds can, e.g. are obtained by esterification of the primary polyalcohols listed above or also amino alcohols with the polycarboxylic acids already listed. Furthermore, this group also includes the most diverse types of polyesters, such as e.g. are derived from ethylene glycol, tetrahydrofuran or also thiodiglycol or also the most diverse polyacetals.

De for skumstoff-fremstillingen anvendte lineære eller forgrenede polyhydroksyforbindelser skal så sant de avledes fra polyestere ha et syretall på under 15. Samtlige typer skal ha en OH-ekvivalent. på fortrinnsvis 100—3000, idet det med OH-ekvivalent skal forstås den mengde av polyhydroksyforbindelse i gram som inneholder 1 mol hydroksylgrupper. De an-førte polyhydroksyforbindelser kan ved skumdannelsen blandes på ønsket måte, dessuten kan også f. eks. de allerede nevnte lavmolekylære polyhydroksyforbindelser tilblandes, imidlertid må også da for blandingen OH-ekvivalentene ligge mellom 100 og 3000. The linear or branched polyhydroxy compounds used for the production of the foam must, if they are derived from polyesters, have an acid number of less than 15. All types must have an OH equivalent. of preferably 100-3000, whereby OH-equivalent is to be understood as the amount of polyhydroxy compound in grams that contains 1 mol of hydroxyl groups. The listed polyhydroxy compounds can be mixed in the desired way during the formation of the foam, in addition, e.g. the already mentioned low molecular weight polyhydroxy compounds are added, however, the OH equivalents must also be between 100 and 3000 for the mixture.

Som polyisocyanater kan ved fremgangsmåten ifølge oppfinnelsen finne anvendelse ønskelige alifatiske, aralifatiske eller aromatiske flerverdige isocyanater, som tetrametylendiisocyanat, heksamety-lendiisocyanat, fenylendiisocyanat, toluyl-endiisocyanatene, 4,4'-difenylmetandiiso-cyanat eller lignende, eller også addisjonsproduktene av disse flerverdige isocyanater på underskuddsmengder av lavmolekylære alkoholer som glycerin, trimetylolpropan, heksandiolene og heksantriolene eller også på lavmolekylære polyestere som ri-zinusolje. Videre omsetningsproduktene av ovennevnte flerverdige isocyanater med acetaler, såvel som de f. eks. i de tyske patenter nr. 1.002 789 og 1 027 394 nevnte isocyanatpolymerisater, idet naturligvis også i dette tilfelle kan anvendes ønskelige blandinger. En videre anvendelse kan fremgangsmåten også finne ved den ved vanntilsetning bevirkede forskumning av de ovennevnte polyhydroksyforbindelser og overskudds-polyisocyanat erholdte «forad-dukter». As polyisocyanates, desirable aliphatic, araliphatic or aromatic polyisocyanates can be used in the method according to the invention, such as tetramethylene diisocyanate, hexamethylene diisocyanate, phenylene diisocyanate, the toluyl diisocyanates, 4,4'-diphenylmethane diisocyanate or the like, or also the addition products of these polyisocyanates on deficit amounts of low-molecular alcohols such as glycerin, trimethylolpropane, the hexanediols and hexanetriols or also on low-molecular polyesters such as castor oil. Furthermore, the reaction products of the above-mentioned multivalent isocyanates with acetals, as well as the e.g. isocyanate polymers mentioned in the German patents no. 1,002,789 and 1,027,394, since of course desirable mixtures can also be used in this case. The method can also find a further application in the foaming of the above-mentioned polyhydroxy compounds and excess polyisocyanate obtained "pre-adducts" caused by the addition of water.

En hvilken som helst egnet silikonforbindelse som inneholder tetravalent tinn, som har direkte Sn-C-bindinger, kan benyttes overensstemmende med fremgangsmåten ifølge oppfinnelsen. For å danne stabiliseringseffekten bør silikonforbindelsene som inneholder tetravalent tinn, som har direkte Sn-C-bindinger, inneholde minst en siloksankjede i molekylet. Med andre, ord, skal katalysator-stabilisatorene ifølge oppfinnelsen være organo-tinnforbindelser som inneholder en siloksankjede. Silanbindinger eller frie siloksanatomer kan også være til stede. Videre kan silikonforbindelsene ifølge oppfinnelsen ha til-knyttet et hvilket som helst egnet organisk radikal som f. eks. de som nevnes mere spesielt nedenfor. Tinnatomene er vanligvis inkorporert i molekylet ved hjelp av Sn-O-Si-bindinger, og de kan også være substituert med et hvilket som helst egnet organisk radikal. De organiske radikaler for substituering på silikonatomet eller tinnatomet kan f. eks. være alifatiske, aromatiske eller heterocykliske radikaler. Any suitable silicone compound containing tetravalent tin having direct Sn-C bonds may be used in accordance with the method of the invention. In order to form the stabilization effect, the silicone compounds containing tetravalent tin, which have direct Sn-C bonds, should contain at least one siloxane chain in the molecule. In other words, the catalyst stabilizers according to the invention must be organotin compounds containing a siloxane chain. Silane bonds or free siloxane atoms may also be present. Furthermore, the silicone compounds according to the invention can have attached any suitable organic radical such as, for example those mentioned more specifically below. The tin atoms are usually incorporated into the molecule by means of Sn-O-Si bonds, and they may also be substituted with any suitable organic radical. The organic radicals for substitution on the silicon atom or the tin atom can e.g. be aliphatic, aromatic or heterocyclic radicals.

De organiske radikaler kan være substituert med en hvilken som helst substi-tuent som ikke innvirker på den kataly-tiske aktivitet av silikonforbindelsen som inneholder tinn, som f. eks. halogen, som f. eks. klor, brom, jod, fluor og lignende; n.itro; alkoksy som f. eks. metoksy, etoksy, propoksy, butoksy, amoksy og lignende; karboalkoksy som f. eks. carbometoksy, carboetoksy og lignende; dialkylamino som f. eks. dimetylamino, dietylamino, dipro-pylamino, metyletylamino og lignende; merkapto; karbonyl; tiokarbonyl; hydrok-sy; fosfat; fosforyl og lignende. The organic radicals can be substituted with any substituent which does not affect the catalytic activity of the silicone compound containing tin, such as, for example halogen, such as chlorine, bromine, iodine, fluorine and the like; n.itro; alkoxy such as e.g. methoxy, ethoxy, propoxy, butoxy, amoxy and the like; carboalkoxy such as e.g. carbomethoxy, carboethoxy and the like; dialkylamino such as e.g. dimethylamino, diethylamino, dipropylamino, methylethylamino and the like; mercapto; carbonyl; thiocarbonyl; hydroxy; phosphate; phosphoryl and the like.

Når alifatiske radikaler er de organiske radikaler, kan de f. eks. være alkyl, alkenyl, aralkyl og/eller aralkenyl. When aliphatic radicals are the organic radicals, they can e.g. be alkyl, alkenyl, aralkyl and/or aralkenyl.

Et hvilket som helst egnet alkylradi-kal kan være det organiske radikal, som f. eks. metyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-amyl og forskjellige isomere av disse som f. eks. 1-metylbutyl, 2-metylbutyl, 1,1-dimetylpropyl, 1,2-dimetylpropyl, 2,2-dimetylpropyl, 1-etylpropyl og lignende og de tilsvarende uforgrenede og forgrenede isomere av heksyl, heptyl, oktyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, heksadecyl, heptadecyl, octadecyl, nonde-cyl, eicosyl og lignende. Any suitable alkyl radical can be the organic radical, such as e.g. methyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-amyl and various isomers of these such as e.g. 1-methylbutyl, 2-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl and the like and the corresponding unbranched and branched isomers of hexyl, heptyl, octyl, nonyl, decyl, undecyl , dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nondecyl, eicosyl and the like.

Et hvilket som helst egnet alkenylra-dikal kan være det organiske radikal som f. eks. etenyl, 1-propenyl, 2-propenyl, iso-propnenyl, 1-butenyl, 2-butenyl, 3-butenyl og de tilsvarende forgrenede isomere av disse, som f. eks. 1-isobutenyl, 2-isobutenyl, l-sec.-butenyl, 2-sec.-butenyl, innbefattende l-metylen-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl og de tilsvarende forgrenede kjeders isomere av disse; 1-heksenyl, 2-heksyl, 3-heksenyl, 4-heksenyl,. 5-heksenyl og de tilsvarende isomere med forgrenede kjeder av disse, som f. eks. 3,3-dimetyl-1-butenyl, 2,3-di-metyl-1-butenyl, 2,3-dimetyl-2-butenyl, 2,2-dimetyl-3-butenyl, l-metyl-l-etyl-2-propenyl og de forskjellige isomere av heptenyl, oc-tenyl, nonenyl, decenyl, undecenyl, dodece-nyl, tridecenyl, tetradecenyl, pentadece-nyl, heksadecenyl, heptadecenyl, octade-cenyl, nondecenyl, eicosenyl og lignende. Any suitable alkenyl radical can be the organic radical such as e.g. ethenyl, 1-propenyl, 2-propenyl, iso-propenyl, 1-butenyl, 2-butenyl, 3-butenyl and the corresponding branched isomers thereof, such as e.g. 1-isobutenyl, 2-isobutenyl, 1-sec.-butenyl, 2-sec.-butenyl, including 1-methylene-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl and the corresponding branched chain isomers thereof; 1-hexenyl, 2-hexyl, 3-hexenyl, 4-hexenyl,. 5-hexenyl and the corresponding isomers with branched chains thereof, such as e.g. 3,3-dimethyl-1-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,2-dimethyl-3-butenyl, l-methyl-l-ethyl- 2-propenyl and the various isomers of heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nondecenyl, eicosenyl and the like.

Et hvilket som helst egnet aralkylradi-kan kan være det organiske radikal, som f. eks. benzyl, a-fenyl-etyl, (3-fenyletyl, «-fenyl-propyl, p-fenylpropyl, gamma-fenylpropyl, a-fenyl-isopropyl, p-fenylisopropyl, a-fenylbutyl, (3-fenylbutyl, gamma-fenylbutyl, delta-fenylbutyl, «-fenyl-isobutyl, (3-fenyl-isobutyl, gamma-fenyl-isobutyl, a-fenyl-sec.-butyl, p--fenyl-sec.-butyl, gam-ima-fenyl-sec.butyl, p-fenyl-t-butyl, cT-naftyl-metyl, p'-naftyl-metyl og de tilsvarende a'-og (3'-naftylderivater av n-amyl og de forskjellige stillingsisomere av disse, f. eks. 1-metyl-butyl, 2-metyl-butyl, 3-metyl-butyl, 1,1-dimetylpropyl, 1,2-dimetylpropyl, 2,2-dimetyl-propyl, 1-etylpropyl og nevnte derivater av de tilsvarende isomere av heksyl, heptyl, oktyl og lignende, innbefattende eisocyl og de tilsvarende alkylderi-vater av fenantren, fuoren, acenaften, cry-sen, pyren, trifenylen, naftacen og lignende. Any suitable aralkyl radical can be the organic radical, such as e.g. benzyl, a-phenyl-ethyl, (3-phenylethyl, «-phenyl-propyl, p-phenylpropyl, gamma-phenylpropyl, a-phenyl-isopropyl, p-phenylisopropyl, a-phenylbutyl, (3-phenylbutyl, gamma-phenylbutyl, delta-phenylbutyl, «-phenyl-isobutyl, (3-phenyl-isobutyl, gamma-phenyl-isobutyl, a-phenyl-sec.-butyl, p--phenyl-sec.-butyl, gam-ima-phenyl-sec. butyl, p-phenyl-t-butyl, cT-naphthyl-methyl, p'-naphthyl-methyl and the corresponding a'-and (3'-naphthyl derivatives of n-amyl and the various positional isomers of these, e.g. 1 -methyl-butyl, 2-methyl-butyl, 3-methyl-butyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethyl-propyl, 1-ethylpropyl and said derivatives of the corresponding isomers of hexyl, heptyl, octyl and the like, including eisocyl and the corresponding alkyl derivatives of phenanthrene, fluoroene, acenaphthene, chrysene, pyrene, triphenylene, naphthacene and the like.

Et hvilket som helst egnet aralkenyl-radikal kan være det organiske radikal som f. eks. a-fenyl-etenyl, p-fenyl-etenyi, a-fenyl-l-propenyl, p-fenyl-l-propenyl, gamma-fenyl-l-propenyl, a-fenyl-2-propenyl, p-fenyl-2-propenyl, gamma-fenyl-2-propenyl, p-fenyl-isopropenyl og fenyl-derivater av de isomere av butenyl, pentenyl, heksenyl, heptenyl til og med eicosenyl og andre aromatiske derivater av alkenyl, dvs. alkenylradikaler avledet fra naftalen, fenantren, fluoren, acenaften, krysen, pyren, trifenylen, naftacen og lignende. Any suitable aralkenyl radical can be the organic radical such as e.g. a-phenyl-ethenyl, p-phenyl-ethenyl, a-phenyl-l-propenyl, p-phenyl-l-propenyl, gamma-phenyl-l-propenyl, a-phenyl-2-propenyl, p-phenyl-2- propenyl, gamma-phenyl-2-propenyl, p-phenyl-isopropenyl and phenyl derivatives of the isomers of butenyl, pentenyl, hexenyl, heptenyl up to and including eicosenyl and other aromatic derivatives of alkenyl, i.e. alkenyl radicals derived from naphthalene, phenanthrene, fluorene, acenaphthene, chrysene, pyrene, triphenylene, naphthacene and the like.

Et hvilket som helst egnet cykloalkyl-radikai kan være det organiske radikal, som f. eks. cyklopropyl, cyklobutyl, cyklo-amyl, cykloheksyl, cykloheptyl, cyklooctyl, cyklononyl, cyklodecyl, cykloundecyl, cyklodecyl, cyklotridecyl, cyklotetradecyl, cyk-lopentadecyl, cykloheksadecyl, cyklohepta-decyl, cyklooktadecyl, cyklonondecyl, cyk-loeicosyl, n-cyklopropyl-etyl, p-cyklopro-propyl-etyl, a-cyklobutylpropyl, p-cyklobutyl-propyl, gamma-cyklobutyl-propyl, a-cykloamyl-isopropyl, p-cykloamylisopropyl og lignende. Any suitable cycloalkyl radical can be the organic radical, such as e.g. cyclopropyl, cyclobutyl, cycloamyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclodecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, cyclooctadecyl, cyclonondecyl, cycloloeicosyl, n-cyclopropylethyl, p-cyclopro-propyl-ethyl, a-cyclobutylpropyl, p-cyclobutyl-propyl, gamma-cyclobutyl-propyl, a-cycloamyl-isopropyl, p-cycloamylisopropyl and the like.

Et hvilket som helst egnet cykloalke-nylradikal kan være det organiske radikal, som f. eks. a-cykloheksyletenyl, p-cykloheksyletenyl, o-cykloheptyl-1 -propenyl. p-cykloheptyl-1-propenyl, gamma-cykloheptyl-1-propenyl, a-cyklooktyl-2-prope-liyl, gamma-cyklooktyl-2-propenyl, p-cyklo-nonylisopropenyl, a-metylen-p-cyklodode-cyl-etyl og lignende. Any suitable cycloalkenyl radical can be the organic radical, such as e.g. α-Cyclohexylethenyl, β-Cyclohexylethenyl, o-Cycloheptyl-1-propenyl. p-cycloheptyl-1-propenyl, gamma-cycloheptyl-1-propenyl, α-cyclooctyl-2-prope-liyl, gamma-cyclooctyl-2-propenyl, p-cyclo-nonylisopropenyl, α-methylene-p-cyclodode-cyl- ethyl and the like.

Et hvilket som helst egnet arylradikal kan være det organiske radikal som f. eks. fenyl, a-naftyl, (3-naftyl, a-antryl, (3-antryl, gamma-antryl innbefattende de forskjellige monovalente. radikaler av inden, isoinden, acennaften, fluoren, fenantren, naftacen, krysen, pyren, trifenylen og lignende. Any suitable aryl radical can be the organic radical such as e.g. phenyl, α-naphthyl, (3-naphthyl, α-anthryl, (3-anthryl, gamma-anthryl including the various monovalent. radicals of indene, isoindene, acenenaphthene, fluorene, phenanthrene, naphthacene, chrysene, pyrene, triphenylene and the like.

Et hvilket som helst egnet alkarylra-dikal kan være det organiske radikal, som f. eks. o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl, o-cumenyl, m-cumenyl, p-cumenyl, mesityl, o-etylfenyl, m-etylfenyl, p-etylfenyl, 2-metyl-a-naftyl, 3-metyl-a-naftyl, 4-metyl-a-naftyl, 5-metyl-a-naftyl, 6-metyl-a-naftyl, • 7-metyl-a-naftyl-8-metyl- -a-naftyl, 1-etyl-p-naftyl, 3-etyl-(3-naftyl, 4-etyl-|3-naftyl, 5-etyl-p-naftyl, 6-etyl-p-naftyl, 7-etyl-p-naftyl, 8-etyl-p-naftyl, 2,3-di-propyl-a-naftyl, 5,8-diisopro-pyl-p-naftyl og lignende. Any suitable alkaryl radical may be the organic radical, such as e.g. o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3, 5-xylyl, o-cumenyl, m-cumenyl, p-cumenyl, mesityl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl, 2-methyl-a-naphthyl, 3-methyl-a-naphthyl, 4-methyl- a-naphthyl, 5-methyl-a-naphthyl, 6-methyl-a-naphthyl, • 7-methyl-a-naphthyl-8-methyl- -a-naphthyl, 1-ethyl-p-naphthyl, 3-ethyl- (3-naphthyl, 4-ethyl-|3-naphthyl, 5-ethyl-p-naphthyl, 6-ethyl-p-naphthyl, 7-ethyl-p-naphthyl, 8-ethyl-p-naphthyl, 2,3- di-propyl-α-naphthyl, 5,8-diisopropyl-p-naphthyl and the like.

Et hvilket soni helst egnet heterocyk-lisk radikal kan være det organiske radikal, som f. eks. furfuryl, pyryl, og lignende. Any suitable heterocyclic radical can be the organic radical, such as e.g. furfuryl, pyryl, and the like.

Høyerevalente radikaler er de som er avledet fra bivalente og høyerevalente polyhydroksyforbindelser, som etylenglykol, dietylenglykol, polyetylenglykol, propylenglykol, dipropylenglykol, polypropylengly-kolene, polytetrahydrofuran og blandede polyestere av disse, glycerol, trimetylolpropan, trimetyloletan, pentaeryltritol, heksi-tol og alkoksyleringsproduktene av disse polyalkoholer. Higher-valent radicals are those derived from bivalent and higher-valent polyhydroxy compounds, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycols, polytetrahydrofuran and mixed polyesters thereof, glycerol, trimethylolpropane, trimethylolethane, pentaeryltritol, hexitol and the carboxylation products thereof polyalcohols.

De tinnholdige silikonforbindelser som anvendes ifølge oppfinnelsen, kan ansees som omfattende vesentlige bygningsblok-ker av følgende typer: The tin-containing silicone compounds used according to the invention can be regarded as comprising essential building blocks of the following types:

hvori m og n betyr 1, 2 eller 3, idet til en viss grad m og n også kan være 0, R og R' er monovalentorganiske radikaler som angitt ovenfor, R" er høyerevalentorganiske radikaler, avledes fra de polyhydriske alkoholer som er angitt ovenfor, idet det i hver av hydroksylgruppene er fjernet hy-drogen og halvparten av oksygenet. De tinnholdige silikonforbindelser innbefatter derfor de som har periodiske grupper in which m and n mean 1, 2 or 3, since to a certain extent m and n can also be 0, R and R' are monovalent organic radicals as indicated above, R" are higher valent organic radicals, derived from the polyhydric alcohols indicated above , the hydrogen and half of the oxygen having been removed in each of the hydroxyl groups. The tin-containing silicone compounds therefore include those having periodic groups

hvori a og c er hele tall og b er hele tall innbefattende 0. where a and c are whole numbers and b is whole numbers including 0.

Den tinnholdige silikonforbindelse kan fremstilles overensstemmende med kjente fremgangsmåter. De kan f. eks. fremstilles ved transforestring av silanolforbindelsen som inneholder en -Si-OH-gruppe med en The tin-containing silicone compound can be prepared in accordance with known methods. They can e.g. is produced by transesterification of the silanol compound containing a -Si-OH group with a

I IN

alkoksy-tinnforbindelse med formelen RnSn(OR')4ll, hvori R er et organisk radikal som definert ovenfor, og n er et helt tall fra 1 til 3, idet ROH avspaltes i reaksjonen. I tillegg kan stabilisator-katalysatoren ifølge oppfinnelsen fremstilles ved å bringe et silanolsalt som natriumsalt av trimetylsilanol til reaksjon med et tinnhalid med formelen RnSnX4 n, hvori R er et organisk radikal som definert ovenfor, n er et helt tall fra 1 til 3 og X er halogen som klor, brom, jod, idet metallhalidet spaltes av. Videre kan katalysatorene fremstilles ved å bringe et alkoksysilan som trimetylmetoksysilan eller et alkoksysilok-san som polydimetylmetoksysiloksan som inneholder -Si-OR-grupper, hvori R har Alkoxy-tin compound with the formula RnSn(OR')4ll, in which R is an organic radical as defined above, and n is an integer from 1 to 3, ROH being split off in the reaction. In addition, the stabilizer catalyst according to the invention can be prepared by reacting a silanol salt such as the sodium salt of trimethylsilanol with a tin halide of the formula RnSnX4 n, in which R is an organic radical as defined above, n is an integer from 1 to 3 and X is halogen such as chlorine, bromine, iodine, as the metal halide is split off. Furthermore, the catalysts can be prepared by bringing an alkoxysilane such as trimethylmethoxysilane or an alkoxysiloxane such as polydimethylmethoxysiloxane containing -Si-OR groups, in which R has

den angitte betydning som ovenfor, til reaksjon med tinnhalid med formelen RMSnX4 n, hvori R, n og X har den ovennevnte betydning, eller til reaksjon med tinnacylat med formelen R„Sn(OCOR)4„, hvori R er et organisk radikal som angitt ovenfor, idet et alkylhalid, som f. eks. etylklorid, benzylklorid, klorobensen og lignende eller en alkylester som f. eks. aceteddiksyreester eller andre estere med formelen ROCOR, hvori R er et organisk radikal som angitt ovenfor, avspaltes i reaksjonen. De sistnevnte reaksjoner kan fortrinnsvis utføres i nærvær av en katalysator som f. eks. acetylklorid. De tinnholdige silikonforbindelser ifølge oppfinnelsen kan også fremstilles ved å bringe et halosilan eller et halosiloksan som f. eks. triklormetylsilan, polydiklorometyl-silan og lignende til reaksjon imed et alkyl-tinnacylat, som f. eks. dibutyltinn-diacetat, idet det tilsvarende acylhalid spaltes av. Den tinnholdige del av molekylet kan være bundet til siloksanandelen gjennom -Sn-C-O-bindinger på en enkel måte ved transforestringen av alkoksytinnforbin-delser av følgende formel, f. eks. the indicated meaning as above, for reaction with tin halide of the formula RMSnX4 n, in which R, n and X have the above meaning, or for reaction with tin acylate of the formula R„Sn(OCOR)4„, in which R is an organic radical as indicated above, as an alkyl halide, such as e.g. ethyl chloride, benzyl chloride, chlorobenzene and the like or an alkyl ester such as e.g. acetoacetic acid esters or other esters with the formula ROCOR, in which R is an organic radical as stated above, are split off in the reaction. The latter reactions can preferably be carried out in the presence of a catalyst such as e.g. acetyl chloride. The tin-containing silicone compounds according to the invention can also be prepared by bringing a halosilane or a halosiloxane such as e.g. trichloromethyl silane, polydichloromethyl silane and the like for reaction with an alkyl tin acylate, such as e.g. dibutyltin diacetate, the corresponding acyl halide being split off. The tin-containing part of the molecule can be bound to the siloxane part through -Sn-C-O bonds in a simple way by the transesterification of alkoxytin compounds of the following formula, e.g.

RMSn(OR)4 „, hvori R og n er som ovenfor angitt med et silan eller siloksan som inneholder frie hydroksylgrupper og et karbonatom og som i sin tur er bundet til et silikonatom enten direkte eller gjennom eteroksygenbroer eller ved reaksjon av det tilsvarende alkoholat med tinnhalid under vannfrie betingelser. RMSn(OR)4 „, in which R and n are as indicated above with a silane or siloxane containing free hydroxyl groups and a carbon atom and which in turn is bound to a silicon atom either directly or through ether oxygen bridges or by reaction of the corresponding alcoholate with tin halide under anhydrous conditions.

Silanene og siloksanene som skal anvendes ved fremstillingen av de tinnholdige silikonforbindelser kan avledes fra monomere med den generelle formel R^iX^,, hvori n er 0, 1, 2 eller 3, R er et organisk radikal som nærmere angitt ovenfor og x representerer en hydroiyserbar gruppe, som et halogenatom, som klor, brom, jod og lignende, en aminogruppe eller en alkoksygruppe som metoksy, etoksy, propoksy, butoksy, amoksy og lignende. Hvis ønskes, kan hydrokarbonradikaler og/ eller hydrokarbonradikaler forbundet ved eteroksygenatomer innbygges i silikondelen av molekylet ved kondensering av de tidligere nevnte silanforbindelser i nærvær av en polyhydrisk alkohol, eller ailkyl-lenoksyd. Silikonforbindelsene som har endestilte hydroksylgrupper i molekylet kan fåes ved å anvende et overskudd av den polyhydriske alkohol eller alkylenok-sydet. Egnede polyhydriske alkoholer er f. eks. etylenglykol, propylenglykol, buty-lenglykol, glycerin, trimetylolpropan, polyetylenglykoler, polypropylenglykoler og lignende. Alkylenoksydene som kan benyttes er f. eks. etylenoksyd, propylenoksyd, bu-tylenoksyd, epiklorhydrin, styrenoksyd og lignende, såvel som reaksjonsprodukter herav med polyhydriske alkoholer som f. eks. glycerin, trimetylolpropan, 1,3,6-heksantriol, castorolje, sukker og lignende. Silikonforbindelsene kan også modifiseres til å inneholde monofunksjonelle alkoksy-radikaler av høyere molekylarvekt ved reaksjon med f. eks. en høyere alkohol som stearylalkohol, eller med tilleiringsprodukter av de tidligere nevnte alkylenoksyder med monofunksjonelle alkoholer eller fenoler som metanol, etanol, propanol, butanol, bensylalkohol, fenol og lignende, idet disse radikaler avspaltes når tinnkompo-nentene samtidig innføres i molekylet. Selvsagt er det også mulig å innføre de monofunksjonelle alkoksy eller aroksyra-dikaler i molekylet etter innkorporeringen av tinnforbindelsen. Videre kan silikonforbindelsene som inneholder tinn inneholde stannoksangrupperingen Sn-O-Sn, hvori hvert tinnatom er forbundet til 1 eller 2 organiske radikaler som angitt ovenfor, ved hjelp av en direkte karbon til tinn-binding. Det er ikke nødvendig å anvende støkiometriske mengder av tinndelen og silikondelen og mindre mengder av hver i molekylet omfattes av oppfinnelsen. Videre kan de tinnholdige silikonforbindelser også inneholde funksjonelle grupper, som f. eks. hydroksylgrupper, halogengrupper som klor, brom og jod, alkoksygrupper som f. eks. metoksy, etoksy, propoksy, butoksy og lignende estergrupper som acyl-grupper og lignende i endestilling. Avhen-gig av utgangsmaterialets art kan man fremstille uforgrenede eller forgrenede si-likonholdige forbindelser av relativt høy eller lav imolekylvekt, og som enten kan være vannoppløselige eller hydrofobe. Videre kan de tinnholdige silikonforbindelser blandes på en hvilken som helst ønsket måte. The silanes and siloxanes to be used in the production of the tin-containing silicone compounds can be derived from monomers with the general formula R^iX^, in which n is 0, 1, 2 or 3, R is an organic radical as specified above and x represents a hydroisable group, such as a halogen atom, such as chlorine, bromine, iodine and the like, an amino group or an alkoxy group such as methoxy, ethoxy, propoxy, butoxy, amoxy and the like. If desired, hydrocarbon radicals and/or hydrocarbon radicals connected by ether oxygen atoms can be incorporated into the silicone part of the molecule by condensation of the previously mentioned silane compounds in the presence of a polyhydric alcohol or alkylene oxide. The silicone compounds which have terminal hydroxyl groups in the molecule can be obtained by using an excess of the polyhydric alcohol or the alkylene oxide. Suitable polyhydric alcohols are e.g. ethylene glycol, propylene glycol, butylene glycol, glycerin, trimethylolpropane, polyethylene glycols, polypropylene glycols and the like. The alkylene oxides that can be used are e.g. ethylene oxide, propylene oxide, butylene oxide, epichlorohydrin, styrene oxide and the like, as well as reaction products thereof with polyhydric alcohols such as e.g. glycerin, trimethylolpropane, 1,3,6-hexanetriol, castor oil, sugar and the like. The silicone compounds can also be modified to contain monofunctional alkoxy radicals of higher molecular weight by reaction with e.g. a higher alcohol such as stearyl alcohol, or with addition products of the previously mentioned alkylene oxides with monofunctional alcohols or phenols such as methanol, ethanol, propanol, butanol, benzyl alcohol, phenol and the like, these radicals being split off when the tin components are simultaneously introduced into the molecule. Of course, it is also possible to introduce the monofunctional alkoxy or oxyacid dikals into the molecule after the incorporation of the tin compound. Furthermore, the silicone compounds containing tin may contain the stannoxane grouping Sn-O-Sn, in which each tin atom is connected to 1 or 2 organic radicals as indicated above, by means of a direct carbon to tin bond. It is not necessary to use stoichiometric amounts of the tin part and the silicone part and smaller amounts of each in the molecule are covered by the invention. Furthermore, the tin-containing silicone compounds can also contain functional groups, such as e.g. hydroxyl groups, halogen groups such as chlorine, bromine and iodine, alkoxy groups such as e.g. methoxy, ethoxy, propoxy, butoxy and similar ester groups such as acyl groups and the like in the terminal position. Depending on the nature of the starting material, unbranched or branched silicone-containing compounds of relatively high or low molecular weight can be produced, and which can either be water-soluble or hydrophobic. Furthermore, the tin-containing silicone compounds can be mixed in any desired manner.

De tinnholdige silikonforbindelser som anvendes ifølge oppfinnelsen kan være faste, amorfe, krystallinske pastaer eller selv flytende produkter, og kan innarbei-des i reaksjonskomponentene på forskjellige måter. Således er de flytende forbindelser vanligvis forenlige med hydroksyl-polyestrene og/eller polyeterene og kan settes direkte til disse, mens de vannopp-løselige forbindelser kan innføres i den vandige del av reaksjonsdeltagerne. Faste forbindelser kan oppløses i oppløsnings-midler som aceton, aromatiske hydrokarboner som f. eks. bensol, toluol, xylol og lignende, klorerte hydrokarboner som orten og lignende, estere som dibutyleter og lignende, og et hvilket som helst annet egnet oppløsningsmiddel. Videre kan reaksjonen utføres i nærvær av den faste forbindelse ved å sette den til i form av en pasta, f. eks. til den organiske forbindelse, som inneholder minst to aktive hydrogenholdige grupper. The tin-containing silicone compounds used according to the invention can be solid, amorphous, crystalline pastes or even liquid products, and can be incorporated into the reaction components in various ways. Thus, the liquid compounds are usually compatible with the hydroxyl polyesters and/or polyethers and can be added directly to these, while the water-soluble compounds can be introduced into the aqueous part of the reaction participants. Solid compounds can be dissolved in solvents such as acetone, aromatic hydrocarbons such as e.g. benzene, toluene, xylol and the like, chlorinated hydrocarbons such as ether and the like, esters such as dibutyl ether and the like, and any other suitable solvent. Furthermore, the reaction can be carried out in the presence of the solid compound by adding it in the form of a paste, e.g. to the organic compound, which contains at least two active hydrogen-containing groups.

Katalysatormengden vil variere av-hengig av reaksjonsblandingens art og sammensetning. Mengden av aktivt tinn i silikonforbindelsen kan også variere ifølge de anvendte forbindelser. Imidlertid er ka-talytiske mengder tilstrekkelig. Vanligvis foretrekkes mengder innen områder fra omtrent 0,01 vekts-pst. til omtrent 5 vekts-pst., basert på reaksjonsblandingens totale vekt. The amount of catalyst will vary depending on the nature and composition of the reaction mixture. The amount of active tin in the silicone compound can also vary according to the compounds used. However, catalytic amounts are sufficient. Generally, preferred amounts are in the range of about 0.01 weight percent. to about 5% by weight, based on the total weight of the reaction mixture.

Den celleformede polyuretanplast fremstilles ved den samtidig og gode blanding av komponentene som innbefatter den organiske forbindelse som inneholder The cellular polyurethane plastic is produced by the simultaneous and good mixing of the components which include the organic compound containing

minst to aktive hydrogenholdige grupper, organisk polyisocyanat, vann eller andre at least two active hydrogen-containing groups, organic polyisocyanate, water or others

drivmidler, såvel som andre tilsetninger, hvis ønsket. Blandingen utføres fortrinnsvis i en maskinell blander som angitt f. eks. i U.S. Reissue Patent nr. 24 514. I propellants, as well as other additives, if desired. The mixing is preferably carried out in a mechanical mixer as indicated, e.g. in the U.S. Reissue Patent No. 24 514. I

tillegg til de allerede nevnte komponenter er det mulig å benytte andre stabilisatorer, katalysatorer, fargestoffer, fyllstoffer og lignende. Egnede katalysatorer er f. eks. N-etylmorfolin, N-metylmorfolin, trietyl-endiamin. dimetylbenzylamin, endoetylenpiperazin i små mengder, l-alkoksy-3-dial-kylaminopropaner som l-etoksy-3-dim-etylaminopropan og lignende, permetylert N-etylaminopiperazin1 og lignende, såvel som tinnholdige forbindelser, som f. eks. dibutyl-tinn-di-2-etylheksoat, dibutyl-tinn-dilaurat, stannooktat og andre. in addition to the components already mentioned, it is possible to use other stabilizers, catalysts, dyes, fillers and the like. Suitable catalysts are e.g. N-Ethylmorpholine, N-Methylmorpholine, Triethylendiamine. dimethylbenzylamine, endoethylenepiperazine in small amounts, 1-alkoxy-3-dialkylaminopropanes such as 1-ethoxy-3-dimethylaminopropane and the like, permethylated N-ethylaminopiperazine1 and the like, as well as tin-containing compounds, such as e.g. dibutyl tin di-2-ethylhexoate, dibutyl tin dilaurate, stannous octate and others.

Man kan også anvende i forbindelse med katalysatorstabilisatorene ifølge oppfinnelsen, emulgeringsimidler som sulfo-nert castorolje og tilleiringsprodukter av etylenoksyd med hydrofobe forbindelser som inneholder en eller flere aktive hydrogenholdige grupper, fargestoffer, fyllstoffer, ildsikringsstoffer, my kningsgj ørere og andre stabilisatorer innbefattende sili-kon-alkylenoksydkopolymere, slik som de er beskrevet i tysk patent nr. 1 040 251 og silikonforbindelser som inneholder basis-nitrogenatomer og parafinoljer. One can also use in connection with the catalyst stabilizers according to the invention, emulsifiers such as sulfonated castor oil and addition products of ethylene oxide with hydrophobic compounds containing one or more active hydrogen-containing groups, dyes, fillers, fire retardants, plasticizers and other stabilizers including silicone alkylene oxide copolymers, such as are described in German Patent No. 1,040,251 and silicone compounds containing basic nitrogen atoms and paraffin oils.

Den celleformede polyuretanplast ifølge oppfinnelsen er nyttig ved mange an-vendelser innbefattende både termisk og lydisolering, buffert og andre polstrede ar-tikler, leker og lignende. The cellular polyurethane plastic according to the invention is useful in many applications including both thermal and sound insulation, buffers and other padded articles, toys and the like.

Oppfinnelsen skal i det følgende be-skrives ved hjelp av eksempler. In the following, the invention will be described with the help of examples.

Eksempel 1. Example 1.

100 vektsdeler lineært polypropylenglykol (OH-tall omtrent 56), 39 vektsdeler toluylen-diisocyanat som inneholder 2,4-og 2,6-isomere i et forhold på 80:20, omtrent 1,5 vektsdeler av en vannoppløselig siloksan-alkylenoksydpolymer, 0,7 vektsdeler av et stannosiloksan som er fremstilt ved transforestring av omtrent 37,8 vektsdeler tetraetoksy-l,3-difenyldisiloksan og omtrent 140,4 vektsdeler dibutyl-tinn-di-20 100 parts by weight linear polypropylene glycol (OH number about 56), 39 parts by weight toluylene diisocyanate containing 2,4- and 2,6-isomers in a ratio of 80:20, about 1.5 parts by weight of a water-soluble siloxane-alkylene oxide polymer, 0 .7 parts by weight of a stannous siloxane prepared by transesterification of about 37.8 parts by weight of tetraethoxy-1,3-diphenyldisiloxane and about 140.4 parts by weight of dibutyltin-di-20

acetat (refraksjonsindeks n D = 1,5142), acetate (refractive index n D = 1.5142),

0,8 vektsdeler permetylert N-aminoetylpi-perazin og 3,0 vektsdeler vann blandes mekanisk i apparaturen, beskrevet i U.S. Reissue patent 24 514, hvorved det dannes et skummaterial som når sin fulle høyde i løpet av omtrent 2 min. og herdner etter omtrent 20 til 30 min. for å danne et produkt som har god styrke og elastisitet. 0.8 parts by weight of permethylated N-aminoethylpiperazine and 3.0 parts by weight of water are mechanically mixed in the apparatus, described in U.S. Pat. Reissue patent 24 514, whereby a foam material is formed which reaches its full height within about 2 min. and hardens after approximately 20 to 30 min. to form a product that has good strength and elasticity.

Eksempel 2. Example 2.

89 vektsdeler tetrametyl-l,3-dietoksy-disiloksan og 60 vektsdeler vannfri polyetylenglykol (molekylvekt omtrent 300), 89 parts by weight of tetramethyl-1,3-diethoxy-disiloxane and 60 parts by weight of anhydrous polyethylene glycol (molecular weight approximately 300),

transforestres ved 150° C/12 mm Hg og deretter ved 130° C/12 mm Hg etter tilsetning av 70,2 deler (vekt) av ddbutyl-tinn-diacetat og omtrent 1 mol acetylklorid for å gi 156 vektsdeler av en viskos stannosiloksan-polyetylenglykolkopolymer som har transesterified at 150° C/12 mm Hg and then at 130° C/12 mm Hg after addition of 70.2 parts (w/w) of ddbutyl tin diacetate and about 1 mole of acetyl chloride to give 156 parts by weight of a viscous stannous siloxane- polyethylene glycol copolymer which has

20 20

en refraksjonsindeks n ^ = 1,4657. a refractive index n ^ = 1.4657.

100 vektsdeler av en forgrenet polypropylenglykol (OH-tallet omtrent 56) som er fremstilt ved tilsetning av propylenoksyd til en blanding av popan-l,2-diol og heksantriol i et molart forhold på 1:1, 37 vektsdeler av toluylendiisocyanat som 100 parts by weight of a branched polypropylene glycol (OH number about 56) which is prepared by adding propylene oxide to a mixture of popane-1,2-diol and hexanetriol in a molar ratio of 1:1, 37 parts by weight of toluylene diisocyanate which

ble anvendt i eksempel 1, 1,0 vektsdel av et vannoppløselig siloksanalkylenoksydpoly-mer, 0,5 vektsdeler av den tidligere beskrevne stannosiloksan-polyeteylenglykol-kopolymere, 0,2 deler i vekt av endoetylenpiperazin og 2,8 vektsdeler vann blandes mekanisk. Et hurtigstigende og settende skummateriale som har utmerkede mekaniske egenskaper oppnås derved. was used in example 1, 1.0 parts by weight of a water-soluble siloxane alkylene oxide polymer, 0.5 parts by weight of the previously described stannosiloxane-polyethylene glycol copolymer, 0.2 parts by weight of endoethylene piperazine and 2.8 parts by weight of water are mixed mechanically. A rapidly rising and settling foam material which has excellent mechanical properties is thereby obtained.

Eksempel 3. Example 3.

44,4 vektsdeler 1,3-dietoksytetrametyl-disiloksan og 120 vektsdeler vannfritt polyetylenglykol som har en gjennomsnittlig molekylvekt på 300, er til å begynne med transforestret ved 150° C/12 mm Hg inntil all etanol er avspaltet. Deretter tilsettes 59 vektsdeler dibutyl-dimetoksytinn og 44.4 parts by weight of 1,3-diethoxytetramethyldisiloxane and 120 parts by weight of anhydrous polyethylene glycol having an average molecular weight of 300 are initially transesterified at 150° C./12 mm Hg until all ethanol is split off. 59 parts by weight of dibutyl dimethoxytin are then added and

blandingen destilleres ved 150° C/12 mm Hg inntil all metanol er fjernet. Som residum oppnås 184 vektsdeler av en viskos olje som har en refraksjonsindeks n ^ the mixture is distilled at 150° C/12 mm Hg until all the methanol is removed. 184 parts by weight of a viscous oil having a refractive index n ^ are obtained as residue

1,4774. 1.4774.

100 vektsdeler av en forgrenet polypropylenglykol (OH-tall omtrent 55) som er fremstilt ved tilsetning av propylenoksyd til trimetylolpropan, 40 vektsdeler av 100 parts by weight of a branched polypropylene glycol (OH number approximately 55) which is produced by adding propylene oxide to trimethylolpropane, 40 parts by weight of

toluyiendiisocyanatet som ble anvendt i the toluene diisocyanate used in the

eksempel 1, 1,2 vektsdeler vannoppløselig siloksan-alkylenoksyd-kopolymer, 0,4 vektsdeler av den katalysator som er fremstilt som beskrevet ovenfor, 1,0 vektsdeler av l-etoksy-3-dimetylaminpropan og 3,1 vektsdel vann blandes sammen. Det fåes en hurtigstigende og herdende skum som har god styrke og elastisitet. example 1, 1.2 parts by weight of water-soluble siloxane-alkylene oxide copolymer, 0.4 parts by weight of the catalyst prepared as described above, 1.0 parts by weight of l-ethoxy-3-dimethylaminepropane and 3.1 parts by weight of water are mixed together. This results in a fast-rising and hardening foam that has good strength and elasticity.

Eksempel 4. Example 4.

100 vektsdeler av en polyeter (-OH-tall omtrent 50) som er blitt fremstilt ved kopolymerisering av tetrahydrofuran, etylenoksyd, propylenoksyd og epiklorhydrin, 42 vektsdeler av en 80:20 blanding av 2,4-og 2,6-toluylendiisocyanat, 1,0 vektsdel av 100 parts by weight of a polyether (-OH number approximately 50) which has been prepared by the copolymerization of tetrahydrofuran, ethylene oxide, propylene oxide and epichlorohydrin, 42 parts by weight of an 80:20 mixture of 2,4- and 2,6-toluenediisocyanate, 1, 0 weight part of

et stannosiloksan som har en refraksjons-20 a stannous siloxane having a refractive index of 20

indeks n D = 1,4426, og som er blitt fremstilt ved transforestring ved 130° C/12 mm Hg av 370 vektsdeler 1,17-dietoksymetyl-nonasiloksan og 351 deler dibutyl-tinn-diacetat med tilsetning av 2 ml acetylklorid (utbytte omtrent 640 vektsdeler), 1,2 vektsdeler av en basisk silikonolje med formelen index n D = 1.4426, and which has been prepared by transesterification at 130° C/12 mm Hg of 370 parts by weight of 1,17-diethoxymethyl-nonasiloxane and 351 parts of dibutyl tin diacetate with the addition of 2 ml of acetyl chloride (yield approx. 640 parts by weight), 1.2 parts by weight of a basic silicone oil of the formula

hvori n er et helt tall fra 8 til 10, omtrent 0,2 vektsdeler endoetylenpiperazin og 3,3 vektsdeler vann blandes mekanisk. Det fåes da et skummateriale som har gode mekaniske og elastiske egenskaper og som stiger og herdner hurtig. wherein n is an integer from 8 to 10, approximately 0.2 parts by weight of endoethylene piperazine and 3.3 parts by weight of water are mechanically mixed. A foam material is then obtained which has good mechanical and elastic properties and which rises and hardens quickly.

Eksempel 5. Example 5.

59 vektsdeler dibutyl-tinn-diacetat tilsettes dråpevis til 10 vektsdeler metyltrietoksysilan og 143,5 vektsdeler 1,19-di-etoksymetyldecasiloksan under omrøring og ved 130° C. Eddikesteren som dannes (29 deler i vekt) avdestilleres. 40,8 vektsdeler av den gulaktige olje som derved 20 fåes (refraksjonsindeks n D = 1,4280) 59 parts by weight of dibutyltin diacetate are added dropwise to 10 parts by weight of methyltriethoxysilane and 143.5 parts by weight of 1,19-diethoxymethyldecasiloxane while stirring and at 130° C. The acetic ester that is formed (29 parts by weight) is distilled off. 40.8 parts by weight of the yellowish oil thus obtained (refractive index n D = 1.4280)

transforestres deretter med 50 vektsdeler av en vannfri polyetylenglykolpropylen-glykolmonoalkyleter (molekylvekt omtrent 1400) i 250 ml vannfritt toluen og i nærvær av 0,5 vektsdeler trifluoreddiksyre. idet etanol avspaltes. Det fåes et høyvis-kost oljeaktig stannosiloksan etter avdestillering av alle de flyktige komponenter ved omtrent 150° C/12 mm Hg. is then transesterified with 50 parts by weight of an anhydrous polyethylene glycol propylene glycol monoalkyl ether (molecular weight about 1400) in 250 ml of anhydrous toluene and in the presence of 0.5 parts by weight of trifluoroacetic acid. as ethanol is split off. A high-viscosity oily stannosiloxane is obtained after distillation of all the volatile components at approximately 150° C/12 mm Hg.

Omtrent 100 vektsdeler av den forgrenede polypropylenglykol som ble anvendt i eksempel 3, 38 vektsdeler av toluylendiisocyanat anvendt i eksempel 1, 2,0 vektsdeler av den oljeaktige stannosiloksan-katalysator som ble fremstilt som beskrevet ovenfor, 0,3 vektsdeler vannopp-løselig siloksan-alkylenoksydkopolymer, 0,7 vektsdeler l-etoksy-3-dimetylaminpropan og 2,6 vektsdeler vann blandes mekanisk som beskrevet i eksempel 1. Det fåes et skumstoff som stiger og herdner hurtig. About 100 parts by weight of the branched polypropylene glycol used in Example 3, 38 parts by weight of toluylene diisocyanate used in Example 1, 2.0 parts by weight of the oily stannosiloxane catalyst prepared as described above, 0.3 parts by weight of water-soluble siloxane-alkylene oxide copolymer , 0.7 parts by weight of 1-ethoxy-3-dimethylaminepropane and 2.6 parts by weight of water are mixed mechanically as described in example 1. A foam is obtained which rises and hardens quickly.

Eksempel 6. Example 6.

100 vektsdeler av den polypropylenglykol som ble anvendt i eksempel 3, 38 vektsdeler av toluylendiisocyanatet anvendt i eksempel 1, omtrent 2,6 vektsdeler vann, 0,5 vektsdeler l-metoksy-3-dimetylamino-propan, 1,5 vektsdeler av en vannoppløse-lig siloksan-alkylenoksydkopolymer og 1,0 100 parts by weight of the polypropylene glycol used in Example 3, 38 parts by weight of the toluylene diisocyanate used in Example 1, about 2.6 parts by weight of water, 0.5 parts by weight of 1-methoxy-3-dimethylamino-propane, 1.5 parts by weight of a water-soluble lig siloxane-alkylene oxide copolymer and 1.0

vektsdeler av et stannosiloksan fremstilt ved transforestring av 44,5 vektsdeler 1,3 dietoksytetrametyl-disiloksan og 70,2 vektsdeler dibutyl-tinn-diacetat i nærvær av 0,5 ml acetylklorid, og ved en maksimal temperatur på ca. 130° C ved 13 mm Hg under utelukkelse av fuktighet, blandes mekanisk og gir et hurtig stigende og herdende skum som har gode fysikalske egenskaper. parts by weight of a stannosiloxane prepared by transesterification of 44.5 parts by weight of 1.3 diethoxytetramethyldisiloxane and 70.2 parts by weight of dibutyl tin diacetate in the presence of 0.5 ml of acetyl chloride, and at a maximum temperature of approx. 130° C at 13 mm Hg under the exclusion of moisture, is mixed mechanically and produces a rapidly rising and hardening foam which has good physical properties.

Eksempel 7. Example 7.

35,1 vektsdeler dibutyl-tinn-diacetat forestres først ved ca. 130° C/12 mm Hg med 102 vektsdeler a/o-dietoksy-polydim-etylsiloksan som har en gjennomsnittlig molekylvekt på 475 med tilsetning av 0,5 ml acetylklorid. Det fåes 105 vektsdeler av et stannosiloksan som har en refraksjons-20 35.1 parts by weight of dibutyl tin diacetate are first esterified at approx. 130° C/12 mm Hg with 102 parts by weight of a/o-diethoxy-polydimethylsiloxane having an average molecular weight of 475 with the addition of 0.5 ml of acetyl chloride. 105 parts by weight of a stannous siloxane which has a refractive index of 20 are obtained

indeks n D = 1,4292. 36 vektsdeler av stannosiloksanet fremstilles på denne måte, transforestres ved en maksimaltemperatur på 17° C ved 12 mm Hg med 51 deler av en polyeter som har et -OH-tall på 66, og som er blitt fremstilt ved tilsetning av 583 vektsdeler etylenoksyd og 650 vektsdeler propylenoksyd til 1 mol dietylenglykol-monobutyleter i nærvær av alkalikatalysa-torer. Det fåes 60 vektsdeler av et alkylenoksyd-stannosiloksankopolymer som har index n D = 1.4292. 36 parts by weight of the stannous siloxane prepared in this way is transesterified at a maximum temperature of 17°C at 12 mm Hg with 51 parts of a polyether having an -OH number of 66, which has been prepared by adding 583 parts by weight of ethylene oxide and 650 parts by weight of propylene oxide to 1 mol of diethylene glycol monobutyl ether in the presence of alkali catalysts. 60 parts by weight of an alkylene oxide-stannosiloxane copolymer are obtained which have

20 20

en refraksjonsindeks n D = 1,4612. a refractive index n D = 1.4612.

100 vektsdeler av polypropylenglykolet anvendt i eksempel 3, 38 deler (i vekt) av toluylendiisocyanatet anvendt i eksempel 1, 1,6 vektsdeler vann, 0,5 vektsdeler 1-etoksy-3-dimetylaminopropan, 2,0 vektsdeler dibutyltinn-dilaurat, 0,5 vektsdeler av katalysatoren fremstilt som beskrevet ovenfor og 0,2 vektsdeler av en 50 pst.'s vandig oppløsning av en risinolisk sur na-triumsulfonat blandet mekanisk. Det oppnås et heller grovporet skum som har gode styrkeegenskaper. 100 parts by weight of the polypropylene glycol used in Example 3, 38 parts (by weight) of the toluylene diisocyanate used in Example 1, 1.6 parts by weight of water, 0.5 parts by weight of 1-ethoxy-3-dimethylaminopropane, 2.0 parts by weight of dibutyltin dilaurate, 0, 5 parts by weight of the catalyst prepared as described above and 0.2 parts by weight of a 50% aqueous solution of a ricinolic acid sodium sulphonate mixed mechanically. A rather coarse-pored foam is obtained which has good strength properties.

Eksempel 8. Example 8.

100 vektsdeler av polypropylenglykolet anvendt i eksempel 3, 38 vektsdeler av toluylendiisocyanatet anvendt i eksempel 1, 2,6 vektsdeler vann, 1,2 vektsdel 1-etoksy-3-dimetylaminopropan og 2,0 vektsdeler stannosiloksan som har en refraksjons-20 100 parts by weight of the polypropylene glycol used in Example 3, 38 parts by weight of the toluylene diisocyanate used in Example 1, 2.6 parts by weight of water, 1.2 parts by weight of 1-ethoxy-3-dimethylaminopropane and 2.0 parts by weight of stannosiloxane having a refractive index of 20

indeks n D = 1,4055, og som er fremstilt ved transforestring av 46,3 vektsdeler av dioktyltinn-diacetat med 95 vektsdeler cx, -dietoksypolydimetylsiloksan (gjennomsnittlig molekylvekt 475) i nærvær av 0,5 index n D = 1.4055, and which is prepared by transesterification of 46.3 parts by weight of dioctyltin diacetate with 95 parts by weight of cx, -diethoxypolydimethylsiloxane (average molecular weight 475) in the presence of 0.5

ml acetylklorid ved 170° C/12 mm Hg og stivner ved henstand for relativt lang tid, blandes og danner et skumstoff som stiger og herdner hurtig, men som har vesentlig lukkede porer. ml of acetyl chloride at 170° C/12 mm Hg and hardens on standing for a relatively long time, mixes and forms a foam which rises and hardens quickly, but which has substantially closed pores.

Tilsvarende skumstoffer kan oppnås ved bruk av omtrent ekvimolare mengder av dibenzyl-tinn-diacetat i stedet for di-oktyl-tinn-diacetat. Similar foams can be obtained by using approximately equimolar amounts of dibenzyl tin diacetate instead of dioctyl tin diacetate.

Eksempel 9. Example 9.

170 vektsdeler 1,19-dietoksymetyl-de-casiloksan tilsettes dråpevis ved 160° C og under omrøring til 35 vektsdeler dibutyl-tinn-diacetat og deretter avdestilleres omtrent 24 ml eddiksyremetylester som dannes i molart forhold på 2:1. Det fremkom-mer et klart gulaktig væskeformet stannosiloksan som har en refraksjonsindeks n D 20 170 parts by weight of 1,19-diethoxymethyl-decasiloxane are added dropwise at 160° C and with stirring to 35 parts by weight of dibutyl tin diacetate and then approximately 24 ml of acetic acid methyl ester is distilled off which is formed in a molar ratio of 2:1. A clear yellowish liquid stannosiloxane is produced which has a refractive index n D 20

= 1,4161 og 4,7 pst. OC2H, (beregnet 4,9 pst.). = 1.4161 and 4.7 percent OC2H, (calculated 4.9 percent).

36,2 vektsdeler av dette stannosiloksan reagerer deretter under tilbakeløp under omrøring med 50 vektsdeler av en poly-alkylenglykoleter som har en molekylvekt på 1400. Reaksjonen utføres i 250 ml toluol og i nærvær av 1,0 vektsdeler triklor-eddiksyre. Polyeter-stannosiloksanet som oppnås på denne måte befris for flyktige fraksjoner og oppløsningsmidler ved destil-lering ved en maksimaltemperatur på 150° C ved 12 mm Hg. Polyeterstannosiloksanet fåes i form av en gulbrun viskos væske og anvendes som katalysator og stabilisator i dette eksempel. Polyalkylenglykoleteren som anvendes i dette eksempel ble fremstilt ved tilsetning av etylenoksyd og propylenoksyd i et molart forhold på ca. 4:3 til n-butanol. 36.2 parts by weight of this stannosiloxane is then reacted under reflux with stirring with 50 parts by weight of a polyalkylene glycol ether having a molecular weight of 1400. The reaction is carried out in 250 ml of toluene and in the presence of 1.0 parts by weight of trichloroacetic acid. The polyether-stannosiloxane obtained in this way is freed from volatile fractions and solvents by distillation at a maximum temperature of 150° C. at 12 mm Hg. The polyetherstannosiloxane is obtained in the form of a yellowish-brown viscous liquid and is used as catalyst and stabilizer in this example. The polyalkylene glycol ether used in this example was prepared by adding ethylene oxide and propylene oxide in a molar ratio of approx. 4:3 to n-butanol.

100 vektsdeler polypropylenglykol anvendt i eksempel 2, 35 vektsdeler toluylen-diisocyanat anvendt i eksempel 1, 2,6 vektsdeler vann. 0,6 vektsdeler endoetylenpiperazin og 1,5 vektsdeler av katalysatoren fremstilt som beskrevet ovenfor, blandes mekanisk og gir et meget elastisk skummateriale som har en voluimtetthet på 35 kg/m:'. 100 parts by weight polypropylene glycol used in example 2, 35 parts by weight toluylene diisocyanate used in example 1, 2.6 parts by weight water. 0.6 parts by weight of endoethylene piperazine and 1.5 parts by weight of the catalyst prepared as described above are mechanically mixed and give a highly elastic foam material having a volume density of 35 kg/m:'.

Eksempel 10. Example 10.

306 vektsdeler eddiksyreanhydrid tilsettes under omrøring til en blanding av 178 vektsdeler metyltrietoksysilan og 518 vektsdeler 1,13-dietoksymetylheptasilok-san. Blandingen holdes ved en temperatur på ca. 130° C og eddiksyreetylesteren som dannes i et molært forhold på ca. 1:3:3 avdestilleres. Det fåes et metyletoksypoly- 306 parts by weight of acetic anhydride are added with stirring to a mixture of 178 parts by weight of methyltriethoxysilane and 518 parts by weight of 1,13-diethoxymethylheptasiloxane. The mixture is kept at a temperature of approx. 130° C and the acetic acid ethyl ester which is formed in a molar ratio of approx. 1:3:3 is distilled off. A methylethoxypoly-

siloksan som har et OC2H5-innhold på ca. 7,2 pst. tilsvarende en molekylvekt på :a. 1874. 37,3 vektsdeler 1,19-dietoksyme-tyl-decasiloksan settes til 80 vektsdeler metyletoksypolysiloksanet og deretter tilsettes 15 vektsdeler dibutyl-tinn-diacetat dråpevis ved 170° C. Etter avdestillering av 9 m]. eddiksyreetylester blir det tilbake et gult, tynt flytende stannosiloksan som 20 har en refraksjonsindeks n D 1,4124. Ca. siloxane which has an OC2H5 content of approx. 7.2 percent corresponding to a molecular weight of :a. 1874. 37.3 parts by weight of 1,19-diethoxymethyl-decasiloxane are added to 80 parts by weight of methylethoxypolysiloxane and then 15 parts by weight of dibutyl tin diacetate are added dropwise at 170° C. After distilling off 9 m]. acetic acid ethyl ester, a yellow, thin liquid stannosiloxane is returned, which has a refractive index n D 1.4124. About.

4,3 pst. OC-Hr, (beregnet omtrent 4,6 pst.). 50 vektsdeler av dette reaksjonsprodukt bringes til reaksjon på en måte som er analog til det som er angitt i eksempel 9, med 68 vektsdeler av etylenoksydpropy-lenoksyd blandet polyeter anvendt i eksempel 1, for å gi et høyviskost kondensasjonsprodukt som anvendes som katalysator og stabilisator i dette eksempel. 4.3 per cent OC-Hr, (calculated approximately 4.6 per cent). 50 parts by weight of this reaction product is reacted in a manner analogous to that indicated in Example 9, with 68 parts by weight of the ethylene oxide-propylene oxide mixed polyether used in Example 1, to give a highly viscous condensation product which is used as a catalyst and stabilizer in this example.

100 vektsdeler av polypropylenglykolet anvendt i eksempel 2, 35 vektsdeler toluylendiisocyanat anvendt i eksempel 1, 2,6 vektsdeler vann, 0,2 vektsdeler endoetylenpiperazin, 0,2 vektsdeler dibutyl-tinn-dilaurat og 1,5 vektsdeler av katalysatoren som er fremstilt som angitt ovenfor blandes mekanisk i apparatet beskrevet i U.S. reissue patent 24 514. Det fåes et hurtig stigende og herdende skumstoff som har gode mekaniske egenskaper. 100 parts by weight of the polypropylene glycol used in Example 2, 35 parts by weight of toluene diisocyanate used in Example 1, 2.6 parts by weight of water, 0.2 parts by weight of endoethylene piperazine, 0.2 parts by weight of dibutyltin dilaurate and 1.5 parts by weight of the catalyst prepared as indicated above is mechanically mixed in the apparatus described in U.S. reissue patent 24 514. A rapidly rising and hardening foam is obtained which has good mechanical properties.

Eksempel 11. Example 11.

35,1 vektsdeler dibutyl-tinndiacetat settes dråpevis til en blanding på 62,4 vektsdeler av det begynnende polysiloksan-trinn ifølge eksempel 10 og 84,8 vektsdeler 1,19-dietoksy-metyldecasiloksan. Blandingen holdes på en temperatur på omtrent 170° C under tilsetningen av dibutyl-tinn-diacetat og en mengde eddiksyreetylester tilsvarende et imolart forhold på 1:3:3 avdestilleres. I tillegg til et noe gelelignende stoff fåes et tynt flytende stannosiloksan som innehold 2,7 pst. OC2H5 (beregnet omtrent 2,7 pst.). 35.1 parts by weight of dibutyl tin diacetate are added dropwise to a mixture of 62.4 parts by weight of the starting polysiloxane step according to example 10 and 84.8 parts by weight of 1,19-diethoxymethyldecasiloxane. The mixture is kept at a temperature of approximately 170° C during the addition of dibutyl tin diacetate and a quantity of acetic acid ethyl ester corresponding to an imolar ratio of 1:3:3 is distilled off. In addition to a somewhat gel-like substance, a thin liquid stannosiloxane containing 2.7% OC2H5 (calculated approximately 2.7%) is obtained.

48,5 vektsdeler av dette stannosiloksan bringes til reaksjon på en måte analog med det som er angitt i eksempel 9 med 41 vektsdeler polyetylenglykolpropylenglykoleter anvendt i eksempel 9 for å gi et høy-viskost kondensasjonsprodukt som anvendes som katalysator og stabilisator i dette eksempel. 48.5 parts by weight of this stannosiloxane is reacted in a manner analogous to that indicated in example 9 with 41 parts by weight of polyethylene glycol propylene glycol ether used in example 9 to give a high-viscosity condensation product which is used as catalyst and stabilizer in this example.

100 vektsdeler polypropylenglykol anvendt i eksempel 2, 35 vektsdeler toluylen-diisocyanat anvendt i eksempel 1, 2,6 vektsdeler vann, 0,2 vektsdeler endoetylenpiperazin, 0,2 vektsdeler dibutyltinn-dilaurat og 100 parts by weight polypropylene glycol used in example 2, 35 parts by weight toluylene diisocyanate used in example 1, 2.6 parts by weight water, 0.2 parts by weight endoethylene piperazine, 0.2 parts by weight dibutyltin dilaurate and

1.5 vektsdeler av katalysatoren fremstilt som angitt ovenfor gir et skumstoff som har lignende egenskaper til det skumstoff som ble fremstilt som beskrevet i eksempel 10. 1.5 parts by weight of the catalyst produced as stated above gives a foam material which has similar properties to the foam material which was produced as described in example 10.

Eksempel 12. Example 12.

11,4 vektsdeler pentaetoksy-l,3,5-tri-fenyltrisiloksan bringes til reaksjon med 70 vektsdeler 1,19-dietoksymetyl-decasilok-san og 28 vektsdeler dibutyl-tinn-diacetat ved ca. 170—180° C, idet eddiksyreetylester avdestilleres for å gi et viskost stannosiloksan som inneholder omtrent 4,4 pst. OC2H5 (beregnet omtrent 4,7 pst.). 8,6 g av dette reaksjonsprodukt bringes til reaksjon på en tmåte som er analog med den som er beskrevet i eksempel 9, med 16 vektsdeler av polyetylenglykol-propylen-glykoleteren beskrevet i eksempel 9 og i nærvær av 1 pst. trifluoreddiksyre for å gi et pastalignende stannosiloksanalkylenok-sydkopolymer som anvendes som en katalysator og stabilisator i dette eksempel. 11.4 parts by weight of pentaethoxy-1,3,5-tri-phenyltrisiloxane are reacted with 70 parts by weight of 1,19-diethoxymethyl-decasiloxane and 28 parts by weight of dibutyltin diacetate at approx. 170-180° C, the acetic acid ethyl ester being distilled off to give a viscous stannous siloxane containing about 4.4 per cent OC2H5 (calculated about 4.7 per cent). 8.6 g of this reaction product is reacted in a manner analogous to that described in Example 9, with 16 parts by weight of the polyethylene glycol-propylene glycol ether described in Example 9 and in the presence of 1% trifluoroacetic acid to give a paste-like stannosiloxane alkylene oxide copolymer used as a catalyst and stabilizer in this example.

100 vektsdeler polypropylenglykoler anvendt i eksempel 3, 35 vektsdeler av toluylendiisocyanatet anvendt i eksempel 1, 2.6 vektsdeler vann, 0,2 vektsdeler av endoetylenpiperazin, 0,2 vektsdeler dibutyl-tinn-dilaurat og 1,5 vektsdeler av det ovenfor beskrevne stannosiloksan blandes mekanisk for å gi et skumstoff som stiger i 1,5 imin., har gode elastiske egenskaper og som herdner fullstendig etter 20 min. 100 parts by weight of polypropylene glycols used in example 3, 35 parts by weight of the toluylene diisocyanate used in example 1, 2.6 parts by weight of water, 0.2 parts by weight of endoethylene piperazine, 0.2 parts by weight of dibutyl tin dilaurate and 1.5 parts by weight of the above-described stannous siloxane are mixed mechanically for to give a foam which rises in 1.5 min., has good elastic properties and which hardens completely after 20 min.

Eksempel 13. Example 13.

34,6 vektsdeler tetraetoksy-l,3-difenyl-disiloksan og 50 vektsdeler 1,19-dietoksy-metyl-dekasiloksan bringes til reaksjon ved 170—180° C med 20 vektsdeler dibutyl-tinn-diacetat, idet eddiksyreetylester avdestilleres. Deretter tilsettes ytterligere 50 vektsdeler 1,19-dietoksydimetyldekasilok-san og 5,8 vektsdeler eddiksyreanhydrid. Etter fullstendig fjernelse av eddiksyre-esteren som dannes, blir det tilbake et residum som består av en klar gul væske som har en refraksjonsindeks n ^ =34.6 parts by weight of tetraethoxy-1,3-diphenyl-disiloxane and 50 parts by weight of 1,19-diethoxy-methyl-decasiloxane are reacted at 170-180° C with 20 parts by weight of dibutyltin diacetate, the acetic acid ethyl ester being distilled off. A further 50 parts by weight of 1,19-diethoxydimethyldecasiloxane and 5.8 parts by weight of acetic anhydride are then added. After complete removal of the acetic acid ester that is formed, a residue remains which consists of a clear yellow liquid having a refractive index n ^ =

1,4158. 42 vektsdeler av dette stannosiloksan bringes deretter til reaksjon, som beskrevet i eksempel 9 med 93,3 vektsdeler polyetylenglykolpropylenglykoleter beskrevet i eksempel 9, idet det benyttes natrium-etylat som katalysator, for å danne en gul olje som anvendes som katalysator og stabilisator i dette eksempel. 1.4158. 42 parts by weight of this stannosiloxane is then reacted, as described in example 9, with 93.3 parts by weight of polyethylene glycol propylene glycol ether described in example 9, using sodium ethylate as catalyst, to form a yellow oil which is used as catalyst and stabilizer in this example .

100 vektsdeler av polypropylenglyko-len anvendt i eksempel 2, 35 vektsdeler toluylendiisocyanat anvendt i eksempel 1, 100 parts by weight of the polypropylene glycol used in example 2, 35 parts by weight of toluylene diisocyanate used in example 1,

2,6 vektsdeler vann, 0,2 vektsdeler dibutyl-tinn-dilaurat og 1,5 vektsdeler av stannosiloksanet fremstilt som beskrevet ovenfor, gir et meget elastisk skumstoff under skumdannelsen. 2.6 parts by weight of water, 0.2 parts by weight of dibutyl tin dilaurate and 1.5 parts by weight of the stannous siloxane prepared as described above, give a very elastic foam during foaming.

Eksempel 14. Example 14.

100 vektsdeler polyeterisocyanat som fåes ved å bringes 100 vektsdeler lineært polypropylenglykol (-OH-tall omtrent 56) til reaksjon med 32 vektsdeler av toluylendiisocyanatet som ble anvendt i eksempel 1, 1,6 vektsdeler av permetylert N-amino-etyl-piperazin, 2,0 vektsdeler vann og 1,0 vektsdel av stannosiloksanet som er fremstilt som beskrevet i eksempel 13, gir ved skumdannelse et hurtig stigende og herdende skummstoff. 100 parts by weight of polyetherisocyanate obtained by reacting 100 parts by weight of linear polypropylene glycol (-OH number approximately 56) with 32 parts by weight of the toluylene diisocyanate used in example 1, 1.6 parts by weight of permethylated N-amino-ethyl-piperazine, 2, 0 parts by weight of water and 1.0 parts by weight of the stannous siloxane, which is prepared as described in example 13, gives a rapidly rising and hardening foam upon foaming.

Eksempel 15. Example 15.

100 deler (vekt) av en polyester (-OH-tall omtrent 60,2; syretall 1,3; viskositet omkring 17900 cP/25° C), som fremkom ved forestring av adipinsyre, trimetylol-propan og dietylenglykol, 35,5 vektsdeler toluylendiisocyanat som inneholder 2,4- og 2,6-isomere i forholdet 65:35, 1,0 vektsdel vann, 1,0 vektsdel dimetylbenzylamin, 1,0 vektsdel av en 50 pst.'s vandig oppløsning av castoroljesulfat, 2,0 vektsdeler av en 50 pst.'s oppløsning av en vannoppløselig ben-zylhydroksydifenylpolyetylenglykoleter og 1,0 vektsdel av stannosiloksanet som er fremstilt som beskrevet i eksempel 10, blandes mekanisk i apparatet beskrevet i U.S. reissue patent 24 514. 100 parts (weight) of a polyester (-OH number about 60.2; acid number 1.3; viscosity about 17900 cP/25° C), which was obtained by esterification of adipic acid, trimethylol-propane and diethylene glycol, 35.5 parts by weight Toluylene diisocyanate containing 2,4- and 2,6-isomers in the ratio 65:35, 1.0 parts by weight of water, 1.0 parts by weight of dimethylbenzylamine, 1.0 parts by weight of a 50% aqueous solution of castor oil sulfate, 2.0 parts by weight of a 50 percent solution of a water-soluble benzyl hydroxydiphenyl polyethylene glycol ether and 1.0 part by weight of the stannous siloxane prepared as described in Example 10 are mechanically mixed in the apparatus described in U.S. Pat. reissue patent 24,514.

Det fåes et skumstoff som stiger i omtrent 1 minutt, herdner etter 10—15 min. og som har god elastisitet og styrke. A foam is obtained which rises for about 1 minute, hardens after 10-15 minutes. and which has good elasticity and strength.

Claims (6)

1. Fremgangsmåte til fremstilling av skumstoffer på isocyanatbasis av polyhydroksy- og/eller karboksylforbindelser, polyisocyanater og eventuelt vann i nærvær av tinnforbindelser som inneholder 4-verdig tinn, og hvori hvert tinnatom er bundet over tinn-karbon-bindinger til 1—3 organiske radikaler, karakterisert ved at nevnte tinnforbindelse er en silisium tinnforbindelse.1. Process for the production of isocyanate-based foams from polyhydroxy and/or carboxyl compounds, polyisocyanates and possibly water in the presence of tin compounds containing 4-valent tin, and in which each tin atom is bound via tin-carbon bonds to 1-3 organic radicals , characterized in that said tin compound is a silicon tin compound. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at silikonforbindelsen inneholder stannosiloksangrupperinger molekylet.2. Method according to claim 1, characterized in that the silicone compound contains stannosiloxane groupings the molecule. 3. Fremgangsmåte ifølge påstandene 1—2, karakterisert ved at silikonforbindelsene inneholder siloksangrupperingene -Si-O-Si- i imolekylet.3. Method according to claims 1-2, characterized in that the silicone compounds contain the siloxane groupings -Si-O-Si- in the molecule. 4. Fremgangsmåte ifølge påstand 1— 3, karakterisert ved at silikonforbindelsen inneholder stannoksangrupperingene -Sn-0- Sn- i molekylet.4. Method according to claims 1-3, characterized in that the silicone compound contains the stannoxane groupings -Sn-0-Sn- in the molecule. 5. Fremgangsmåte ifølge påstandene 1— -4, karakterisert ved at tertiære ami-ner benyttes samtidig som tilleggskataly- satorer, sammen med silikonforbindelsen som inneholder tetravalent tinn.5. Method according to claims 1--4, characterized in that tertiary amines are used at the same time as additional catalyst sators, together with the silicone compound containing tetravalent tin. 6. Fremgangsmåte ifølge påstandene 1—5, karakterisert ved at det benyttes vannoppløselige silikonoljer eller basiske silikonoljer som tilleggs-stabilisatorer.6. Method according to claims 1-5, characterized in that water-soluble silicone oils or basic silicone oils are used as additional stabilizers.
NO1958/73A 1972-05-12 1973-05-11 NO135598C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19722223241 DE2223241C3 (en) 1972-05-12 Process for surface sizing of paper

Publications (2)

Publication Number Publication Date
NO135598B true NO135598B (en) 1977-01-17
NO135598C NO135598C (en) 1977-04-27

Family

ID=5844757

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1958/73A NO135598C (en) 1972-05-12 1973-05-11

Country Status (10)

Country Link
AT (1) AT327678B (en)
BE (1) BE799439A (en)
DK (1) DK138188C (en)
FI (1) FI53857C (en)
FR (1) FR2184686B3 (en)
GB (1) GB1421597A (en)
IT (1) IT984925B (en)
NL (1) NL7306626A (en)
NO (1) NO135598C (en)
SE (1) SE384058B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672136A (en) * 1985-12-24 1987-06-09 The Dow Chemical Company Monoadduct monomers and polyadduct polymers from divinyl ketones
US10975525B2 (en) 2015-12-01 2021-04-13 Solenis Technologies, L.P. Finely divided, cationic, aqueous polymer dispersions, method for the production thereof, and the use thereof

Also Published As

Publication number Publication date
SE384058B (en) 1976-04-12
ATA415673A (en) 1975-04-15
GB1421597A (en) 1976-01-21
FI53857C (en) 1978-08-10
DK138188C (en) 1979-01-08
BE799439A (en) 1973-11-12
DE2223241B2 (en) 1975-05-28
AT327678B (en) 1976-02-10
DK138188B (en) 1978-07-24
NO135598C (en) 1977-04-27
IT984925B (en) 1974-11-20
FR2184686A1 (en) 1973-12-28
NL7306626A (en) 1973-11-14
FR2184686B3 (en) 1976-04-30
FI53857B (en) 1978-05-02
DE2223241A1 (en) 1973-11-22

Similar Documents

Publication Publication Date Title
US3047540A (en) Polyurethane plastics
CN111247187B (en) Zinc ketimine complexes as catalysts for the production of polyurethanes
US3592795A (en) Room temperature vulcanizable silicone rubber compositions
US3240728A (en) Polyurethanes containing cyclic phosphonitrilamidates
GB892137A (en) Improvements in the acceleration of reactions of organic compounds
JP7427590B2 (en) rigid foam
JP4584622B2 (en) Ytterbium (III) acetylacetonate as catalyst for the preparation of aliphatic oligocarbonate polyols
US3519680A (en) Novel resinous composition
US3384599A (en) Siloxane-polyol compositions and process therefor
CN102257083A (en) Fluid film based on silane-terminated polymers
JP3913859B2 (en) Curable composition
JPS5919960B2 (en) Method for producing hydroxyalkylsiloxane
CN105452266B (en) Reactive flame retardant
JP2525181B2 (en) Silicone-modified polyurethane and method for producing the same
US3478075A (en) Terpolymers containing polysiloxane,polyoxyalkylene,and polyvinyl ester blocks
US3256506A (en) Halogen-containing polyurethane compositions and processes for preparing same
EP2726525B1 (en) Improved process for making low viscosity, fast curing silane terminated polymers
DE102012200790A1 (en) Silane-crosslinking foamable mixtures
US3472919A (en) Hydroxyl containing polytertiary phosphates and process for producing same
NO135598B (en)
US3134741A (en) Preparation of cellular polyurethane plastics
US3965150A (en) Polyether esters of alkenoic acids
US3761439A (en) Thermoplastic polyurethanes soluble in methyl ethyl ketone based on poly caprolactone diols
US3988302A (en) Polyurethanes prepared by reaction of organic polyisocyanate with brominated ester-containing polyols
US3786029A (en) Use of certain aminoorthoesters as polyurethane catalysts