NO135595B - - Google Patents

Download PDF

Info

Publication number
NO135595B
NO135595B NO63373A NO63373A NO135595B NO 135595 B NO135595 B NO 135595B NO 63373 A NO63373 A NO 63373A NO 63373 A NO63373 A NO 63373A NO 135595 B NO135595 B NO 135595B
Authority
NO
Norway
Prior art keywords
vanadium
weight
carbon
oxygen
oxycarbide
Prior art date
Application number
NO63373A
Other languages
Norwegian (no)
Other versions
NO135595C (en
Inventor
S Middelhoek
Original Assignee
Billiton Research Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NLAANVRAGE7202136,A external-priority patent/NL172566C/en
Priority claimed from NL7217490A external-priority patent/NL175736C/en
Application filed by Billiton Research Bv filed Critical Billiton Research Bv
Publication of NO135595B publication Critical patent/NO135595B/no
Publication of NO135595C publication Critical patent/NO135595C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0213Obtaining thorium, uranium, or other actinides obtaining uranium by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B61/00Obtaining metals not elsewhere provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Description

Ved legering av stål med vanadium blir dette metall vanligvis tilsatt til smeltet stål i form av ferro-vanadium. When steel is alloyed with vanadium, this metal is usually added to molten steel in the form of ferro-vanadium.

I de senere år har det vært stor interesse for vanadium-kar-bid som vanadiumholdig materiale for tilsetning til det smel-tede metall. Vanadiumkarbidet kan fremstilles på enkel måte, men tilsetningen av dette materiale vil jo medføre en samtidig tilsetning av karbon, hvilket kan være en ulempe. In recent years, there has been great interest in vanadium carbide as a vanadium-containing material for addition to the molten metal. The vanadium carbide can be produced in a simple way, but the addition of this material will entail a simultaneous addition of carbon, which can be a disadvantage.

Det ville være ønskelig at det vanadiumholdige materiale som anvendes ved fremstillingen av de vanadiumholdige legeringer, er et materiale som kan fremstilles like enkelt som vanadiumkarbid og dessuten har den fordel at lite eller intet karbon samtidig tilsettes legeringen som skal fremstilles. It would be desirable for the vanadium-containing material used in the production of the vanadium-containing alloys to be a material that can be produced as easily as vanadium carbide and also has the advantage that little or no carbon is simultaneously added to the alloy to be produced.

Det er "blitt funnet at slike utgangsmaterialer, som også er egnet til fremstilling av metallisk vanadium av høy-re nhet. It has been found that such starting materials, which are also suitable for the production of high-purity metallic vanadium.

I "Zeitschrift fur Metallkunde",bind 60, februar 1969, s. 94-100, er det beskrevet noen forholdsvis vanske- In "Zeitschrift fur Metallkunde", volume 60, February 1969, pp. 94-100, some relatively difficult

lige og arbeidskrevende fremgangsmåter til fremstilling av visse metaller, herunder vanadium. Det angis at vanadium, simple and labor-intensive methods for the production of certain metals, including vanadium. It is stated that vanadium,

niob og tantal er vanskelige å fremstille, fordi det dannes eutektiske smelter, og det angis enn videre at de i artikkelen beskrevne fremgangsmåter ikke er egnet til fremstilling av titan, zirkonium og hafnium. niobium and tantalum are difficult to produce, because eutectic melts are formed, and it is further stated that the methods described in the article are not suitable for the production of titanium, zirconium and hafnium.

Det ble nå funnet at de ovenfor nevnte metaller It was now found that the above mentioned metals

kan fremstilles ut fra et metalloksykarbid erholdt ved omsetning av et oksyd av disse metaller med et gassformig hydrokarbon. can be produced from a metal oxycarbide obtained by reacting an oxide of these metals with a gaseous hydrocarbon.

Oppfinnelsen angår således en fremgangsmåte ved fremstilling av vanadium, niob, tantal, titan, zirkonium eller hafnium eller en legering av disse metaller med jern, mangan, nikkel eller aluminium, hvor en oksygen- og karbonholdig forbindelse av vanadium, niob, tantal, titan, zirkonium eller hafnium oppvarmes til en temperatur på minst 800°C, eller - ved fremstilling av en legering - hvor den nevnte oksygen- og karbonholdige forbindelse blandés med jern, mangan, nikkel eller aluminium og oppvarmes til en temperatur på minst 800°C, og fremgangsmåten er karakterisert ved at det anvendes en oksygen- og karbonholdig forbindelse som er fremstilt ved omsetning av et oksyd av vanadium, niob, tantal, titan, zirkonium eller hafnium med et gassformig hydrokarbon. The invention thus concerns a method for the production of vanadium, niobium, tantalum, titanium, zirconium or hafnium or an alloy of these metals with iron, manganese, nickel or aluminium, where an oxygen- and carbon-containing compound of vanadium, niobium, tantalum, titanium, zirconium or hafnium is heated to a temperature of at least 800°C, or - in the production of an alloy - where the aforementioned oxygen- and carbon-containing compound is mixed with iron, manganese, nickel or aluminum and heated to a temperature of at least 800°C, and the method is characterized by the use of an oxygen- and carbon-containing compound which is produced by reacting an oxide of vanadium, niobium, tantalum, titanium, zirconium or hafnium with a gaseous hydrocarbon.

Metaller av gruppe V B innbefatter vanadium, niob og tantal, og gruppe IV B innbefatter titan, zirkonium og hafnium. Legeringene kan fremstilles ved at et metalloksykarbid bringes i kontakt med en smelte av ett eller flere andre metaller og/eller metallegeringer og/eller metallforbindelser. En smelte av en metallegering kan eksempelvis være smeltet stål. Legeringer kan også fremstilles ved oppheting av en sammenpresset blanding av et metalloksykarbid med ett eller flere andre metaller og/eller metall-legeringer og/eller metallforbindelser i pulverform. Fremstillingen av legeringer kan utføres under normalt trykk. Metallet fremstilles ved oppheting av oksykarbidet av det angjeldende metall, f.eks. i vI akuoum eller i en inert atmosfære, ved en temperatur over 800 C. Avhengig av hvxlket metall som skal fremstilles, kan temperaturen være høyere, f.eks. minst 1200°C eller minst 1400°C. Ved fremstilling av eksempelvis niob og titan er det imidlertid også mulig å anvende plasma-oppheting, hvorved temperaturer på flere tusen°C kan oppnås, endog opptil 10 000°C. Metals of group V B include vanadium, niobium and tantalum, and group IV B include titanium, zirconium and hafnium. The alloys can be produced by bringing a metal oxycarbide into contact with a melt of one or more other metals and/or metal alloys and/or metal compounds. A melt of a metal alloy can, for example, be molten steel. Alloys can also be produced by heating a compressed mixture of a metal oxycarbide with one or more other metals and/or metal alloys and/or metal compounds in powder form. The production of alloys can be carried out under normal pressure. The metal is produced by heating the oxycarbide of the metal in question, e.g. in vacuum or in an inert atmosphere, at a temperature above 800 C. Depending on the type of metal to be produced, the temperature can be higher, e.g. at least 1200°C or at least 1400°C. However, when producing niobium and titanium, for example, it is also possible to use plasma heating, whereby temperatures of several thousand °C can be achieved, even up to 10,000 °C.

Det er også mulig å anvende to oksykarbider av forskjellige metaller istedenfor ett oksykarbid, hvorved metallegeringer erholdes. I andre tilfeller danner det ene metalloksykarbid en fast oppløsning med det andre metall-oksykarbidet. It is also possible to use two oxycarbides of different metals instead of one oxycarbide, whereby metal alloys are obtained. In other cases, one metal oxycarbide forms a solid solution with the other metal oxycarbide.

Ved fremstillingen av metallet ut fra metalloksy-karbidet er det også mulig å tilsette et metall med en relativt høy flyktighet og et lavt smeltepunkt til oksykarbidet. Ved oppheting i vakuum vil det tilsatte metall forflyktiges. Dette kan også skje med metalloksydet. When producing the metal from the metaloxy carbide, it is also possible to add a metal with a relatively high volatility and a low melting point to the oxycarbide. When heated in a vacuum, the added metal will volatilize. This can also happen with the metal oxide.

Et eksempel på fremstilling av et metalloksykarbid er fremstillingen av vanadiumoksykarbid ut fra et materiale inneholdende oksydisk vanadium ved omsetning med gassformig hydrokarbon (særlig metan), eventuelt i nærvær av andre gasser. Med uttrykket "vanadiumoksykarbid" menes et produkt som hovedsakelig består av forbindelser med formelen VO C , hvor An example of the production of a metal oxycarbide is the production of vanadium oxycarbide from a material containing oxidised vanadium by reaction with a gaseous hydrocarbon (especially methane), possibly in the presence of other gases. The term "vanadium oxycarbide" means a product which mainly consists of compounds with the formula VO C , where

x y x y

summen av x og y tilnærmet er 1. Dessuten kan oksykarbidet inneholde fritt karbon, avhengig av valget av fremstillings-betingeIsene. Oksykarbidet kan også inneholde en liten an-del nitrogen (opptil 4%). Ved anvendelse av gass fra Sloch-teren ved fremstillingen (som inneholder ca. 85% CH^ og 15% N2) vil oksykarbidet ofte inneholde ca. 0,1% nitrogen. the sum of x and y is approximately 1. Furthermore, the oxycarbide may contain free carbon, depending on the choice of manufacturing conditions. The oxycarbide can also contain a small proportion of nitrogen (up to 4%). When using gas from the Sloch teren during production (which contains approx. 85% CH^ and 15% N2), the oxycarbide will often contain approx. 0.1% nitrogen.

Den totale atom-mengde av bundet + fritt karbon i vanadiumoksykarbidet som anvendés ved fremstillingen av vana-diumlegeringene, er fortrinnsvis minst lik atom-mengden av bundet oksygen i oksykarbidet, idet det under opphetingen avgis karbon og oksygen i like atom-mengder (nemlig som karbon-monoksyd), og et støkiometrisk overskudd av oksygen kan medføre at oksygen vil foreligge i legeringen eller at man får tap av vanadium, idet oksydert vanadium går over i slaggen. I noen tilfeller kan man imidlertid bruke et produkt med et støkiometrisk overskudd av oksygen, f.eks. The total atomic amount of bound + free carbon in the vanadium oxycarbide used in the production of the vanadium alloys is preferably at least equal to the atomic amount of bound oxygen in the oxycarbide, since carbon and oxygen are released in equal atomic amounts during heating (namely as carbon monoxide), and a stoichiometric excess of oxygen can mean that oxygen will be present in the alloy or that there will be a loss of vanadium, as oxidized vanadium passes into the slag. In some cases, however, a product with a stoichiometric excess of oxygen can be used, e.g.

når metallet som skal legeres (eksempelvis smeltet stål) allerede inneholder karbon og smeltens karboninnhold kan reduseres. Det atomære forhold mellom vanadiumoksykarbidets innhold av bundet + fritt karbon og dets innhold av oksy- when the metal to be alloyed (for example molten steel) already contains carbon and the carbon content of the melt can be reduced. The atomic ratio between the vanadium oxycarbide's content of bound + free carbon and its content of oxy-

gen bør imidlertid i regeien ikke være mindre enn 0,6. However, gen should not be less than 0.6.

For ikke å innføre alt for meget karbon under fremstillingen av legeringer tilsikter man et atomært forhold mellom bundet + fritt karbon og oksygen i vanadiumoksykarbidet på fortrinnsvis ikke over 2,5 og helst ikke over 1,5. In order not to introduce too much carbon during the production of alloys, one aims for an atomic ratio between bound + free carbon and oxygen in the vanadium oxycarbide of preferably no more than 2.5 and preferably no more than 1.5.

Det atomære forhold mellom bundet karbon og bundet oksygen i vanadiumoksykarbidmåterialet er fortrinnsvis ikke mindre enn 0,9. The atomic ratio between bound carbon and bound oxygen in the vanadium oxycarbide base material is preferably not less than 0.9.

Det er imidlertid mulig å oppnå gode resultater med materialer i hvilke forholdet mellom bundet karbon og bundet oksygen er 0,5 forutsatt at produktet inneholder en tilstrekke-lig mengde fritt karbon, slik at det atomære forhold mellom bundet + fritt karbon og oksygen er minst 0,6 og fortrinnsvis minst 1, idet man har funnet at det frie karbon som kan dannes under fremstillingen av vanadiumoksykarbid ut fra et materiale inneholdende oksydert vanadium og gassformig hydrokarbon, reagerer nesten like så lett med oksygenet i vanadiumoksykarbidet som det bundne karbon. However, it is possible to achieve good results with materials in which the ratio between bound carbon and bound oxygen is 0.5, provided that the product contains a sufficient amount of free carbon, so that the atomic ratio between bound + free carbon and oxygen is at least 0 ,6 and preferably at least 1, as it has been found that the free carbon that can be formed during the production of vanadium oxycarbide from a material containing oxidized vanadium and gaseous hydrocarbon reacts almost as easily with the oxygen in the vanadium oxycarbide as the bound carbon.

De andre metalloksykarbider som anvendes ved fore-liggende fremgangsmåte, fremstilles også ved reduksjon av oksydisk materiale ved hjelp >av gassformig hydrokarbon, eksempelvis nioboksykarbid og titanoksykarbid. The other metaloxycarbides used in the present process are also produced by reduction of oxidic material with the aid of gaseous hydrocarbon, for example nioboxycarbide and titanoxycarbide.

Fremgangsmåten ifølge oppfinnelsen er også anvendelig ved fremstilling av vanadiumholdig stål ved tilsetning av The method according to the invention is also applicable in the production of vanadium-containing steel by adding

.•vanadiumoksykarbid til smeltet stål. .•vanadium oxycarbide for molten steel.

Fremgangsmåten ifølge oppfinnelsen kan imidlertid også med fordel anvendes til fremstilling av vanadiumlegeringer med høyt vanadiuminnhold. Fremgangsmåten kan da utføres både som beskrevet ved tilsetning av vanadiumoksykarbid til en smelte av metallet eller metallene som skal legeres, og i henhold til en annen fremgangsmåte hvor en sammenpresset blanding av pulverformig vanadiumoksykarbid og det metall eller de metaller som skal legeres, opphetes. Begge fremgangsmåter kan utføres under normalt trykk, i noen tilfeller fortrinnsvis i en inert atmosfære (eksempelvis nitrogen). Det er blitt funnet at det i henhold til oppfinnelsen også er mulig å fremstille legeringer av vanadium med metaller (eksempelvis aluminium) som er betydelig mindre edle og følgelig har en høyere affinitet til oksygen enn til vanadium. However, the method according to the invention can also be advantageously used for the production of vanadium alloys with a high vanadium content. The method can then be carried out both as described by adding vanadium oxycarbide to a melt of the metal or metals to be alloyed, and according to another method where a compressed mixture of powdered vanadium oxycarbide and the metal or metals to be alloyed is heated. Both methods can be carried out under normal pressure, in some cases preferably in an inert atmosphere (eg nitrogen). It has been found that according to the invention it is also possible to produce alloys of vanadium with metals (for example aluminum) which are considerably less noble and consequently have a higher affinity to oxygen than to vanadium.

Som nevnt ovenfor kan fremgangsmåten ifølge oppfinnelsen også anvendes til fremstilling av metaller, eksempelvis vanadium, niob eller titan. I denne utførelsesform av fremgangsmåten kan vanadiumoksykarbidet eksempelvis opphetes uten noen ytterligere tilsetning, fortrinnsvis i vakuum. I dette tilfelle vil det atomære forhold mellom karbon (bundet + fritt) og oksygen i vanadiumoksykarbidet bestemme renheten av det vanadium som fåes. I førsøket med vanadium fikk man således et vanadium-metall med et oksygeninnhold på 0,4 % og et karboninnhold på mindre enn 0,1 %. As mentioned above, the method according to the invention can also be used for the production of metals, for example vanadium, niobium or titanium. In this embodiment of the method, the vanadium oxycarbide can, for example, be heated without any further addition, preferably in a vacuum. In this case, the atomic ratio between carbon (bonded + free) and oxygen in the vanadium oxycarbide will determine the purity of the vanadium obtained. In the preliminary trial with vanadium, a vanadium metal was thus obtained with an oxygen content of 0.4% and a carbon content of less than 0.1%.

Som nevnt ovenfor kan fremgangsmåten ifølge oppfinnelsen også anvendes ved fremstilling av metallisk vanadium. I denne utførelsesform kan vanadiumoksykarbidet opphetes uten ytterligere tilsetninger, fortrinnsvis i vakuum. I dette tilfelle vil det atomære forhold mellom karbon (bundet + fritt) As mentioned above, the method according to the invention can also be used in the production of metallic vanadium. In this embodiment, the vanadium oxycarbide can be heated without further additions, preferably in a vacuum. In this case, the atomic ratio of carbon (bonded + free)

og oksygen i vanadiumoksykarbidet bestemme renheten av det vanadium-metall som fåes, og dette forhold er fortrinnsvis ca. 1. and oxygen in the vanadium oxycarbide determine the purity of the vanadium metal that is obtained, and this ratio is preferably approx. 1.

I en annen utførelsesform av fremgangsmåten til fremstilling av metallisk vanadium opphetes vanadiumoksykarbidet i nærvær av et metall som er relativt flyktig og har et lavt smeltepunkt, hvorved det dannes en legering av vanadium og dette metall. Det relativt flyktige metall kan så fjernes fra legeringen ved oppheting i vakuum. Et egnet metall i denne utførelsesform er eksempelvis mangan. In another embodiment of the method for producing metallic vanadium, the vanadium oxycarbide is heated in the presence of a metal which is relatively volatile and has a low melting point, whereby an alloy of vanadium and this metal is formed. The relatively volatile metal can then be removed from the alloy by heating in a vacuum. A suitable metal in this embodiment is, for example, manganese.

De følgende eksempler vil ytterligere belyse oppfinnelsen. The following examples will further illustrate the invention.

Eksempel I Example I

Vanadiumoksykarbid fremstilt ved at man ledet naturgass over teknisk vanadiumpentoksyd inneholdende 67,4 vekt% vanadium, 19,7 vekt% oksygen og 10,3 vekt% karbon ved en temperatur mellom 800 og 1250°C, ble tilsatt til smeltet stål med et oksygeninnhold på 0,04 vekt% og et karboninnhold på Vanadium oxycarbide produced by passing natural gas over technical vanadium pentoxide containing 67.4 wt% vanadium, 19.7 wt% oxygen and 10.3 wt% carbon at a temperature between 800 and 1250°C was added to molten steel with an oxygen content of 0.04% by weight and a carbon content of

0,06 vekt%, i et vektsforhold på 1 : 195 ved en temperatur på ca. 1600°C. Etter kjøling inneholdt stålet 0,34 vekt% vanadium, 0,04 vekt% oksygen og 0,01 vekt% karbon, dvs. et utbytte med hensyn til vanadium tilsvarende 98 %. 0.06% by weight, in a weight ratio of 1:195 at a temperature of approx. 1600°C. After cooling, the steel contained 0.34% by weight vanadium, 0.04% by weight oxygen and 0.01% by weight carbon, i.e. a yield with regard to vanadium corresponding to 98%.

Eksempel II Example II

Vanadiumoksykarbid fremstilt ved at man ledet naturgass over vanadiumpentoksyd inneholdende 70,3 vekt% vanadium. Vanadium oxycarbide produced by passing natural gas over vanadium pentoxide containing 70.3% by weight of vanadium.

22,4 vekt% oksygen og 6,8 vekt% karbon ble, sammen med aluminium, tilsatt til smeltet stål med et oksygeninnhold på 0,04 vekt% 22.4 wt% oxygen and 6.8 wt% carbon were, together with aluminum, added to molten steel with an oxygen content of 0.04 wt%

og et karboninnhold på 0,06 vekt% ved en temperatur på ca. 1600°C i et vektsforhold på 1 : 0,1 : 215. Etter kjøling inneholdt stålet 0,32 vekt% vanadium, 0,03 vekt% oksygen og 0,01 vekt% karbon, dvs. et vanadiumutbytte tilsvarende 98 %. and a carbon content of 0.06% by weight at a temperature of approx. 1600°C in a weight ratio of 1:0.1:215. After cooling, the steel contained 0.32% by weight vanadium, 0.03% by weight oxygen and 0.01% by weight carbon, i.e. a vanadium yield corresponding to 98%.

Eksempel III Example III

72,0 vektdeler vanadiumoksykarbid fremstilt ved at 72.0 parts by weight of vanadium oxycarbide prepared by at

man ledet naturgass over vanadiumpentoksyd inneholdende 74,3 vekt% vanadium, 10,5 vekt% oksygen og 14,5 vekt% karbon ble tilsatt til 99,5 vektdeler smeltet jern ved en temperatur på natural gas was passed over vanadium pentoxide containing 74.3% by weight vanadium, 10.5% by weight oxygen and 14.5% by weight carbon was added to 99.5 parts by weight molten iron at a temperature of

ca. 1600°C. Det erholdte ferrovanadium inneholdt etter kjøling 33,7 vekt% vanadium, 0,02 vekt% oksygen og 2,4 vekt% karbon. about. 1600°C. The ferrovanadium obtained contained, after cooling, 33.7% by weight of vanadium, 0.02% by weight of oxygen and 2.4% by weight of carbon.

Eksempel IV Example IV

33,2 vektdeler vanadiumoksykarbid fremstilt ved at 33.2 parts by weight of vanadium oxycarbide prepared by at

man ledet naturgass over vanadiumpentoksyd inneholdende 73,3 vekt% vanadium, 15 vekt% oksygen og 10,1 vekt% karbon ble blandet med 6,2 vektdeler jernpulver, og blandingen ble presset til en tablett. Denne ble opphetet til en temperatur på ca. 1800°C og holdt ved denne temperjatur i 7 minutter, og det således erholdte ferro-vanadium inneholdt 72,5 vekt% vanadium, natural gas was passed over vanadium pentoxide containing 73.3% by weight vanadium, 15% by weight oxygen and 10.1% by weight carbon was mixed with 6.2 parts by weight iron powder, and the mixture was pressed into a tablet. This was heated to a temperature of approx. 1800°C and held at this temperature for 7 minutes, and the ferro-vanadium thus obtained contained 72.5% by weight of vanadium,

3,3 vekt% oksygen og 2,4 vekt% karbon. 3.3 wt% oxygen and 2.4 wt% carbon.

Eksempel V Example V

17 vektdeler vanadiumoksykarbid fremstilt ved at man ledet naturgass over vanadiumpentoksyd inneholdende 64,2 vekt% vanadium, 13,0 vekt% oksygen og 21,6 vekt% karbon ble blandet med 17 vektdeler jernpulver, hvoretter blandingen ble presset til en tablett, som deretter ble holdt ved 1530°C i 10 minutter. Det erholdte produkt, som inneholdt 37,7 vekt% vanadium, 1,7 vekt% oksygen og 7,2 vekt% karbon, ble tilsatt til smeltet stål i et vektsforhold på 1 : 135. Etter kjøling inneholdt stålet 0,28 vekt% vanadium, mindre enn 0,01 vekt% oksygen og 0,12 17 parts by weight of vanadium oxycarbide prepared by passing natural gas over vanadium pentoxide containing 64.2% by weight vanadium, 13.0% by weight oxygen and 21.6% by weight carbon was mixed with 17 parts by weight of iron powder, after which the mixture was pressed into a tablet, which was then held at 1530°C for 10 minutes. The product obtained, which contained 37.7 wt% vanadium, 1.7 wt% oxygen and 7.2 wt% carbon, was added to molten steel in a weight ratio of 1:135. After cooling, the steel contained 0.28 wt% vanadium , less than 0.01 wt% oxygen and 0.12

vekt% karbon, dvs. at vanadiumutbyttet var 100 %. weight% carbon, i.e. that the vanadium yield was 100%.

Eksempel VI Example VI

Ferrioksyd ble oppløst i smeltet teknisk vanadiumpentoksyd, og etter kjøling erholdtes et produkt inneholdende 44,4 vekt% vanadium, 14,6 vekt% jern og 40,2 vekt% oksygen. Naturgass ble ledet over dette produkt i 4 timer ved en ;emperatur på 600°C og deretter i 6 timer ved 1000°C. Det resulterende jern-vanadium-oksykarbyd inneholdt 53,6 vekt% vanadium, 18,3 vekt% jern, 14,1 vekt% oksygen og 12,0 vekt% karbon (7,9 vekt% var fritt karbon). Ferric oxide was dissolved in molten technical vanadium pentoxide, and after cooling a product containing 44.4% by weight of vanadium, 14.6% by weight of iron and 40.2% by weight of oxygen was obtained. Natural gas was passed over this product for 4 hours at a temperature of 600°C and then for 6 hours at 1000°C. The resulting iron-vanadium oxycarbide contained 53.6 wt% vanadium, 18.3 wt% iron, 14.1 wt% oxygen and 12.0 wt% carbon (7.9 wt% was free carbon).

Det erholdte materiale ble malt og presset til en The material obtained was ground and pressed into a

tablett som deretter ble opphetet og holdt ved ca. 1300°C i 4 minutter. Det resulterende produkt inneholdt 61,9 vekt% vanadium, 9,0 vekt% oksygen og 7,3 vekt% karbon. Dette materiale ble oppløst i smeltet stål i et vektsforhold på 1 : 440 ved ca. 1600°C. Etter kjøling inneholdt stålet 0,14 vekt% vanadium, 0,01 vekt% oksygen og 0,02 vekt% karbon, dvs. at vanadiumutbyttet var 100 %. tablet which was then heated and kept at approx. 1300°C for 4 minutes. The resulting product contained 61.9 wt% vanadium, 9.0 wt% oxygen and 7.3 wt% carbon. This material was dissolved in molten steel in a weight ratio of 1:440 at approx. 1600°C. After cooling, the steel contained 0.14% by weight vanadium, 0.01% by weight oxygen and 0.02% by weight carbon, i.e. the vanadium yield was 100%.

Eksempel VII Example VII

19 vektdeler av det samme vanadium-oksykarbid som ble anvendt i eksempel V, ble blandet med 19 vektdeler ferro-mangan-pulver inneholdende 79,8 vekt% mangan. Blandingen ble presset til en tablett som deretter ble opphetet og holdt ved 1200°C i 9 minutter, hvorved man fikk en jern-mangan-vanadium-legering. 19 parts by weight of the same vanadium oxycarbide used in example V was mixed with 19 parts by weight of ferro-manganese powder containing 79.8% by weight of manganese. The mixture was pressed into a tablet which was then heated and held at 1200°C for 9 minutes, whereby an iron-manganese-vanadium alloy was obtained.

Eksempel VIII Example VIII

10,8 vektdeler vanadiumoksykarbid fremstilt ved at man ledet naturgass over vanadiumpentoksyd inneholdende 73,6 vekt% vanadium, 15,3 vekt% oksygen og 9,6 vekt% karbon ble blandet med 29,6 vektdeler nikkelpuIver, hvoretter blandingen ble presset til en tablett, -som deretter ble holdt ved 1600°C i 6 minutter. Den erholdte nikke1-vanadium-legering inneholdt 78,5 vekt% nikkel, 21,5 vekt% vanadium, 0,03 vekt% oksygen og 0,005 vekt% karbon. 10.8 parts by weight of vanadium oxycarbide prepared by passing natural gas over vanadium pentoxide containing 73.6% by weight vanadium, 15.3% by weight oxygen and 9.6% by weight carbon was mixed with 29.6 parts by weight of nickel powder, after which the mixture was pressed into a tablet , -which was then held at 1600°C for 6 minutes. The nickel-vanadium alloy obtained contained 78.5 wt% nickel, 21.5 wt% vanadium, 0.03 wt% oxygen and 0.005 wt% carbon.

Eksempel IX Example IX

26,0 vektdeler vanadiumoksykarbid fremstilt ved at man ledet naturgass over vanadiumpentoksyd inneholdende 75,7 vekt% vanadium, 9,1 vekt% oksygen og 12,5 vekt% karbon ble tilsatt til 58,8 vektdeler smeltet aluminium, hvoretter denne smelte ble opphetet til en temperatur på 1600°C. Etter kjøling fikk man en aluminium-vanadium-legering inneholdende 21,0 vekt% vanadium, 1,5 vekt% oksygen og 1,7 vekt% karbon. 26.0 parts by weight of vanadium oxycarbide produced by passing natural gas over vanadium pentoxide containing 75.7% by weight vanadium, 9.1% by weight oxygen and 12.5% by weight carbon was added to 58.8 parts by weight of molten aluminium, after which this melt was heated to a temperature of 1600°C. After cooling, an aluminum-vanadium alloy containing 21.0 wt% vanadium, 1.5 wt% oxygen and 1.7 wt% carbon was obtained.

Eksempel X Example X

10,0 vektdeler vanadiumoksykarbid fremstilt ved at man ledet naturgass over vanadiumpentoksyd inneholdende 14,0 vekt% oksygen og 10,5 vekt% karbon ble presset til en tablett og opphetet til en temperatur på 1600°C i en vakuumovn og holdt ved denne temperatur i 5 timer. Det endelige trykk var IO<-5> mm Hg. Det erholdte vanadium-metall inneholdt etter kjøling mindre enn 0,15 vekt% oksygen og mindre enn 0,15 vekt% karbon. 10.0 parts by weight of vanadium oxycarbide produced by passing natural gas over vanadium pentoxide containing 14.0% by weight oxygen and 10.5% by weight carbon was pressed into a tablet and heated to a temperature of 1600°C in a vacuum oven and held at this temperature for 5 hours. The final pressure was 10<-5> mm Hg. The vanadium metal obtained contained after cooling less than 0.15% by weight of oxygen and less than 0.15% by weight of carbon.

Eksempel XI Example XI

3,64 g nioboksykarbid inneholdende 12 vekt% oksygen og 3,5 vekt% karbon ble opphetet til 1600°C i en vakuumovn og holdt ved denne temperatur i 4 timer. Det endelige trykk 3.64 g of nioboxycarbide containing 12% by weight oxygen and 3.5% by weight carbon was heated to 1600°C in a vacuum furnace and held at this temperature for 4 hours. The final print

-4 i -4 in

var 10 mm Hg. Det pulverformige niob inneholdt etter kjøling 4,2 vekt% oksygen og 0,3 vekt% karbon. was 10 mm Hg. After cooling, the powdered niobium contained 4.2% by weight of oxygen and 0.3% by weight of carbon.

Eksempel XII Example XII

3,27 g titanoksykarbid inneholdende 14,8 vekt% oksygen og 11,5 vekt% karbon og dessuten 13 vekt% nikkelpulver ble presset til en tablett og opphetet til 1700°C i vakuumovn og holdt ved denne temperatur i 1,5 timer og deretter ved 1900°C i ytterligere 2 timer. Det endelige trykk var IO<-1> mm Hg. Etter kjøling fikk man titan-metall som inneholdt 7,5 vekt% oksygen og 4,7 vekt% karbon og mindre enn 0,2 vekt% nikkel. 3.27 g of titanium oxycarbide containing 14.8 wt% oxygen and 11.5 wt% carbon and also 13 wt% nickel powder was pressed into a tablet and heated to 1700°C in a vacuum furnace and held at this temperature for 1.5 hours and then at 1900°C for a further 2 hours. The final pressure was 10<-1> mm Hg. After cooling, titanium metal was obtained which contained 7.5 wt% oxygen and 4.7 wt% carbon and less than 0.2 wt% nickel.

Eksempel XIII Example XIII

13,22 g vanadiumoksykarbid inneholdende 15,8 vekt% oksygen, 8,1 vekt% bundet karbon og 1,3 vekt% fritt karbon ble opphetet til 1440°C og holdt ved denne temperatur i 16 timer og deretter ved 1580°C i 4 timer ved et trykk på henholdsvis 13.22 g of vanadium oxycarbide containing 15.8 wt% oxygen, 8.1 wt% bound carbon and 1.3 wt% free carbon was heated to 1440°C and held at this temperature for 16 hours and then at 1580°C for 4 hours by pressing respectively

-5 -4 10 og 10 mm Hg. Det erholdte vanadium inneholdt etter kjøling 0,4 vekt% oksygen og mindre enn 0,1 vekt% karbon. -5 -4 10 and 10 mm Hg. The vanadium obtained contained, after cooling, 0.4% by weight of oxygen and less than 0.1% by weight of carbon.

De metalloksykarbider som ble anvendt i eksemplene XI-XIII var fremstilt ved at mån ledet metan over Nb-O,-, Ti0o og ^ 2°5 vec* en temPeratur mellom 1000 og 1200 C. The metaloxycarbides used in examples XI-XIII were prepared by passing methane over Nb-O,-, Ti0o and ^ 2°5 vec* at a temperature between 1000 and 1200 C.

Claims (1)

Fremgangsmåte ved fremstilling av vanadium, niob, tantal, titan, zirkonium eller hafnium eller en legering av disse metaller med jern, mangan, nikkel eller aluminium, hvor en oksygen- og karbonholdig forbindelse av vanadium, niob, tantal, titan, zirkonium eller hafnium oppvarmes til en temperatur på minst -800oC, eller - ved fremstilling av en legering - hvor den nevnte oksygen- og karbonholdige forbindelse blan-des med jern, mangan, nikkel eller aluminium og oppvarmes til en temperatur på minst 800°C, karakterisert ved at det anvendes en oksygen- og karbonholdig forbindelse som er fremstilt ved omsetning av et oksyd av vanadium, niob, tantal, titan, zirkonium eller hafnium med et gassformig hydrokarbon.Process for the production of vanadium, niobium, tantalum, titanium, zirconium or hafnium or an alloy of these metals with iron, manganese, nickel or aluminium, in which an oxygen- and carbon-containing compound of vanadium, niobium, tantalum, titanium, zirconium or hafnium is heated to a temperature of at least -800°C, or - when producing an alloy - where the aforementioned oxygen- and carbon-containing compound is mixed with iron, manganese, nickel or aluminum and heated to a temperature of at least 800°C, characterized in that it an oxygen- and carbon-containing compound is used which is produced by reacting an oxide of vanadium, niobium, tantalum, titanium, zirconium or hafnium with a gaseous hydrocarbon.
NO63373A 1972-02-18 1973-02-16 NO135595C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NLAANVRAGE7202136,A NL172566C (en) 1972-02-18 1972-02-18 METHOD FOR PREPARING VANADIUM.
NL7217490A NL175736C (en) 1972-12-22 1972-12-22 METHOD FOR PREPARING TITAN, NIOOB OR ALLOYS THEREOF.

Publications (2)

Publication Number Publication Date
NO135595B true NO135595B (en) 1977-01-17
NO135595C NO135595C (en) 1977-04-27

Family

ID=26644735

Family Applications (1)

Application Number Title Priority Date Filing Date
NO63373A NO135595C (en) 1972-02-18 1973-02-16

Country Status (16)

Country Link
JP (1) JPS5621820B2 (en)
AT (1) AT331046B (en)
AU (1) AU475793B2 (en)
BE (1) BE795533A (en)
CA (1) CA1026101A (en)
CH (1) CH592742A5 (en)
DD (1) DD102412A5 (en)
DE (1) DE2307783B2 (en)
ES (1) ES411699A1 (en)
FI (1) FI56555C (en)
FR (1) FR2172367A1 (en)
IT (1) IT979212B (en)
LU (1) LU67049A1 (en)
MX (1) MX3026E (en)
NO (1) NO135595C (en)
SE (1) SE396617B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656698B2 (en) * 1985-04-08 1994-07-27 ソニー株式会社 Playback device
JP3710053B2 (en) * 2001-07-05 2005-10-26 大阪府 Stainless spheroidal carbide cast iron material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342553A (en) * 1965-03-10 1967-09-19 Vanadium Corp Of America Process for making vanadium carbide briquettes

Also Published As

Publication number Publication date
FR2172367A1 (en) 1973-09-28
LU67049A1 (en) 1973-08-31
MX3026E (en) 1980-02-20
DD102412A5 (en) 1973-12-12
AT331046B (en) 1976-07-26
NO135595C (en) 1977-04-27
IT979212B (en) 1974-09-30
FI56555C (en) 1980-02-11
FR2172367B1 (en) 1975-08-22
DE2307783B2 (en) 1974-05-02
AU475793B2 (en) 1976-09-02
CH592742A5 (en) 1977-11-15
AU5226173A (en) 1974-08-22
CA1026101A (en) 1978-02-14
SE396617B (en) 1977-09-26
JPS4897706A (en) 1973-12-12
BE795533A (en) 1973-08-16
FI56555B (en) 1979-10-31
ES411699A1 (en) 1976-01-01
DE2307783A1 (en) 1973-08-30
JPS5621820B2 (en) 1981-05-21
ATA142073A (en) 1975-10-15

Similar Documents

Publication Publication Date Title
US3334992A (en) Vanadium containing addition agent and process for producing same
US2937939A (en) Method of producing niobium metal
Kroll et al. Reactions of carbon and metal oxides in a vacuum
US2443253A (en) Process for producing zirconium chloride
CN112646972B (en) Method for separating vanadium and chromium from vanadium and chromium-containing material through chlorination-selective oxidation
NO135595B (en)
EP0079487A1 (en) Hydriding body-centered cubic phase alloys at room temperature
US4035476A (en) Process for the preparation of agglomerated vanadium oxides
US5894016A (en) Method of preparing metal disulfides and the further processing thereof to form dimetal trisulfides
US4394161A (en) Method of producing a vanadium- and nitrogen-containing material for use as an addition to steel
US2902360A (en) Production of titanium and zirconium by reduction of their sulfides
US3979206A (en) Process for the preparation of magnesium
US2361925A (en) Preparation of manganese products
US2733133A (en) Production of titanium monoxide
US2926071A (en) Preparation of titanium nitride of high purity
JP2002180145A (en) Method for producing high purity metallic vanadium
JPH0215618B2 (en)
US2926082A (en) Production of thorium
Ono et al. Fundamental Study on the Production of Niobium by the Carbothermic Reduction-Electron Beam Melting Combination Method
JPS5978908A (en) Titanium-base cubic alloy composition and manufacture of hydride of same at room temperature
CS207318B2 (en) Method of alloying the steel by the vanadium
US2831761A (en) Method for producing low-carbon ferrochromium
NO130059B (en)
TWI586606B (en) Method of producing iron silicate powder
US3511647A (en) Purification of ferro-silicon alloys