NO135240B - - Google Patents

Download PDF

Info

Publication number
NO135240B
NO135240B NO741697A NO741697A NO135240B NO 135240 B NO135240 B NO 135240B NO 741697 A NO741697 A NO 741697A NO 741697 A NO741697 A NO 741697A NO 135240 B NO135240 B NO 135240B
Authority
NO
Norway
Prior art keywords
oxidation
solution
vessel
hydrogen peroxide
column
Prior art date
Application number
NO741697A
Other languages
Norwegian (no)
Other versions
NO741697L (en
NO135240C (en
Inventor
B G Franzen
Original Assignee
Elektrokemiska Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektrokemiska Ab filed Critical Elektrokemiska Ab
Publication of NO741697L publication Critical patent/NO741697L/en
Publication of NO135240B publication Critical patent/NO135240B/no
Publication of NO135240C publication Critical patent/NO135240C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

Hydrogenperoksyd kan fremstilles ved en rekke forskjellige Hydrogen peroxide can be produced in a number of different ways

metoder fra den klassiske metoden over bariumperoksyd, methods from the classical method over barium peroxide,

elektriske utladninger, katodisk reduksjon, autooksydasjon av organiske forbindelser etc. Autooksydasjonsmetoden går til- electrical discharges, cathodic reduction, autoxidation of organic compounds etc. The autoxidation method goes to-

bake til Manchot 1901, over Walton og Filson, U.S. patent nr. bake to Manchot 1901, over Walton and Filson, U.S. patent no.

2 059 569 og Riedl-Pfleiderer-fremgangsmåten, DRP0649 234, 2,059,569 and the Riedl-Pfleiderer method, DRP0649,234,

658 767, 671 318, 801 840 etc. 658 767, 671 318, 801 840 etc.

Ved denne fremstilling av hydrogenperoksyd ved autooksydasjon anvender man antrakinoner eller andre kinonderivater opplost i et eller flere opplosningsmidler. Arbeidsopplosningen hydrogeneres, hvorved ca. 50% av kinonene overfores til hydrokinoner (kinoler). I etterfolgende oksydasjonstrinn bringes opplosningen i kontakt med luft, hvorved luftens oksygen gjenoksyderer kinolene til kinoner under samtidig 'hydrogenperoksyddannelse. Hydrogenperoksydet i arbeidsopplosningen vaskes ut med vann, hvoretter arbeidsopplosningen fores tilbake til hydrogeneringstrinnet. I denne kretsprosess fremstilles altså hydrogenperoksyd av hydrogen og luftens oksygen. In this production of hydrogen peroxide by autoxidation, anthraquinones or other quinone derivatives dissolved in one or more solvents are used. The working solution is hydrogenated, whereby approx. 50% of the quinones are transferred to hydroquinones (quinols). In subsequent oxidation steps, the solution is brought into contact with air, whereby the air's oxygen reoxidises the quinols into quinones while simultaneously forming hydrogen peroxide. The hydrogen peroxide in the working solution is washed out with water, after which the working solution is fed back to the hydrogenation step. In this circuit process, hydrogen peroxide is thus produced from hydrogen and the oxygen of the air.

Oksydasjon med luft har imidlertid mange ulemper. Reaksjonshastigheten blir relativt lav, hvorfor oksydasjonsapparaturen blir komplisert og tungvint. Anvendelse av luft medforer at store mengder inert gass må passere apparaturen og forlate denne mettet med damper fra opplosningsmiddeltrinnet. Alvorlig er også at ved de reaksjonsbetingelser som må opprettholdes i industriell drift oksyderes ikke bare det ved kinoldannelsen adderte hydrogen, men en oksydasjon skjer også av opplosnings-midlene og antrakinonene. Av tilstedeværende tetrahydroantraki - noner dannes epoksyder, hvilke er helt uvirksomme som reaksjonsbærere for hydrogenperoksydprosessen. Flere fremgangsmåter er visstnok kjent for gjendannelse av virksomme tetrahydroantrakinoner av epoksydene, men disse fremgangsmåter medforer oket forbruk av hjelpemidler og energi. However, oxidation with air has many disadvantages. The reaction rate becomes relatively low, which is why the oxidation equipment becomes complicated and cumbersome. The use of air means that large quantities of inert gas must pass through the apparatus and leave it saturated with vapors from the solvent step. It is also serious that under the reaction conditions that must be maintained in industrial operation, not only the hydrogen added during quinol formation is oxidized, but an oxidation also occurs of the solvents and the anthraquinones. Epoxides are formed from the tetrahydroanthraquinones present, which are completely inactive as reaction carriers for the hydrogen peroxide process. Several methods are known for the recovery of active tetrahydroanthraquinones from the epoxides, but these methods lead to increased consumption of aids and energy.

Ved anvendelse av luft for oksydasjonsprosessen fås som regel det hoyeste oksygenutbyttet når antrakinonopplosningen ledes i motstrom eller trinnvis i motstrbm mot luften. Denne frem-' gangsmåte medforer imidlertid at opplosningen, når den inneholder lavt innhold av kinoler, utsettes for gass med det hoyeste, partielle oksygengasstrykk og derved blir det ikke onskelige oksydasjonsangrepet forholdsvis stort. Opplosningens evne til å produsere hydrogenperoksyd opphorer derfor på kort tid hvis ikke eh spesiell regenereringsmetode innfores. When air is used for the oxidation process, the highest oxygen yield is usually obtained when the anthraquinone solution is directed in countercurrent or in stages in countercurrent to the air. This procedure, however, means that the solution, when it contains a low content of quinols, is exposed to gas with the highest partial oxygen gas pressure and thereby the undesirable oxidation attack becomes relatively large. The solution's ability to produce hydrogen peroxide therefore ceases in a short time if no special regeneration method is introduced.

For å oke grenseflaten mellom de to faser er det i og for seg fordelaktig med fyll-legemer Biler andre lignende anordninger i oksydasjonskaret. Fyll-legemenes store overflater har imidlertid i seg selv en spaltende virkning på hydrogenperoksydet. De som katalysatorer for hydrogeneringen anvendte metaller fra gruppe VIII i det periodiske system katalyserer samtidig hydrogenperoksydets spaltning, og derved har platinametallene en spesielt hoy katalytisk innvirkning på denne spaltning» Spaltningen av det dannede hydrogenperoksyd i opplosningen In order to increase the interface between the two phases, it is in and of itself advantageous to have filler bodies or other similar devices in the oxidation vessel. However, the large surfaces of the filling bodies in themselves have a splitting effect on the hydrogen peroxide. The metals from group VIII in the periodic table used as catalysts for the hydrogenation simultaneously catalyze the splitting of the hydrogen peroxide, and thereby the platinum metals have a particularly high catalytic effect on this splitting" The splitting of the formed hydrogen peroxide in the solution

medforer såvel et produkttap som at opplosningen utsettes for en sterk oksydasjonspåkjenning. I praksis er det vanskelig å entails both a loss of product and that the solution is exposed to a strong oxidation stress. In practice, it is difficult to

unngå at mikrofine katalysatorpartikler folger med opplosningen fra hydrogeneringen til oksydasjonen. Derved kan partiklene feste seg på fyll-legemene og forbli der med ledsagende ugunstig innvirkning på hydrogenperoksydutbyttet og arbeidsopplosningen. avoid that microfine catalyst particles accompany the solution from the hydrogenation to the oxidation. Thereby, the particles can stick to the filler bodies and remain there with an accompanying adverse effect on the hydrogen peroxide yield and the working solution.

Nærværende oppfinnelse vedrorer en fremgangsmåte for frem- The present invention relates to a method for

stilling av hydrogenperoksyd ved hydrogenering av antrakinoner i nærvær av opplosningmiddel og dertil tilsluttet oksydering av hydrogeneringsproduktene, og karakteriseres av at dels hydrogenert opplosning, dels 50-100 %-ig oksygengass ved oksydasjonsreaksjonen innfores kontinuerlig i et kar som for det meste holdes fyllt med opplosning, men som er fritt for fyll- position of hydrogen peroxide during the hydrogenation of anthraquinones in the presence of a solvent and associated oxidation of the hydrogenation products, and is characterized by the fact that part hydrogenated solution, part 50-100% oxygen gas during the oxidation reaction is introduced continuously into a vessel which is mostly kept filled with solution, but which is free of filling

legemer eller lignende anordninger, hvorved opplosningen og gassen ledes hovedsakelig i samme retning gjennom karet. bodies or similar devices, whereby the solution and the gas are led mainly in the same direction through the vessel.

På denne måte oppnås ingen eller ubetydelig anriking av epoksyder In this way, no or negligible enrichment of epoxides is achieved

i opplosningen. in the solution.

Med hensyn til såvel hydrogenperoksydets spaltning, hvilket With regard to both the hydrogen peroxide's decomposition, which

oker med stigende temperatur, som til oksydasjonspåkjenningen på arbeidsopplosningen bor oksydasjonstemperaturen holdes ved hoyst 50°C, fortrinnsvis 40-47°C. increase with increasing temperature, as for the oxidation stress on the working solution, the oxidation temperature should be kept at a maximum of 50°C, preferably 40-47°C.

Oksydasjon med oksygenanriket gass har vist seg særlig egnet når hydrogeneringen utfores med Raney-nikkel, som for anvendelsen ble varmebehandlet i alkalisk medium ved en temperatur på 120-160°C. Denne katalysator gir svært ubetydelig forandring av opplosningens sammensetning i hydrogeneringstrinnet, og nikkel har en betydelig mindre katalytisk virkning på hydrogenperoksydets spaltning enn platinametallene. Oxidation with oxygen-enriched gas has proven particularly suitable when the hydrogenation is carried out with Raney nickel, which for use was heat-treated in an alkaline medium at a temperature of 120-160°C. This catalyst produces a very insignificant change in the composition of the solution in the hydrogenation step, and nickel has a considerably smaller catalytic effect on the decomposition of the hydrogen peroxide than the platinum metals.

Ved anvendelse av 50-100 %'ig oksygengass ifolge oppfinnelsen fås en så godt som 100 %'ig oksydasjonsgrad med hoyt oksygen-utbytte uten anvendelse av hoy temperatur og/eller forhoyet trykk. Med oksydasjonsgrad forstås da molforholdet mellom ved oksydasjonen oppnådd mengde hydrogenperoksyd og denne mengde oket med (pluss) det ved oksydasjonsprosessens slutt gjenværende mengde antrakinoler. Med hensyn til arbeidsoppldsningens leve-tid kan det imidlertid være fordelaktig å ikke drive oksyda-sjonsgraden lenger enn til 98-99%. When using 50-100% oxygen gas according to the invention, an oxidation degree of as good as 100% is obtained with a high oxygen yield without the use of high temperature and/or increased pressure. By degree of oxidation is then understood the molar ratio between the amount of hydrogen peroxide obtained during the oxidation and this amount increased by (plus) the remaining amount of anthraquinols at the end of the oxidation process. However, with regard to the lifetime of the working solution, it may be advantageous not to drive the degree of oxidation further than 98-99%.

Når 90-100 %'ig oksygengass innfores sammen med den hydrogenerte opplosning ved bunnen på et reaksjon skar, er reaksjonshastigheten ved begynnelsen så hoy at gassmengden og dermed gassbelastnin-gen hurtig avtas hoyere opp i karet. Hvis oksydasjonskaret utfores som en kolonne, kan denne gjores slik at den kontinuerlig eller trinnvis smalner av oppover. When 90-100% oxygen gas is introduced together with the hydrogenated solution at the bottom of a reaction cut, the reaction rate at the beginning is so high that the amount of gas and thus the gas load rapidly decreases higher up in the vessel. If the oxidation vessel is designed as a column, this can be made so that it tapers continuously or gradually upwards.

I en kretslopsprosess for fremstilling av hydrogenperoksyd ifolge antrakinonmetoden ble den hydrogenerte opplosning oksydert kontinuerlig med 99 %'ig oksygengass i en sylindrisk kolonne helt uten såvel fyll-legemer som bunner. Arbeidsopplosningen ble matet inn ved kolonnens bunn, hvor også oksygengassen "ble innfort. In a circuit process for the production of hydrogen peroxide according to the anthraquinone method, the hydrogenated solution was oxidized continuously with 99% oxygen gas in a cylindrical column completely without both fillers and bottoms. The working solution was fed in at the bottom of the column, where the oxygen gas was also introduced.

I lopet av en tid på 29 dbgn passerte i middeltall 28 m 3/h opplosning gjennom oksyda sjonskolonnen. Den tilsvarende oppholds-tid for opplosningen i kolonnen var ca. 15 minutter. Tempera-turen i kolonnen ble styrt slik at den maksimalt gikk opp til 47°C. Oksygengasstilforselen ble regulert slik at i gjennom-snitt mindre enn 1 % av den ved kolonnens nederdel tilforte oksygengasskvantitet gikk bort i gassform ved kolonnetoppen„ Ved dette oppnås en oksydasjonsgrad på 98-99%. In the course of a time of 29 dbgn, an average of 28 m 3 /h of solution passed through the oxidation column. The corresponding residence time for the solution in the column was approx. 15 minutes. The temperature in the column was controlled so that it reached a maximum of 47°C. The oxygen gas supply was regulated so that on average less than 1% of the quantity of oxygen gas added at the bottom of the column was lost in gaseous form at the top of the column. This results in an oxidation degree of 98-99%.

I lopet av den tid forsoket pågikk ble hver del av den sirkulerende opplosning hydrogenert, oksydert og ekstrahert ca. 290 ganger og sammenlagt oppnås etter ekstraksjonen 240 000 kg 100 %'ig H202 i form av en ca. 27,5 %'ig vannopplosning. Fra hver m"^ sirkulerende opplosning oppnås 12,3 kg ^02 ved hver syklus. In the course of the time the experiment was going on, each part of the circulating solution was hydrogenated, oxidized and extracted approx. 290 times and a total of 240,000 kg of 100% H202 is obtained after the extraction in the form of an approx. 27.5% aqueous solution. From each m"^ circulating solution, 12.3 kg ^02 is obtained at each cycle.

Under hele forsøkstiden ble ikke noen spesielle foranstalt-ninger truffet for gjenvinning av biprodukter til antrakinoner eller tetrahydroantrakinoner. Noen form for reaksjonsbærere ble heller ikke tilsatt under den angitte periode. Opplosningens data for og etter 29 dogns kontinuerlig drift fremgår av nedenstående oppstilling. During the entire experimental period, no special measures were taken for the recovery of by-products to anthraquinones or tetrahydroanthraquinones. Nor were any form of reaction carriers added during the specified period. The solution's data before and after 29 days of continuous operation can be seen in the table below.

Under stort sett samme oksydasjonsbetingelser ble en antrakinon-opplosning i hydrogenperoksydproduksjon sirkulert i mer enn ett år i samme anlegg. I lopet av denne tid ble opplosningens sammensetning justert med hensyn til tap f.eks. ved fordampning eller mekanisk lekkasje. Noen spesiell regenerering av epoksyder skjedde ikke og heller ikke ble slike, ikke briskede oksydasjon sprodukt er fjernet fra opplosningen på annen måte ved hjelp av spesielle anordninger. Ved periodens slutt inneholdt opplosningen da omtrent 5 g epoksyd pr. liter. Under largely the same oxidation conditions, an anthraquinone solution in hydrogen peroxide production was circulated for more than a year in the same plant. In the course of this time, the composition of the solution was adjusted with regard to losses, e.g. by evaporation or mechanical leakage. No special regeneration of epoxides took place, nor were such, non-brittle oxidation products removed from the solution in another way by means of special devices. At the end of the period, the solution then contained approximately 5 g of epoxide per litres.

Claims (5)

1. Fremgangsmåte for fremstilling av hydrogenperoksyd ved hydrogenering av antrakinoner i nærvær av opplosningsmiddel og dertil knyttet oksydering av hydrogeneringsproduktene, karakterisert ved at dels hydrogenert opplosning dels 50-100 %'ig oksygengass ved oksydasjonsreaksjonen innfores kontinuerlig i et kar som for storstedelens vedkommende holdes fylt med opplosningmen som er fritt for fyll-legemer eller lignende anordninger, hvorved opplosningen og gassen ledes i hovedsakelig samme retning gjennom karet.1. Process for the production of hydrogen peroxide by hydrogenation of anthraquinones in the presence of a solvent and associated oxidation of the hydrogenation products, characterized in that part hydrogenated solution and part 50-100% oxygen gas during the oxidation reaction are introduced continuously into a vessel which is kept mostly filled with the solution which is free of filler bodies or similar devices, whereby the solution and the gas are led in essentially the same direction through the vessel. 2. Fremgangsmåte etter krav 1, karakterisert ved at den gass som innfores i oksydasjonskaret inneholder 90-100 vol.% oksygen.2. Method according to claim 1, characterized in that the gas introduced into the oxidation vessel contains 90-100 vol.% oxygen. 3. Fremgangsmåte etter krav 1 eller 2, karakteri sert ved at opplosningen i oksydasjonskaret holdes ved en temperatur på hoyst 50°C.3. Method according to claim 1 or 2, characterized in that the solution in the oxidation vessel is kept at a temperature of no higher than 50°C. 4. Fremgangsmåte etter krav 1 til 3, karakteri "sert ved at antrakinonene i den til oksydasjonen inngående arbeidsopplosning fremstilles ved hydrogenaddisjon i nærvær av nikkelkatalysator, som ble varmebehandlet i alkalisk medium ved 120-160°C for anvendelsen.4. Process according to claims 1 to 3, characterized in that the anthraquinones in the oxidation Incoming working solution is prepared by hydrogen addition in the presence of nickel catalyst, which was heat-treated in an alkaline medium at 120-160°C for use. 5. Fremgangsmåte etter krav 1 til 4, karakteri sert ved at oksydasjonen gjennomfores i en kolonne som kontinuerlig eller trinnvis smalner av oppover mot væske-overflaten i kolonnen.5. Method according to claims 1 to 4, characterized in that the oxidation is carried out in a column which continuously or gradually tapers upwards towards the liquid surface in the column.
NO741697A 1973-05-11 1974-05-10 Process for the production of hydrogen peroxide. NO741697L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7306684A SE377455B (en) 1973-05-11 1973-05-11

Publications (3)

Publication Number Publication Date
NO741697L NO741697L (en) 1974-11-12
NO135240B true NO135240B (en) 1976-11-29
NO135240C NO135240C (en) 1977-03-09

Family

ID=20317441

Family Applications (1)

Application Number Title Priority Date Filing Date
NO741697A NO741697L (en) 1973-05-11 1974-05-10 Process for the production of hydrogen peroxide.

Country Status (5)

Country Link
DE (1) DE2419534C2 (en)
FR (1) FR2228717A1 (en)
NL (1) NL7406128A (en)
NO (1) NO741697L (en)
SE (1) SE377455B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE426808B (en) * 1981-07-08 1983-02-14 Eka Ab PROCEDURE FOR REDUCING THE ACID CONTENT IN GAS MIXTURES, WHEREAS THE GAS IS CONTACTED WITH A SOLUTION CONTAINING ANTHRAHYDROKINO DERIVATIVES
IN168293B (en) * 1985-05-07 1991-03-09 Oesterr Chem Werke
DE10017656A1 (en) * 2000-04-08 2001-10-11 Degussa Process for the production of hydrogen peroxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1075568B (en) * 1960-02-18 Columbia-Southern Chemical Corporation, Pittsburgh, Pa. (V. St. A.) Process for the production of hydrogen peroxide
DE1041928B (en) * 1955-10-31 1958-10-30 Solvay Process for the production of hydrogen peroxide

Also Published As

Publication number Publication date
FR2228717B1 (en) 1979-02-16
DE2419534A1 (en) 1974-11-28
NO741697L (en) 1974-11-12
NL7406128A (en) 1974-11-13
DE2419534C2 (en) 1983-02-17
SE377455B (en) 1975-07-07
NO135240C (en) 1977-03-09
FR2228717A1 (en) 1974-12-06

Similar Documents

Publication Publication Date Title
KR101384942B1 (en) Method for manufacturing hydrogen peroxide
EP0603825A1 (en) Process for preparing 1,4-cyclohexandicarboxilic acid
US3073680A (en) Production of hydrogen peroxide
US2739042A (en) Process for the production of hydrogen peroxide
JP2012521943A (en) Method for producing hydrogen peroxide
CN117105178A (en) Method for producing hydrogen peroxide
NO328177B1 (en) Integrated epoxide production process
NO135240B (en)
NO143158B (en) PROCEDURE FOR THE PREPARATION OF CEFALEKSIN WITH IMPROVED CLEANING
EP0174411B1 (en) Hydrogen peroxide process
CN109134217B (en) Oxidation device and oxidation process improvement method in cyclohexanone production process by cyclohexane oxidation method
US3755552A (en) Process for producing hydrogen peroxide
NO124829B (en)
CN111094460A (en) Process for preparing leucoindigo salt solutions with very low aniline content
TWI758411B (en) Method and system for producing hydrogen peroxide by anthraquinone method
NO141552B (en) PROCEDURE FOR CONTINUOUS PREPARATION OF A SODIUM FORMAT SOLUTION
CN115432679B (en) Method for preparing polyphosphoric acid from wet phosphoric acid raffinate acid and application thereof
US2901491A (en) Purification of working solutions for producing hydrogen peroxide
US2673140A (en) Production of hydrogen peroxide
US2902347A (en) Manufacture of hydrogen peroxide
CA2025981A1 (en) Process for the production of hydrogen peroxide
JP2018135229A (en) Production method of hydrogen peroxide
NO116368B (en)
US2735750A (en) Method of reducing the chlorate content of aqueous
US3156089A (en) Hydrogen peroxide decomposition