NO134434B - - Google Patents
Download PDFInfo
- Publication number
- NO134434B NO134434B NO1098/73A NO109873A NO134434B NO 134434 B NO134434 B NO 134434B NO 1098/73 A NO1098/73 A NO 1098/73A NO 109873 A NO109873 A NO 109873A NO 134434 B NO134434 B NO 134434B
- Authority
- NO
- Norway
- Prior art keywords
- refractory material
- lining
- temperature
- sintering
- compressed
- Prior art date
Links
- 238000005245 sintering Methods 0.000 claims description 40
- 239000011819 refractory material Substances 0.000 claims description 30
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 239000011044 quartzite Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 10
- 239000004327 boric acid Substances 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- -1 that the compressed Substances 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000005056 compaction Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229910052566 spinel group Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002694 phosphate binding agent Substances 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/28—Slip casting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/30—Drying methods
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings ; Increasing the durability of linings; Breaking away linings
- F27D1/1626—Making linings by compacting a refractory mass in the space defined by a backing mould or pattern and the furnace wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/06—Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
- F27B14/061—Induction furnaces
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Tunnel Furnaces (AREA)
- Ceramic Products (AREA)
Description
Oppfinnelsen vedrører en fremgangsmåte til foring av metallurgiske ovner, særlig induksjonsovner, hvor et kornformet og tørt ildfast materiale som inneholder et sintringsmiddel, fylles i det av en ovnsvegg og en sjablong dannede hulrom, komprimeres og deretter ved oppvarming sintres keramisk. The invention relates to a method for lining metallurgical furnaces, in particular induction furnaces, where a granular and dry refractory material containing a sintering agent is filled into the cavity formed by a furnace wall and a stencil, compressed and then ceramic sintered by heating.
Metallurgiske ovner for smelting og/eller behandling av jern og stål blir ofte, når de ikke utmures med ildfast sten, foret med ildfaste stampemasser under anvendelse av sjablonger. Dette gjelder særlig for induksjonsovner hvor digelen vanligvis kles med plastiske, halvplastiske og/eller tørre ildfaste masser på basis av SiO,,, MgO, A12C>3, spineller etc. Det ildfaste materiale stampes inn i hulrommet mellom ovnsveggen og sjablongen, eller komprimeringen av materialet oppnås ved at det foretas en risting etter innfyllingen. Metallurgical furnaces for smelting and/or treating iron and steel are often, when they are not lined with refractory stone, lined with refractory ramming compounds using stencils. This applies in particular to induction furnaces where the crucible is usually lined with plastic, semi-plastic and/or dry refractory masses based on SiO,,, MgO, A12C>3, spinels etc. The refractory material is rammed into the cavity between the furnace wall and the stencil, or the compression of the material is obtained by shaking after filling.
En vesentlig ulempe ved plastiske ildfaste masser som inneholder 6 - 8 % vann, er at de må underkastes en langsom tørképrosess under oppvarming, slik at ovnens klargjøringstid, dvs. den tid som er nødvendig for foringen, tørkingen og sintringen, kan utgjøre opptil en uke og til og med mer. Ved sintringen oppstår det en over hele veggtykkelsen enhetlig masse, slik at ved en høy påkjenning som gir riss, vil som regel hele veggen gjennomtrenges av rissene og man kan derfor ikke utelukke faren for at den vannkjølte induksjonsspole ødelegges. Man har riktignok den fordelen at sjablongen kan fjernes etter innstampingen og således kan anvendes flere ganger. A significant disadvantage of plastic refractories containing 6 - 8% water is that they must be subjected to a slow drying process during heating, so that the oven preparation time, i.e. the time required for lining, drying and sintering, can amount to up to a week and even more. During sintering, a uniform mass is created over the entire wall thickness, so that in the event of a high stress that causes cracks, the entire wall will usually be penetrated by the cracks and the risk of the water-cooled induction coil being destroyed cannot therefore be ruled out. You do have the advantage that the stencil can be removed after stamping and can thus be used several times.
Induksjonsovner for smelting av ikke-jern-metaller og alle jern- og stållegeringer blir nu overveiende forsynt med ildfaste masser av den sure type, særlig kvartsittmasser. I tids-skriftet "Giesserei", 1970, side 450, redegjøres det for forsøk på plastifisering av en ildfast kvartsittmasse under tilsetning av en tilsvarende mengde av et flytende bindemiddel av flere komponenter (monoaluminiumfosfat, anorganiske polymerbinde-midler på peroksydkloridbasis etc.)/ slik at man etter den vanlige komprimering får en selvbærende ovnsforing og man kan benytte en varig sjablong, dvs. en sjablong som kan benyttes flere ganger. Induction furnaces for melting non-ferrous metals and all iron and steel alloys are now predominantly supplied with refractory masses of the acidic type, especially quartzite masses. In the journal "Giesserei", 1970, page 450, there is an account of attempts to plasticize a refractory quartzite mass with the addition of a corresponding amount of a liquid binder of several components (monoaluminium phosphate, inorganic polymer binders based on peroxide chloride, etc.)/ such that after the usual compaction you get a self-supporting oven lining and you can use a permanent template, i.e. a template that can be used several times.
En vesentlig kortere totaltid i størrelsesorden mellom 12 - 24 timer kan man oppnå med tørre, ildfaste materialer som tilsettes et tørt sintringsmiddel, for det meste borsyre. Hertil kommer at tørre kvartsittmasser er prisgunstige. Som regel går man frem på den måten at det tørre, ildfaste materiale fylles i det av ovnsveggen, f.eks. ovnens varige foring, A significantly shorter total time of between 12 - 24 hours can be achieved with dry, refractory materials to which a dry sintering agent is added, mostly boric acid. In addition, dry quartzite masses are reasonably priced. As a rule, one proceeds in such a way that the dry, refractory material is filled in by the furnace wall, e.g. the oven's permanent lining,
og sjablongen dannede hulrom, komprimeres ved vibrering, hvoretter ovnen med sjablong og med en fast eller flytende sintringsfylling oppvarmes til en slik temperatur og holdes varm så lenge til at foringen er blitt underkastet en keramisk sintring. and the stencil formed cavities, are compressed by vibration, after which the furnace with stencil and with a solid or liquid sintering filling is heated to such a temperature and kept hot until the lining has been subjected to a ceramic sintering.
Med dagens teknikk regnes det ikke for mulig å kunne fremstille sliteforingen i metallurgiske ovner, særlig induksjonsovner, av en tørr, komprimert ildfast fyllmasse i form av en selvbærende ildfast foring. Man har hittil antatt at det er nødvendig å avstøtte det komprimerte, tørre og ildfaste materiale helt til sintringen, idet sjablongen forblir i ovnen under oppvarmingen, oppsmeltes og opptas av sintringsfyllingen, som da avstøtter foringen. Da kostnadene for slike tapte sjablonger overstiger de øvrige kostnader ved foringen av ovnene, er det så absolutt et ettertraktet mål å kunne anvende varige eller gjentatt anvendbare sjablonger. With current technology, it is not considered possible to produce the wear lining in metallurgical furnaces, especially induction furnaces, from a dry, compressed refractory filler in the form of a self-supporting refractory lining. Until now, it has been assumed that it is necessary to support the compressed, dry and refractory material until sintering, as the template remains in the furnace during heating, is melted and absorbed by the sintering filling, which then supports the liner. As the costs of such lost stencils exceed the other costs of lining the ovens, it is certainly a desirable goal to be able to use permanent or reusable stencils.
Med oppfinnelsen tar man sikte på å kunne forsyne metallurgiske ovner, særlig induksjonsovner, med en sliteforing av tørre, ildfaste materialer, for å kunne oppnå en kort klar-gjøringstid, kunne senke klargjøringskostnadene vesentlig, særlig fordi det anvendes en varig sjablong, og samtidig kunne sikre at den ferdige sliteforing i det minste er like standfast som de kjente foringer, relativt de høye termiske og mekaniske påkjenninger man må regne med. With the invention, the aim is to be able to supply metallurgical furnaces, in particular induction furnaces, with a wear lining of dry, refractory materials, in order to achieve a short preparation time, to be able to lower the preparation costs significantly, especially because a permanent stencil is used, and at the same time ensure that the finished wear lining is at least as stable as the known linings, relative to the high thermal and mechanical stresses that must be expected.
Dette oppnås ifølge oppfinnelsen ved at et komprimert ildfast materiale som inneholder et sintringsmiddel, oppvarmes til en mellomtemperatur og holdes på denne temperatur helt til det ildfaste materiale har fått en tilstrekkelig formbestandighet, at sjablongen deretter fjernes og at deretter den av det ildfaste materiale dannede, selvbærende ovnsforing sintres keramisk under videre oppvarming. According to the invention, this is achieved by heating a compressed refractory material containing a sintering agent to an intermediate temperature and maintaining it at this temperature until the refractory material has acquired sufficient dimensional stability, the stencil is then removed and the self-supporting material formed from the refractory material furnace lining is sintered ceramic during further heating.
Ved de vanlige ildfaste, tørre materialer, særlig tørre masser av kvartsitt som er tilsatt borsyre som sintringsmiddel, kan man som regel gå frem på den måten at det komprimerte, ildfaste materiale oppvarmes til en mellomtemperatur på mellom 300 til 800°C, fortrinnsvis mellom 500 til 700°C og holdes på denne mellomtemperatur alt etter ovnsstørrelsen mellom én halv til 5 timer, hvoretter sjablongen tas ut og den dannede, selvbærende ovnsforing oppvarmes videre sammen med en sintringsfylling og holdes på sintringstemperaturen helt til foringen er keramisk sintret. With the usual dry refractory materials, especially dry masses of quartzite to which boric acid has been added as a sintering agent, one can usually proceed in such a way that the compressed refractory material is heated to an intermediate temperature of between 300 and 800°C, preferably between 500 to 700°C and is held at this intermediate temperature, depending on the size of the furnace, between one and a half to 5 hours, after which the stencil is removed and the formed, self-supporting furnace lining is further heated together with a sintering filling and held at the sintering temperature until the lining is ceramic sintered.
Det har overraskende vist seg at ved de vanlige tørre og komprimerte ildfaste materialer med sintringsmidler kan man allerede ved anvendelsen av en ikke altfor høy temperatur oppnå en slik festing av foringen at foringen deretter blir stående uten hjelp av mekaniske støtter, og kan opp-ta en sintringsfylling. It has surprisingly been shown that with the usual dry and compressed refractory materials with sintering agents, already by the application of a not too high temperature, such a fixing of the liner can be achieved that the liner is then left standing without the aid of mechanical supports, and can occupy a sintering filling.
Fremgangsmåten ifølge oppfinnelsen kan gjennomføres på en enkel måte ved at en sjablong av stålplate benyttes. Sjablongen blir,, etter at det ildfaste materiale har fått den nød-vendige formbestandighet, avkjølt relativt mellomtemperåturen, f.eks. ved hjelp av trykkluft, hvorved sjablongen trekker seg sammen og uten videre kan trekkes ut av ovnen. For klargjøring av induksjonsdigelovner er stålplatesjablongen fortrinnsvis ut-formet som en enhet og har en konisk form, i det minste over en vesentlig del, men fortrinnsvis over hele sin lengdeutstrekning. Derved oppnås ikke bare en lettere strekking av sjablongen, men levetiden til digelen relativt de vanlige, overveiende sylind-riske digelformer, som bare smalner av i bunnområdet, økes vesentlig. Selvfølgelig kan man også bruke flerdelte sjablonger. Disse tillater særlig ved metallurgiske ovner med kompliserte herdformer en enkel uttaging. Når det benyttes forsterknings-midler mot kastinger muliggjøres en høy dimensjonsbestandighet under klargjøringen eller tilberedningen. The method according to the invention can be carried out in a simple way by using a steel sheet template. The stencil is, after the refractory material has acquired the necessary dimensional stability, cooled relative to the intermediate temperature, e.g. with the help of compressed air, whereby the stencil contracts and can be pulled out of the oven without further ado. For the preparation of induction furnaces, the steel sheet template is preferably designed as a unit and has a conical shape, at least over a substantial part, but preferably over its entire length. Thereby, not only is easier stretching of the stencil achieved, but the lifetime of the crucible relative to the usual, predominantly cylindrical crucible shapes, which only taper in the bottom area, is significantly increased. Of course, you can also use multi-part stencils. These allow easy removal, particularly in metallurgical furnaces with complicated furnace forms. When reinforcements against casts are used, a high dimensional stability is made possible during the preparation or preparation.
Fremgangsmåten ifølge oppfinnelsen kan gjennomføres med de vanlige tørre, ildfaste materialer på basis av Si02, The method according to the invention can be carried out with the usual dry, refractory materials based on SiO2,
MgO, A^O^ og spineller. Ved egnet valg av type og mengde av sintringsmidlet kan man allerede ved ikke altfor høye mellom-temperaturer oppnå en kjemisk festingsreaksjon av det ildfaste materiale, slik at dette gir en selvbærende ovnsforing som tilfredsstiller de oppstilte krav etter sintringen. Sliteforinger som er fremstilt ifølge oppfinnelsen har den ved tørre masser kjente fordel at foringen bare er sintret over en del av veggtykkelsen og således har et restområde med mindre festet materiale, i motsetning til hva som er tilfelle ved plastiske masser, hvor man får et enhetlig materiallag. Riss som går ut innenfra vil derfor for det meste bare delvis trenge gjennom foringen og faren for ovnsbrudd er derfor tilsvarende redusert. MgO, A^O^ and spinels. With a suitable choice of type and quantity of the sintering agent, a chemical fixing reaction of the refractory material can already be achieved at intermediate temperatures that are not too high, so that this provides a self-supporting furnace lining that satisfies the stated requirements after sintering. Wear linings manufactured according to the invention have the advantage known for dry masses that the lining is only sintered over part of the wall thickness and thus has a residual area with less attached material, in contrast to what is the case with plastic masses, where a uniform layer of material is obtained . Cracks that come out from the inside will therefore mostly only partially penetrate the lining and the risk of oven breakage is therefore correspondingly reduced.
Fremgangsmåten ifølge oppfinnelsen kan med fordel gjennomføres med de for jernmetallurgien interessante tørre kvartsittstampemasser, som, som vanlig, tilsettes borsyre, særlig i tørt borsyrepulver (H3BO^) som sintringsmiddel. The method according to the invention can advantageously be carried out with the dry quartzite pulps of interest to iron metallurgy, to which, as usual, boric acid is added, particularly in dry boric acid powder (H3BO^) as a sintering agent.
Særlig lange levetider for digelen kan man oppnå ved å anvende tertiærkvartsitt som fortrinnsvis består av runde til kubiske korn, idet man foretrekker følgende kornstørrelses-sammensetning: 60 - 40 % korn med 5,0 - 6,0 mm, opptil 30 % korn under 0,06 mm, og resten bestående av korn med 0,6- 0,06 mm diameter. Blir en slik tertiærkvartsittmasse blandet med omtrent 1 % borsyrepulver som sintringsmiddel og ved hjelp av kjente vibratorer etter ifyllingen i hulrommet mellom sjablongen og ovnsveggen (henholdsvis den varige foring) komprimert til en porøsitet mellom 16 % og 24 %, så oppnås det etter sintringen en høyslitasjefast foring som i særlig grad tilfredsstiller kravene. Ved en digelovn representerer det ildfaste forings-legeme geometrisk sett et ringlegeme som utvider seg med hensyn på diameteren ved temperaturøkning. Da digelen er kald på ut-siden og delvis er innspent, har den innvendige temperaturøk-ning den gunstige følge at foringsmaterialet etterkomprimeres innenfra, slik at det etter sintringen bare har en porøsitet på omtrent 10 %. En slik foring er særlig uømfintlig mot den uønskede gjennomtrengning av smeiten. Particularly long lifetimes for the crucible can be achieved by using tertiary quartzite, which preferably consists of round to cubic grains, with the following grain size composition being preferred: 60 - 40% grains with 5.0 - 6.0 mm, up to 30% grains below 0 .06 mm, and the rest consisting of grains with a diameter of 0.6-0.06 mm. If such a tertiary quartzite mass is mixed with approximately 1% boric acid powder as a sintering agent and with the help of known vibrators after filling in the cavity between the stencil and the furnace wall (respectively the permanent lining) is compressed to a porosity of between 16% and 24%, then after sintering a highly wear-resistant lining that particularly satisfies the requirements. In the case of a crucible furnace, the refractory lining body geometrically represents an annular body which expands with regard to the diameter when the temperature increases. As the crucible is cold on the outside and partially clamped in, the internal temperature increase has the beneficial consequence that the lining material is further compressed from the inside, so that after sintering it only has a porosity of approximately 10%. Such a lining is particularly insensitive to the unwanted penetration of the melt.
Ved valg av for fremgangsmåten særlig godt egnede ildfaste, tørre materialer bør man være oppmerksom på at massene som regel, for det meste over omtrent 1000°C, har ulike, When choosing refractory, dry materials that are particularly suitable for the method, one should be aware that the masses usually, mostly above approximately 1000°C, have different,
av type og sammensetning av det ildfaste materiale og sintringsmidlet avhengige utvidelsesforhold. Det skal her vises til fig. 1 som i avhengighet av temperaturen viser utvidelsen til tre forskjellige masser A, B og C på kvartsittbasis. Mens man med massene A og C kan oppnå en god, etterkomprimert sliteforing, kan massen B ikke anbefales, hvilket skyldes dens tendens til svinning ved høye temperaturer. on the type and composition of the refractory material and the sintering agent dependent expansion ratio. Reference should be made here to fig. 1 which, depending on the temperature, shows the expansion into three different masses A, B and C on a quartzite basis. While you can achieve a good, post-compressed wear lining with compounds A and C, compound B cannot be recommended, which is due to its tendency to shrink at high temperatures.
Både digelovner og renneovner for aluminiumbehand-ling kan fordelaktig forberedes med en tørrstampemasse på sjamottbasis med omtrent 38 % A^O^, eksempelvis tilsatt en glassmasse som sintringsmiddel. Ved en mellomtemperatur på Both crucible furnaces and trough furnaces for aluminum processing can advantageously be prepared with a dry stamping compound on a chamotte basis with approximately 38% A^O^, for example with a glass compound added as a sintering agent. At an intermediate temperature of
300°C som holdes i omtrent 3 timer, vil den komprimerte stampemasse feste seg til en selvbærende ovnsforing slik at sjablongen kan tas ut og foringen så kan sintres ved omtrent 1000°C. Like-ledes har masser med stort leireinnhold, f.eks. med 90 % A^O^ vist seg godt egnet for dette anvendelsesformål 300°C which is held for approximately 3 hours, the compressed tamping mass will adhere to a self-supporting furnace lining so that the stencil can be removed and the lining can then be sintered at approximately 1000°C. Similarly, masses with a high clay content, e.g. with 90% A^O^ proved to be well suited for this application purpose
Oppfinnelsen skal forklares nærmere under henvis- The invention shall be explained in more detail under reference
ning til tegningen. ning to the drawing.
Fig. 2 viser rent skjematisk et snitt gjennom en Fig. 2 shows purely schematically a section through one
13 tonns induksjonsovn. Den varige foring 1 har en diameter innvendig på 1400 mm og en høyde på 2440 mm. Mot denne foring 1 ligger det an en mellomsjablong 2. Etter innstampingen av'en 380 mm tykk bunn 3 ble det innsatt en enhetlig, over det hele konisk stålplatesjablong 4 med en veggtykkelse på 6 mm, en bunn-diameter på 1040 mm og en øvre kantdiameter på 1140 mm. Stål-plates jablongen 4 har en innvendig forsterket øvre kant. I hulrommet mellom den varige sjablong 4 og den varige foring 1 ble det innriste.t en helt tørr kvartsittstampemasse som var tilsatt 1,4% tørt borsyrepulver og hadde et innhold på fritt vann under 0,2 %. Ved ristingen med vibratoren 5 via sjablongen 4 ble kvart-sittmassen komprimert til en porøsitet på ca. 22 %. Kvartsitt-massen besto av korn med kubisk avrundet form og hadde følgende kornstørrelsessammensetning : 13 ton induction furnace. The permanent lining 1 has an internal diameter of 1400 mm and a height of 2440 mm. Against this liner 1 lies an intermediate template 2. After the stamping of a 380 mm thick bottom 3, a uniform, over all conical steel plate template 4 with a wall thickness of 6 mm, a bottom diameter of 1040 mm and an upper edge diameter of 1140 mm. The steel plate jablong 4 has an internally reinforced upper edge. In the cavity between the permanent stencil 4 and the permanent liner 1, a completely dry quartzite stamping compound was inscribed to which 1.4% dry boric acid powder had been added and had a free water content of less than 0.2%. During the shaking with the vibrator 5 via the template 4, the quarter-sit mass was compressed to a porosity of approx. 22%. The quartzite mass consisted of grains with a cubically rounded shape and had the following grain size composition:
Ved hjelp av en i det indre av digelen anordnet gassbrenner ble stålplatesjablongen 4 og det ildfaste materialet 6 oppvarmet i 7 timer til ca. 700°C og denne mellomtemperatur ble holdt i 5 timer, idet den aldri gikk under 600°C. Derved festet det ildfaste materialet 6 seg slik at foringen ble selvbærende. Sjablongen 4 ble så raskt avkjølt i løpet av 20 minutter til ca. 200°C. Avkjølingen skjedde ved hjelp av trykkluft. Sjablongen 4 trakk seg da sammen og kunne uten videre trekkes ut av ovnen. Deretter ble ovnen igjen oppvarmet slik at den i løpet av 5 timer nådde ca. 1100°C. Den ble så fylt med flytende råjern som sintringsfylling og denne ble overhetet til 1600°C og i da 2; timer holdt på denne temperatur. Foringen 6 ble da underkastet en keramisk sintring og ovnen var deretter klar for normal drift. With the help of a gas burner arranged in the interior of the crucible, the steel sheet template 4 and the refractory material 6 were heated for 7 hours to approx. 700°C and this intermediate temperature was maintained for 5 hours, never falling below 600°C. Thereby, the refractory material 6 stuck so that the lining became self-supporting. The stencil 4 was then rapidly cooled within 20 minutes to approx. 200°C. The cooling took place with the help of compressed air. The stencil 4 then contracted and could easily be pulled out of the oven. The oven was then heated again so that within 5 hours it reached approx. 1100°C. It was then filled with liquid pig iron as a sintering filling and this was superheated to 1600°C and then 2; hours held at this temperature. The liner 6 was then subjected to ceramic sintering and the furnace was then ready for normal operation.
I fig. 3 er den forannevnte oppvarmingsprosess vist grafisk. De innsirklede tall i fig. 3 har følgende betydning: 1 er holding ved mellomtemperatur, 2 er avkjøling av sjablongen med fjerning av sjablongen, 3 er ifylling av den flytende sintringsfylling og 4 er sintringen. In fig. 3, the aforementioned heating process is shown graphically. The circled numbers in fig. 3 has the following meaning: 1 is holding at an intermediate temperature, 2 is cooling of the template with removal of the template, 3 is filling in the liquid sintering filler and 4 is the sintering.
Istedenfor oppvarmingen ved hjelp av en gassbrenner kan man naturligvis også foreta en induktiv oppvarming. Istedenfor en flytende sintringsfylling kan man også benytte en fast innsats som sintringsfylling, særlig ved middel- og høyfrekvens-induksjonsovner. Digel- og renneovner for smelting og behandling av aluminium og legeringer av aluminium ble fremstilt som følger : En helt tørr stampemasse på sjamottbasis med ca. 38 % Al^ O^ med korn mellom 0 til 5 mm, og tilsatt en glassmasse som sintringsmiddel, ble lagvis fylt i hulrommet mellom den varige foring og en flerdelt, lett uttagbar jernplatesjablong med 5 mm veggtykkelse. Komprimeringen skjedde med en elektro-vibrasjonsstamper. I de partier av ovnen hvor en festing ved hjelp av høye temperaturer ikke var mulig, ble stampemasse innstampet med en tilsetning av 6 % fosfatbinde-middel. Deretter ble sjablongen og den komprimerte stampemasse ved hjelp av en gassbrenner oppvarmet til en mellomtemperatur på 300°C med en hastighet på mellom 50 til 100°C pr. time, og denne temperatur ble holdt i 4 - 5 timer. Stampemassen festet seg da slik at det oppsto en selvbærende sliteforing. Etter av-kjøling av sjablongen løsnet denne fra foringen og kunne lett uttas. Deretter ble den selvbærende foring oppvarmet videre med gassbrenneren og ved en temperatur på 800°C i ovnen ble flytende aluminium fylt i som sintringsfylling. Aluminiumsfyl-lingen ble så induktivt varmet opp til 1000°C og denne sintringstemperatur ble holdt i 12 timer. Sjamottforingen ble da sintret og ovnen var klar for normal drift. Instead of heating with the help of a gas burner, you can of course also carry out inductive heating. Instead of a liquid sintering filling, a fixed insert can also be used as a sintering filling, especially with medium and high-frequency induction furnaces. Crucible and trough furnaces for melting and processing aluminum and aluminum alloys were produced as follows: A completely dry rammed mass on a chamotte basis with approx. 38% Al^O^ with grains between 0 to 5 mm, and added a glass mass as a sintering agent, was filled in layers in the cavity between the permanent lining and a multi-part, easily removable iron sheet template with 5 mm wall thickness. The compaction took place with an electro-vibration rammer. In those parts of the oven where fixing by means of high temperatures was not possible, tamping mass was rammed in with an addition of 6% phosphate binder. Then, the stencil and the compressed stamping compound were heated by means of a gas burner to an intermediate temperature of 300°C at a rate of between 50 to 100°C per second. hour, and this temperature was maintained for 4 - 5 hours. The tamping compound then stuck so that a self-supporting wear lining was created. After the stencil had cooled, it detached from the liner and could be easily removed. The self-supporting lining was then heated further with the gas burner and at a temperature of 800°C in the furnace, liquid aluminum was filled in as a sintering filler. The aluminum filling was then inductively heated to 1000°C and this sintering temperature was maintained for 12 hours. The chamotte lining was then sintered and the furnace was ready for normal operation.
En 3 tonns lavfrekvent-induksjonsdigelovn for smelting av bronse ble foret med en kvartsitisk tørrstampemasse med 98 % SiC>2 og med borsyre som sintringsmiddel. Massen ble komprimert i hulrommet mellom den varige foring og en enhetlig, lett uttagbar jernplatesjablong med 8 mm veggtykkelse. Fyllingen skjedde helt opp til den øvre kanten og komprimeringen ble fore-tatt ved hjelp av en kjent vibrasjonsinnretning. Deretter ble sjablongen og den komprimerte stampemasse med en gassbrenner oppvarmet til en temperatur på 500 - 600°C med en hastighet på mellom 100 - 150°C pr. time og denne temperatur ble så holdt i 4-5 timer. Stampemassen festet seg da slik at det fremkom en selvbærende sliteforing. Ved avkjøling av sjablongen kunne denne lett tas ut. Ovnen ble så fylt med en fast innsats og induktivt oppvarmet til. smeltetemperatur med en temperaturstigning på ca. 100 - 150°C pr. time. Smeltetemperaturen utgjorde ca. 1150°C. Ovnen ble overhetet til en temperatur på 1250°C og denne temperatur ble holdt 8 timer helt til foringen var helt sintret. Deretter var ovnen driftsklar. Istedenfor den nevnte faste innsats med induktiv oppvarming kan man etter trekkingen av sjablongen eventuelt benytte den nevnte gassbrenner for oppvarming av ovnen til sintringstemperaturen. A 3 tonne low-frequency induction crucible furnace for melting bronze was lined with a quartzitic dry-stamping compound with 98% SiC>2 and with boric acid as sintering agent. The mass was compacted in the cavity between the permanent liner and a uniform, easily removable iron sheet template with 8 mm wall thickness. The filling took place right up to the upper edge and the compaction was carried out using a known vibration device. Then the stencil and the compressed stamping compound were heated with a gas burner to a temperature of 500 - 600°C at a rate of between 100 - 150°C per minute. hour and this temperature was then maintained for 4-5 hours. The tamping compound then stuck so that a self-supporting wear lining appeared. When the stencil cooled, it could be easily removed. The furnace was then filled with a fixed charge and inductively heated to. melting temperature with a temperature rise of approx. 100 - 150°C per hour. The melting temperature was approx. 1150°C. The furnace was superheated to a temperature of 1250°C and this temperature was maintained for 8 hours until the lining was completely sintered. The furnace was then ready for operation. Instead of the aforementioned fixed input with inductive heating, after drawing the stencil, the aforementioned gas burner can optionally be used to heat the furnace to the sintering temperature.
Bruken av en varig sjablong av jernplate er særlig økonomisk når det gjelder innsmelting av tungmetall-leger- The use of a permanent iron sheet template is particularly economical when it comes to fusing heavy metal alloys
inger. Den vanlige anvendelse av innsmeltingssjablonger be-tinger at disse må bestå av det samme materiale som den an-vendte tungmetall-legering, fordi man ellers får en forurens-ning. Vesentlig billigere sjablonger av jernplater, som fjernes etter bruk, er ikke beheftet med denne ulempe. inger. The usual use of melting stencils requires that these must consist of the same material as the heavy metal alloy used, because otherwise you get contamination. Considerably cheaper stencils made of iron plates, which are removed after use, do not suffer from this disadvantage.
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722213392 DE2213392C3 (en) | 1972-03-20 | Process for the production of a self-standing lining in an induction melting furnace or similar metallurgical furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
NO134434B true NO134434B (en) | 1976-06-28 |
NO134434C NO134434C (en) | 1976-10-06 |
Family
ID=5839457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO1098/73A NO134434C (en) | 1972-03-20 | 1973-03-19 |
Country Status (11)
Country | Link |
---|---|
US (1) | US3837630A (en) |
JP (1) | JPS4918704A (en) |
BE (1) | BE796875A (en) |
CH (1) | CH589831A5 (en) |
DK (1) | DK130551B (en) |
ES (1) | ES412759A1 (en) |
FR (1) | FR2180681B1 (en) |
GB (1) | GB1404274A (en) |
IT (1) | IT981493B (en) |
NL (1) | NL7303794A (en) |
NO (1) | NO134434C (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1457931A (en) * | 1973-03-10 | 1976-12-08 | Nippon Denso Co | High-temperature insulating structures |
JPS50142446A (en) * | 1974-05-07 | 1975-11-17 | ||
JPS5257003A (en) * | 1975-11-06 | 1977-05-11 | Fuji Electric Co Ltd | Dry method for constructing crucible type induction furnace for metlin g aluminum |
US4218418A (en) * | 1978-06-22 | 1980-08-19 | Crystal Systems, Inc. | Processes of casting an ingot and making a silica container |
DE3167851D1 (en) * | 1980-10-01 | 1985-01-31 | Ants Nomtak | Vessel for molten metal and method of making it |
MA20798A1 (en) * | 1985-10-24 | 1987-07-01 | Monsanto Co | SUPPORT FOR CATALYSTS |
US4818224A (en) * | 1987-12-11 | 1989-04-04 | Shell Oil Company | Process |
DE4403270C2 (en) * | 1994-02-03 | 2000-02-24 | Dolomitwerke Gmbh | Method and device for producing a monolithic refractory lining of steel ladles |
US5885510A (en) * | 1997-02-07 | 1999-03-23 | Alcoa Chemie Gmbh | Methods of making refractory bodies |
US6165926A (en) * | 1998-06-24 | 2000-12-26 | Alcoa Chemie Gmbh | Castable refractory composition and methods of making refractory bodies |
US7211038B2 (en) * | 2001-09-25 | 2007-05-01 | Geosafe Corporation | Methods for melting of materials to be treated |
FR2865798B1 (en) * | 2004-02-02 | 2006-12-15 | Saint Gobain | OVEN WITH METAL ENVELOPE |
US20080102413A1 (en) * | 2005-01-28 | 2008-05-01 | Thompson Leo E | Thermally Insulating Liner for In-Container Vitrification |
CN101446471B (en) * | 2007-11-27 | 2010-06-23 | 贵阳铝镁设计研究院 | Lining structure of electrical calcination furnace |
CN105091595B (en) * | 2015-09-06 | 2017-05-10 | 河南省天利工业炉有限公司 | Furnace lining installation process for industrial furnace |
CN106989600A (en) * | 2017-05-16 | 2017-07-28 | 中国二十冶集团有限公司 | The template construction method of heating furnace furnace wall |
US11993828B2 (en) * | 2022-04-05 | 2024-05-28 | Doggone Investment Co. LLC | Apparatus and method for production of high purity copper-based alloys |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1825011A (en) * | 1928-01-02 | 1931-09-29 | Vacuumschmelze Gmbh | Metallurgical furnace |
US1917849A (en) * | 1930-07-26 | 1933-07-11 | Ajax Electrothermic Corp | Refractory lining |
US3151200A (en) * | 1962-05-07 | 1964-09-29 | Atkinson Guy F Co | Ladle lining apparatus |
CH476272A (en) * | 1967-05-12 | 1969-07-31 | Sulzer Ag | Method of making a lining for melting tanks and furnaces |
NL7008651A (en) * | 1970-06-12 | 1970-08-25 | Koninklijke Hoogovens En Staal | |
JPS514925A (en) * | 1974-07-02 | 1976-01-16 | Shaken Kk | MOJIHATSUSE ISOCHI |
-
1973
- 1973-02-28 US US00336556A patent/US3837630A/en not_active Expired - Lifetime
- 1973-03-07 CH CH336573A patent/CH589831A5/xx not_active IP Right Cessation
- 1973-03-16 DK DK144573AA patent/DK130551B/en unknown
- 1973-03-16 ES ES412759A patent/ES412759A1/en not_active Expired
- 1973-03-16 BE BE128876A patent/BE796875A/en unknown
- 1973-03-19 NL NL7303794A patent/NL7303794A/xx unknown
- 1973-03-19 NO NO1098/73A patent/NO134434C/no unknown
- 1973-03-19 GB GB1299573A patent/GB1404274A/en not_active Expired
- 1973-03-20 IT IT21859/73A patent/IT981493B/en active
- 1973-03-20 JP JP48031505A patent/JPS4918704A/ja active Pending
- 1973-03-20 FR FR7309921A patent/FR2180681B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DK130551B (en) | 1975-03-03 |
CH589831A5 (en) | 1977-07-15 |
BE796875A (en) | 1973-07-16 |
DK130551C (en) | 1975-08-04 |
JPS4918704A (en) | 1974-02-19 |
IT981493B (en) | 1974-10-10 |
GB1404274A (en) | 1975-08-28 |
DE2213392B2 (en) | 1977-04-14 |
ES412759A1 (en) | 1976-01-16 |
FR2180681A1 (en) | 1973-11-30 |
US3837630A (en) | 1974-09-24 |
NL7303794A (en) | 1973-09-24 |
NO134434C (en) | 1976-10-06 |
DE2213392A1 (en) | 1973-10-11 |
FR2180681B1 (en) | 1975-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO134434B (en) | ||
US5416795A (en) | Quick change crucible for vacuum melting furnace | |
US3492383A (en) | Process of manufacturing a crack resistant multi-layer furnace lining | |
US4279844A (en) | Method for the repair of runner for molten metal | |
DE3263883D1 (en) | Process for making cast pieces with inserted steel tubes | |
US4351058A (en) | Induction crucible furnace and method for its preparation | |
EP0160384B1 (en) | Induction furnaces | |
US3751571A (en) | Refractory cement lining for coreless induction furnaces | |
US3836613A (en) | Method of making liner in an induction melting furnace | |
US3687437A (en) | Metallurgical furnaces or vessels | |
CN110595211A (en) | Furnace building process for ramming mass plastic material | |
NO116890B (en) | ||
GB1434662A (en) | Process for making refractory linings | |
RU2802219C1 (en) | Method for manufacturing crucible lining of vacuum induction furnace | |
NO149175B (en) | PROCEDURE FOR THE PREPARATION OF ANTIBACTERY ACTIVE RIFAMYCINE P DERIVATIVES | |
JPH09182957A (en) | Molten metal vessel and molten aluminum holding furnace | |
RU2147485C1 (en) | Method for making ladle lining, refractory mass for making lining and ladle for transporting melt metal | |
Frerking | Lining Technique for Induction Melting Furnaces | |
Kaibicheva | Lining induction furnaces in Western Germany and other capitalist countries | |
SU578548A1 (en) | Method of making lining of induction furnaces | |
SU881062A1 (en) | Packing refractory mass | |
SU1822490A3 (en) | Method of making lining from dry tamping mass | |
RU2693717C1 (en) | Method of making a crucible lining of a vacuum induction furnace | |
SU881076A1 (en) | Refractory packing mass | |
PL42765B1 (en) |