NO133756B - - Google Patents

Download PDF

Info

Publication number
NO133756B
NO133756B NO1905/70A NO190570A NO133756B NO 133756 B NO133756 B NO 133756B NO 1905/70 A NO1905/70 A NO 1905/70A NO 190570 A NO190570 A NO 190570A NO 133756 B NO133756 B NO 133756B
Authority
NO
Norway
Prior art keywords
retorts
heating
coal
vacuum
gravel
Prior art date
Application number
NO1905/70A
Other languages
Norwegian (no)
Other versions
NO133756C (en
Inventor
H Steppan
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO133756B publication Critical patent/NO133756B/no
Publication of NO133756C publication Critical patent/NO133756C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Indole Compounds (AREA)
  • Furnace Details (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

Anordning til oppvarming av retorter for kontinuerlig fremstilling av magnesium. Device for heating retorts for the continuous production of magnesium.

Det er allerede kjent til kontinuerlig fremstilling av magnesium av magnesium-holdig utgangsmateriale ved reduksjon med silicium, aluminium og andre stoffer, som i vakuum gir ikke-flyktige oksydasjonsprodukter, å la reaksjonsmaterialet vandre gjennom fortrinnsvis loddrette eller omtrent loddrettstående retorter, som er fremstilt av siliciumkarbid eller keramiske materialer og som er innesluttet i et eva-kuert ovnsrom, og som oppvarmes utenfra ved hjelp av en elektrisk oppvarming som er anordnet inne i dette ovnsrom. It is already known for the continuous production of magnesium from magnesium-containing starting material by reduction with silicon, aluminum and other substances, which in vacuum give non-volatile oxidation products, to allow the reaction material to pass through preferably vertical or approximately vertical retorts, which are made of silicon carbide or ceramic materials and which is enclosed in an evacuated oven chamber, and which is heated from the outside by means of an electric heater which is arranged inside this oven chamber.

For å få en hurtig gjennomvarming av reaksjonsgodset er det hensiktsmessig å anordne i ovnsrommet et større antall retorter av forholdsvis lite tverrsnitt. In order to obtain rapid heating through of the reaction material, it is appropriate to arrange a larger number of retorts of relatively small cross-section in the furnace room.

Oppfinnelsen vedrører utformingen av denne oppvarming for retortene, som må oppfylle særlige betingelser: For reaksjonen av de magnesiumok-sydholdige utgangsstoffer med de nevnte reduksjonsmidler er det nødvendig med temperaturer på 1200—1300° C. Følgelig må oppvarmingen nå temperaturer på 1300 —1600° C for at en tilstrekkelig sterk varmestrøm strømmer gjennom retorte-veggen til reaksjonsblandingen. Videre er det nødvendig med en jevn fordeling av den varme som leveres fra oppvarmingen på de enkelte retorter, for at reaksjonen i disse skal foregå med tilnærmet lik has-tighet. The invention relates to the design of this heating for the retorts, which must meet special conditions: For the reaction of the starting substances containing magnesium oxide with the mentioned reducing agents, temperatures of 1200-1300° C are necessary. Consequently, the heating must reach temperatures of 1300-1600° C for a sufficiently strong heat flow to flow through the retort wall to the reaction mixture. Furthermore, an even distribution of the heat supplied from the heating to the individual retorts is necessary, so that the reaction in these takes place at approximately the same speed.

For de angitte temperaturer kan det For the indicated temperatures it can

ikke mer anvendes varmespiraler av krom-nikkel-legeringer. Som varmeledere er det derfor blitt foreslått staver av silicium- heating coils made of chrome-nickel alloys are no longer used. As heat conductors, rods of silicon have therefore been proposed.

karbid, sintrede metaller, kull eller grafitt. For at den nødvendige varme kan overføres ved ikke for høy varmeledertem-peratur, er det nødvendig med en stor var-melederoverflate, dvs. det må innbygges et stort antall varmeledere. Anordningen av varmeledere i vakuum krever en ytter-ligere oppdeling, da under de anvendte trykkbetingelser allerede små spennings-differanser på 30—60 volt kan føre til over-slag og følgelig til ødeleggelse av varme-lederen. Det betinger et stort antall av vanligvis vannavkjølte gjennomføringer gjennom ovnsbekledningen, hvilke må være vakuumtette og elektrisk isolerte og dessuten utformet således at en utbytting av varmelederne er mulig i løpet av kort carbide, sintered metals, coal or graphite. In order for the required heat to be transferred at a not too high heat conductor temperature, a large heat conductor surface is required, i.e. a large number of heat conductors must be built in. The arrangement of heating conductors in a vacuum requires a further division, as under the pressure conditions used, even small voltage differences of 30-60 volts can lead to flashover and consequently to destruction of the heating conductor. This requires a large number of usually water-cooled passages through the furnace lining, which must be vacuum-tight and electrically insulated, and furthermore designed so that replacement of the heating conductors is possible within a short time

tid. Derav følger en overordentlig kompli-sert og ømfintlig ovnskonstruksjon. time. This results in an extremely complicated and delicate oven construction.

Disse nevnte vanskeligheter unngås på enkel måte ifølge oppfinnelsen ved at retortene er anbrakt inne i det evakuerte ovnsrom i kullgrus, hvortil oppvarmings-strømmen ledes ved hjelp av vakuumtette gjennomføringer. Dette kan foregå ved hjelp av metall-, grafitt- eller kullelektro-der, som gjennomtrenger ovnsrommet iso-lert og vakuumtett. Vanligvis anordnes disse elektroder således at strømmen gjen-nomflyter kullgrusen, vesentlig i retortenes akseretning. For dette er det overfor de hittil foreslåtte oppvarmingsstaver bare nødvendig med et relativt lite antall gjen-nomføringer gjennom ovnsbekledningen. These mentioned difficulties are avoided in a simple way according to the invention by the fact that the retorts are placed inside the evacuated furnace room in coal gravel, to which the heating current is led by means of vacuum-tight penetrations. This can take place with the help of metal, graphite or carbon electrodes, which penetrate the furnace chamber in an insulated and vacuum-tight manner. Usually these electrodes are arranged so that the current flows through the coal gravel, essentially in the axial direction of the retorts. For this, compared to the heating rods proposed so far, only a relatively small number of penetrations through the furnace lining are necessary.

Kullgrus- (småkull-, kryptol-) oppvarming er allerede tidligere blitt anvendt ved laboratorie- og forsøksovner for høye temperaturer, men de er siden oppvar-mingsrør av kull eller grafitt var lett å skaffe på grunn av de i det følgende angitte mangler nesten helt fortrengt av slike oppvarmingsrør. Coal gravel (small coal, kryptol) heating has already been used in laboratory and experimental furnaces for high temperatures in the past, but since heating tubes of coal or graphite were easy to obtain, they have been almost entirely displaced by such heating pipes.

Den elektriske motstand av kullgrus er bare i liten grad bestemt ved kullkor-nenes motstand, men i det vesentlige ved deres berøringssteders «tetthetmotstand». Den innvirkes derfor frem for alt selv ved en bare liten overflateavbrann på kull-kornenes kontaktsteder og også ved for-andringer av berørings- (kontakt-) tryk-ket. Den ved gitt spenning opptatte ytelse er derfor meget skiftende. Dette gjør det nødvendig med en vedvarende etterregu-lering av spenningen, enten på grunn av en temperatur- eller en ytelsesmåling. En slik regulering betinger ved en liten ovn en for stor måleteknisk omkostning. The electrical resistance of coal gravel is only determined to a small extent by the resistance of the coal grains, but essentially by the "density resistance" of their points of contact. It is therefore affected above all even by a small surface burn at the contact points of the coal grains and also by changes in the contact (contact) pressure. The performance taken at a given voltage is therefore very variable. This makes it necessary to continuously readjust the voltage, either because of a temperature or a performance measurement. In the case of a small oven, such a regulation results in too great a measurement technical cost.

Videre kommer det ved grusfyllingenes små tverrsnitt lett til dannelse av lysbuer inne i materialet, hvorved det ikke bare i disse oppstår en uønsket temperaturfor-deling, men de høye lysbuetemperaturer ville også føre til en spaltning av det til-grensende keramiske materiale. Furthermore, due to the small cross-section of the gravel fills, it is easy for arcs to form inside the material, whereby not only does an undesirable temperature distribution occur in these, but the high arc temperatures would also lead to a splitting of the adjacent ceramic material.

På grunn av disse erfaringer ved laboratorie- og forsøksovner har man neppe tenkt på anvendelsen av kullgrusoppvarmingen for større ovner. Ifølge et forslag til å oppvarme en, blant annet også til magnesiumfremstilling tjenende gasstett retorte utenfra med -kullgrus, har man for å fjerne kontaktvanskelighetene anordnet pressplater med regulerbart påpressings-trykk, men tydeligvis uten tilstrekkelig re-sultat, for en teknisk utførelse av denne ovn er ikke kjent i de 15 år som er gått siden dens patentering, således at vanske-lighetene med kullgrusoppvarming også ved disse ovner har ikke kunnet blitt over-vunnet, til tross for innbyggingen av pressplater. Således er heller ikke kullgrusoppvarmingen omtalt i det kjente verk av Ullmann «Enzyklopådie der Technischen Chemie», hind 1, «Chemischer Apparatebau und Verfahrenstechnik», 1951, under av-snitt VI B, siffer 7, under de der nevnte bygningstyper av elektriske ovner. Because of these experiences with laboratory and experimental furnaces, the use of coal gravel heating for larger furnaces has hardly been thought of. According to a proposal to heat a gas-tight retort, also used for magnesium production, from the outside with -coal gravel, in order to remove the contact difficulties, pressure plates with adjustable pressing pressure have been arranged, but clearly without sufficient results, for a technical design of this furnace is not known in the 15 years that have passed since its patenting, so that the difficulties with coal gravel heating even in these furnaces have not been able to be overcome, despite the incorporation of pressure plates. Thus, coal gravel heating is also not mentioned in the well-known work by Ullmann "Enzyklopådie der Technischen Chemie", hind 1, "Chemischer Apparatebau und Verfahrenstechnik", 1951, under section VI B, number 7, under the building types of electric furnaces mentioned there.

Til tross for denne avvisende holdning av ovnsbyggingsteknikken overfor kullgrusoppvarming er det ifølge oppfinnelsen gjort det forsøk ved den i større målestokk gjennomførte utvikling av en fremgangs-måte til kontinuerlig fremstilling av magnesium ved reduksjon av magnesiumoksydholdig utgangsmateriale med silicium, aluminium eller lignende under høyt vakuum på mindre enn 10 Torr, fortrinnsvis på mindre enn 1 Torr, under anvendelse av ikke vakuumtette retorter av siliciumkarbid eller keramiske materialer, som i et evakuerbart ovnsrom fortrinnsvis er inn-bygget loddrett eller omtrent loddrett stående og oppvarme disse retorter ved at de Despite this dismissive attitude of furnace construction technology towards coal gravel heating, according to the invention, an attempt has been made in the large-scale development of a process for the continuous production of magnesium by reducing magnesium oxide-containing starting material with silicon, aluminum or the like under high vacuum in less than 10 Torr, preferably of less than 1 Torr, using non-vacuum-tight retorts of silicon carbide or ceramic materials, which are preferably built in vertically or approximately vertically standing in an evacuable furnace room and heat these retorts by

inne i det evakuerte ovnsrom lagres i kullgrus, hvortil oppvarmningsstrøm ledes ved inside the evacuated furnace room is stored in coal gravel, to which heating current is led

hjelp av vakuumtette gjennomføringer. using vacuum-tight bushings.

Denne kullgrusoppvarming som arbeider i det anvendte høye vakuum har vist seg som overraskende emkel og driftssikker uten at de mange andre iakttatte mangler ved kullgrusoppvarmingen på noen måte har gjort seg merkbar. This coal gravel heating, which works in the applied high vacuum, has proven to be surprisingly easy and operationally reliable, without the many other observed shortcomings of the coal gravel heating having in any way made themselves noticeable.

Overfor den kjente oppvarming av staver med silitt, sintrede metaller, grafitt eller kull, har den den fordel at det bare er nødvendig med et vesentlig mindre antall gjennomføringer gjennom ovnsveggen og at kullgrusen er meget mindre ømfintlig overfor de uunngåelige ovnsrystelser. Dessuten er materialomkostningene for kullgrus lave og det er enkelt, f. eks. for utveksling av en retorte, å ta ut fyllingen og igjen bringe den inn. Compared to the known heating of rods with silite, sintered metals, graphite or coal, it has the advantage that only a significantly smaller number of passages through the furnace wall are required and that the coal gravel is much less sensitive to the inevitable furnace vibrations. In addition, the material costs for coal gravel are low and it is easy, e.g. for the exchange of a retort, to take out the filling and again bring it in.

På den annen side unngår anordningen av kullgrus i det høye ved magnesium-fremstillingen anvendte vakuum på mindre enn 10 Torr, 'fortrinnsvis mindre enn 1 Torr, enhver avbrann av denne. Dermed bortfaller alle tidligere kontaktvanskelig-heter mellom tilledningene og kullpartik-lene, som forårsakes av avbrannen. On the other hand, the arrangement of coal gravel in the high vacuum used in magnesium production of less than 10 Torr, preferably less than 1 Torr, avoids any combustion thereof. This eliminates all previous contact difficulties between the leads and the coal particles, which are caused by the burning.

Som kullgrus egner askefattige kull-materialer seg, slik som f. eks. kalsinert petroleumskoks, grafitt, elektrodekull. Kullgrusens kornstørrelse skal ikke under-skride 1 mm, fortrinnsvis har en kornstør-relse mellom 1—30 mm, spesielt mellom 5—10 mm, vist seg som hensiktsmessig. Dette kan utvelges alt etter varmemateri-alsøylens ønskede motstand. Ash-poor coal materials are suitable as coal gravel, such as e.g. calcined petroleum coke, graphite, electrode carbon. The grain size of the coal gravel must not fall below 1 mm, preferably a grain size between 1-30 mm, especially between 5-10 mm, has proven to be appropriate. This can be selected according to the desired resistance of the heating material column.

Særlig konstante motstandsforhold får man når det i en ovn fylles kullmateriale av mest mulig omtrent lik kornstørrelse, f. eks. i størrelsen 2—5 mm, eller eventuelt 25—30 mm. Kornstørrelsen prøves ved hjelp av modellforsøk på hvilke er de gun-stigste verdier for ovnspenningen og ovn-strømmen. Particularly constant resistance conditions are obtained when a furnace is filled with coal material of roughly the same grain size as possible, e.g. in the size 2-5 mm, or possibly 25-30 mm. The grain size is tested using model tests on which are the highest values for the furnace voltage and furnace current.

Ved kullgrusoppvarmingen består dessuten den mulighet å lede den utviklede magnesiumdamp gjennom utboringer i re-torteveggene gjennom kullgrusen inn i kondensatoren, idet grusen tjener som filter og adskiller medrevne støvformede deler av reaksjonsmaterialet. During the coal gravel heating, there is also the possibility of directing the developed magnesium vapor through boreholes in the retort walls through the coal gravel into the condenser, as the gravel serves as a filter and separates entrained dust-shaped parts of the reaction material.

Oppvarmingstypen ifølge oppfinnelsen er nærmere forklart i forbindelse med det på fig. 1 og 2 gjengitte utførelseseksem-pel, uten at oppfinnelsen dermed er be-grenset til dette eksempel. The heating type according to the invention is explained in more detail in connection with that in fig. 1 and 2 reproduced examples, without the invention being thus limited to this example.

På tegningens fig. 1 og 2 er ovnen utstyrt med en utmuring og omgitt av en vauumtett ovnsbekledning 2 av jern. Reaksjonsgodset som i form av pressede bri-ketter av en diameter på f. eks. 40 mm og en høyde på 25 mm fylles i den evakuerte ovn gjennom innføringsslusen 3, vandrer gjennom retortene, som består av siliciumkarbid med en diameter på f. eks. 150 mm og en oppvarmingslengde på 2.000 mm til utføringsslusen 5. Retortene 4 er lagret i kullgrus 6 av en kornstørrelse på 2—5 mm (spesifikk motstand ved 1400° C: = 13 600 Ohm x mms x m-i), som tjener som opp-varmingsmotstand. Hertil føres fra den re-gulerbare transformator 7 en strøm på 417 amp. ved 118 volt over ringskinnene 8 og grafittelektrodene 9. Tverrsnittet av opp-varmingsmotstanden (q) fremkommer av ovnsrommets tverrsnitt, forminsket med de fire retorters tverrsnitt og utgjør altså 19,6 — (4 x 2,5) dma = 9,6 dm2 = 96.000 mm2, den midlere lengde av strømbanen = 2 m (elektrodeavstand 1). Dens mot-1 x 2 x 13 600 stand: R — = = 0,285 In the drawing's fig. 1 and 2, the oven is equipped with a wall and surrounded by a vacuum-tight oven lining 2 made of iron. The reaction material, which is in the form of pressed briquettes with a diameter of e.g. 40 mm and a height of 25 mm is filled in the evacuated furnace through the introduction sluice 3, travels through the retorts, which consist of silicon carbide with a diameter of e.g. 150 mm and a heating length of 2,000 mm to the discharge sluice 5. The retorts 4 are stored in coal gravel 6 of a grain size of 2-5 mm (specific resistance at 1400° C: = 13,600 Ohm x mms x m-i), which serves as up- heating resistance. To this, a current of 417 amps is fed from the adjustable transformer 7. at 118 volts across the ring rails 8 and the graphite electrodes 9. The cross-section of the heating resistance (q) results from the cross-section of the furnace chamber, reduced by the cross-section of the four retorts and thus amounts to 19.6 — (4 x 2.5) dma = 9.6 dm2 = 96,000 mm2, the average length of the current path = 2 m (electrode distance 1). Its counter-1 x 2 x 13 600 stand: R — = = 0.285

q 96.000 Ohm, ved en oppvarmingsytelse på 50 kW fåes følgende strøm (J) og spenningsverdi q 96,000 Ohm, at a heating output of 50 kW the following current (J) and voltage value are obtained

50.000 50,000

(E): J2= = 175 000 ; J = 417 (E): J2= = 175,000 ; J = 417

0,285 0.285

A; E = J x R = 417 x 0,285 = 118 V. A; E = J x R = 417 x 0.285 = 118V.

Varmemotstandens temperatur utgjør 1400° C. I elektrodene 9 er det innskrudd vannavkjølte rør 10, som med vakuumtette pakkbokser 11 er ført gjennom avtagbare lokk 12. De avtagbare lokk 12 er satt vakuumtett på stusser 13, som er påsveiset ovnsbekledningen 2. Diameteren av stus-sene 13 er så stor at elektrodene 9 kan settes gjennom dem og trekkes ut. The temperature of the heating resistance is 1400° C. Water-cooled tubes 10 are screwed into the electrodes 9, which with vacuum-tight packing boxes 11 are led through removable lids 12. The removable lids 12 are placed vacuum-tight on spigots 13, which are welded to the furnace lining 2. The diameter of the spigot tendon 13 is so large that the electrodes 9 can be inserted through them and pulled out.

Reaksjonsgodset trer fra innførings-slusen 3 ved værelsestemperatur inn i retortene 4, hvori det hersker et ovnstrykk på 0,8 Torr og oppvarmer i retortenes øvre tredjedel til 1300° C. Magnesiumdampens hovedmengde utvikles ved 1300° C i den midterste tredjedel av retortene 4. Magne-siumdamputviklingens likevektstrykk ut-gjør herved omtrent 70 Torr. I retortenes nedre tredjedel ferdigreageres brikettene og utføres gjennom utføringsslusen 5. The reaction material passes from the inlet sluice 3 at room temperature into the retorts 4, where a furnace pressure of 0.8 Torr prevails and heats up in the upper third of the retorts to 1300° C. The main amount of magnesium vapor is developed at 1300° C in the middle third of the retorts 4. The equilibrium pressure of the magnesium vapor development is thus approximately 70 Torr. In the lower third of the retorts, the briquettes are finished reacting and carried out through the output sluice 5.

Veggene av retortene 4 har ikke viste utboringer av 5 mm diameter (1 boring pr. cm2). Gjennom disse strømmer den utviklede magnesiumdamp gjennom kullgrusen 6 over ringkanalen 14 i kondensa-torstussene 15 og deretter inn i den ikke viste evakuerte kondensator, hvorfra per-manentgassene pumpes vekk med en va-kuumpumpe. The walls of the retorts 4 have not shown bores of 5 mm diameter (1 bore per cm2). Through these, the developed magnesium vapor flows through the coal gravel 6 over the annular channel 14 in the condenser nozzles 15 and then into the not shown evacuated condenser, from which the permanent gases are pumped away with a vacuum pump.

De av magnesiumdampen fra reaksjonsgodset medrevne faststoff deler ad-skilles ved filtreringsvirkning i kullgrusen 6. Denne fornyes fra tid til annen, idet ovnen etter avkjøling fylles med luft, den forurensede kullgrus 6 fjernes gjennom en stuss ved ovnens bunn (ikke vist) og ny kullgrus 6 ifylles gjennom en stuss ved ovnens hode (ikke vist). The solid parts entrained by the magnesium vapor from the reaction material are separated by a filtering effect in the coal gravel 6. This is renewed from time to time, as the furnace is filled with air after cooling, the contaminated coal gravel 6 is removed through a nozzle at the bottom of the furnace (not shown) and new coal gravel 6 is filled through a spigot at the head of the stove (not shown).

Claims (2)

1. Anordning til oppvarmning av retorter for kontinuerlig fremstilling av magnesium av magnesiumoksydholdig utgangsmateriale ved reduksjon med silisium, aluminium eller andre stoffer som ikke gir flyktige oksydasjonsprodukter under høyt vakuum på mindre enn 10 Torr, fortrinsvis på mindre enn 1 Torr, idet de av silisium-karbid- eller keramiske materialer frem-stilte ikke vakuumtette retorter er innbyg-get i et evakuerbart ovnsrom, fortrinnsvis loddrett eller omtrent loddrett stående, karakterisert ved at retortene (4) inne i det evakuerte ovnsrom er lagret i kullgrus (6), hvortil det føres oppvarmningsstrøm ved hjelp av vakuumtette gjennomføringer.1. Device for heating retorts for the continuous production of magnesium from starting material containing magnesium oxide by reduction with silicon, aluminum or other substances which do not give volatile oxidation products under high vacuum of less than 10 Torr, preferably of less than 1 Torr, since those of silicon non-vacuum-tight retorts made of carbide or ceramic materials are built into an evacuable furnace space, preferably vertically or approximately vertically standing, characterized by the fact that the retorts (4) inside the evacuated furnace space are stored in coal gravel (6), to which it is fed heating flow using vacuum-tight bushings. 2. Anordning ifølge påstand 1, karakterisert ved at retortenes (4) vegger er utstyrt med utboringer hvori-gjennom magnesiumdampen som frem-bringes i retortene kommer gjennom kullgrusen (6) og tjener som filter over ringkanalen (14) i kondensatoren (15).2. Device according to claim 1, characterized in that the walls of the retorts (4) are equipped with bores through which the magnesium vapor produced in the retorts comes through the coal gravel (6) and serves as a filter over the ring channel (14) in the condenser (15).
NO1905/70A 1969-05-20 1970-05-19 NO133756C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82629669A 1969-05-20 1969-05-20

Publications (2)

Publication Number Publication Date
NO133756B true NO133756B (en) 1976-03-15
NO133756C NO133756C (en) 1976-06-23

Family

ID=25246170

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1905/70A NO133756C (en) 1969-05-20 1970-05-19

Country Status (20)

Country Link
JP (1) JPS4945323B1 (en)
AT (1) AT327171B (en)
BE (1) BE750693A (en)
BG (1) BG20629A3 (en)
CA (1) CA971160A (en)
CH (1) CH607098A5 (en)
DE (2) DE2065733C2 (en)
DK (1) DK143621C (en)
ES (1) ES379775A1 (en)
FI (1) FI53896C (en)
FR (1) FR2048537A5 (en)
GB (1) GB1312926A (en)
IL (1) IL34548A (en)
NL (1) NL174835C (en)
NO (1) NO133756C (en)
PL (1) PL92450B1 (en)
SE (1) SE386435B (en)
SU (1) SU660590A3 (en)
YU (1) YU33996B (en)
ZA (1) ZA703394B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2058178C2 (en) * 1970-11-26 1982-04-01 Hoechst Ag, 6000 Frankfurt Process for the production of screen printing forms
GB1450196A (en) * 1972-11-25 1976-09-22 Hoechst Ag Light-sensitive preparations
JPS5128001A (en) * 1974-08-29 1976-03-09 Polychrome Corp Kizaijono kankohifuku oyobi sonoseizoho
FR2406230A1 (en) * 1977-10-11 1979-05-11 Eastman Kodak Co PHOTOSENSITIVE AND PRODUCED COMPOSITION
DE2822887A1 (en) * 1978-05-26 1979-11-29 Hoechst Ag LIGHT SENSITIVE RECORDING MATERIAL AND METHOD FOR THE PRODUCTION OF RELIEF RECORDS
DE3273849D1 (en) * 1981-03-20 1986-11-20 Hoechst Co American Light-sensitive polycondensation product, process for its preparation and light-sensitive recording material containing the same
US4436804A (en) 1981-03-20 1984-03-13 American Hoechst Corporation Light-sensitive polymeric diazonium condensates and reproduction compositions and materials therewith
EP0096326B1 (en) * 1982-06-03 1986-07-30 American Hoechst Corporation Photosensitive composition developable with water, and photosensitive copying material produced therefrom
US4469772A (en) * 1982-06-03 1984-09-04 American Hoechst Corporation Water developable dye coating on substrate with two diazo polycondensation products and water soluble polymeric binder
JP2944296B2 (en) 1992-04-06 1999-08-30 富士写真フイルム株式会社 Manufacturing method of photosensitive lithographic printing plate
CN110317130B (en) * 2018-03-29 2021-12-21 深圳翰宇药业股份有限公司 Compound and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE630565A (en) * 1961-01-25

Also Published As

Publication number Publication date
DE2065733C2 (en) 1982-10-07
IL34548A0 (en) 1970-07-19
JPS4945323B1 (en) 1974-12-03
DE2024242A1 (en) 1970-12-17
PL92450B1 (en) 1977-04-30
DK143621C (en) 1982-02-15
GB1312926A (en) 1973-04-11
NL174835C (en) 1984-08-16
BE750693A (en) 1970-11-20
SU660590A3 (en) 1979-04-30
AT327171B (en) 1976-01-26
NL7006716A (en) 1970-11-24
DE2024242C2 (en) 1984-09-20
SE386435B (en) 1976-08-09
ES379775A1 (en) 1973-02-01
DK143621B (en) 1981-09-14
CA971160A (en) 1975-07-15
ZA703394B (en) 1971-06-30
CH607098A5 (en) 1978-11-30
FR2048537A5 (en) 1971-03-19
YU125470A (en) 1978-02-28
DE2065733A1 (en) 1975-09-04
FI53896C (en) 1978-08-10
BG20629A3 (en) 1975-12-05
IL34548A (en) 1985-04-30
FI53896B (en) 1978-05-02
YU33996B (en) 1978-09-08
ATA763971A (en) 1975-04-15
NL174835B (en) 1984-03-16
NO133756C (en) 1976-06-23

Similar Documents

Publication Publication Date Title
NO133756B (en)
NO156333B (en) SYSTEM FOR PREFABRICATED CONCRETE ELEMENTS.
US2789150A (en) Heat reservoir and electrode for production of metals in skull type furnace
US2154737A (en) Electric furnace
US2429584A (en) Method of and apparatus for removing zinc from copper base alloys
DK164096B (en) Process for continuously graphitizing long carbon- containing products, and a furnace for implementing the process
US4389283A (en) Method for making coke via induction heating
US3243174A (en) Dissociation-deposition apparatus for the production of metals
US1177680A (en) Electric furnace.
US2745891A (en) Apparatus for melting highly reactive metals
US3429974A (en) High temperature tunnel kiln for production of crystalline refractory and abrasive materials
US572312A (en) Electric furnace
US3348915A (en) Method for producing a crystalline carbide, boride or silicide
US920473A (en) Distillation-furnace.
US2161916A (en) Electric shaft furnace
US1121874A (en) Zinc-furnace.
US3230072A (en) Production of aluminum by electro-thermal reduction
US3244511A (en) Electrothermal reduction of oxide ores or other oxide compounds
NO140006B (en) PROCEDURES FOR CONTINUOUS GRAPHITING
US1752936A (en) Process for the manufacture of anhydrous aluminum chloride
US2516474A (en) Electric furnace for production of magnesium
US1938121A (en) Process for distilling coal
US1032246A (en) Method of treating carbon.
US1100709A (en) Electric furnace.
US2068447A (en) Continuous high temperature electrothermal furnace