NO131616B - - Google Patents

Download PDF

Info

Publication number
NO131616B
NO131616B NO1537/72A NO153772A NO131616B NO 131616 B NO131616 B NO 131616B NO 1537/72 A NO1537/72 A NO 1537/72A NO 153772 A NO153772 A NO 153772A NO 131616 B NO131616 B NO 131616B
Authority
NO
Norway
Prior art keywords
vanadyl
polymerization
vanadium
ethylene
aluminum
Prior art date
Application number
NO1537/72A
Other languages
Norwegian (no)
Other versions
NO131616C (en
Inventor
A Castela
P Joubert
Original Assignee
Inst Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Francais Du Petrole filed Critical Inst Francais Du Petrole
Publication of NO131616B publication Critical patent/NO131616B/no
Publication of NO131616C publication Critical patent/NO131616C/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/08Apparatus for feeding the rods or cables; Apparatus for increasing or decreasing the pressure on the drilling tool; Apparatus for counterbalancing the weight of the rods
    • E21B19/09Apparatus for feeding the rods or cables; Apparatus for increasing or decreasing the pressure on the drilling tool; Apparatus for counterbalancing the weight of the rods specially adapted for drilling underwater formations from a floating support using heave compensators supporting the drill string
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7052Single-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7121Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S254/00Implements or apparatus for applying pushing or pulling force
    • Y10S254/90Cable pulling drum having wave motion responsive actuator for operating drive or rotation retarding means

Description

Katalysatorblanding for polymerisasjon av etylen. Catalyst mixture for the polymerization of ethylene.

Denne oppfinnelse angår halogenfri katalysator til bruk ved polymerisasjon av etylen, spesielt katalysatorer som inneholder organiske vanadylsalter og organo-aluminiumforbindelser. This invention relates to halogen-free catalyst for use in the polymerization of ethylene, especially catalysts containing organic vanadyl salts and organo-aluminum compounds.

Polymerisasjon av olefiner, spesielt Polymerization of olefins, esp

etylen, er vel kjent. Det er blitt foreslått tallrike midler og stoffer for å bevirke at slik polymerisasjon foregår eller ledes så man får et eller annet ønsket produkt. Med forskjellig grad av hell er det blitt foreslått mange metaller, disses salter og oksyder, forbindelser av peroksytype som gir fri radikaler, syrer, Friedel-Craft-katalysatorer, ultrafiolett lys og katodestråler. De så-kalte Ziegler-katalysatorkomposisjoner er kanskje de best kjente, spesielt en kombinasjon av en trialkylaluminiumforbin-delse og titan-halogenid som f. eks. titantetraklorid. ethylene, is well known. Numerous agents and substances have been proposed to cause such polymerization to take place or be directed so that one or other desired product is obtained. Many metals, their salts and oxides, peroxy-type compounds which produce free radicals, acids, Friedel-Craft catalysts, ultraviolet light and cathode rays have been proposed with varying degrees of success. The so-called Ziegler catalyst compositions are perhaps the best known, especially a combination of a trialkyl aluminum compound and titanium halide such as, for example titanium tetrachloride.

Selv om kombinasjoner av disse forbindelser bevirker etylenpolymerisasjon Although combinations of these compounds cause ethylene polymerization

med meget fordelaktig hastighet inntrer det ulemper som skaper problemer. Det viktigste av disse problemer er at det i det polymeriserte produkt finnes rester av klor, som ofte bevirker betydelig korrosjon av former og andre apparater som anvendes ved behandling av den polymere. Det er blitt foreslått forskjellige vaskemetoder for å fjerne kloret fra harpiksen, men disse har ikke vist seg å være fullt tilfreds-stillende. Det synes som om noe klor kan være kjemisk bundet i de polymere mole-kyler og frigjøres ved opphetning, og at vaskeoperasj onene derfor ikke gir fullstendig gode resultater. with very advantageous speed disadvantages arise which cause problems. The most important of these problems is that there are residual chlorine in the polymerized product, which often causes significant corrosion of molds and other devices used in processing the polymer. Various washing methods have been proposed to remove the chlorine from the resin, but these have not proven to be fully satisfactory. It seems that some chlorine may be chemically bound in the polymer molecules and released by heating, and that the washing operations therefore do not give completely good results.

Det er med forskjellig grad av hell blitt foreslått halogenfri katalysatorer, for å overvinne korrosjonsproblemet. Det er blitt foreslått å anvende forbindelser av metaller som i Demings periodiske system angis i gruppen IV-B til og med VI-B, spesielt zirkonium- og toriumforbindelser og deri-iblant særlig acetyl-acetonater av disse to metaller. Det er også blitt forsøkt å anvende V+<3->acetylacetonater og hydratiserte oksyder av titan og zirkonium. Men alle disse katalysatorer gir lav polymerisasjons-hastighet og lite polymerutbytte sammen-liknet med bruk av titantetraklorid ved lave trykk. Hvis det anvendes arbeidstrykk på 50—150 atmosfærer blir polymerisasjons-hastigheten av etylen noe øket, men er fremdeles forholdsvis liten, og det rapporte-res polymerutbytter på ikke over 5 g pr. g katalysator, selv under disse strenge betingelser. Halogen-free catalysts have been proposed with varying degrees of success to overcome the corrosion problem. It has been proposed to use compounds of metals which in Deming's periodic table are listed in group IV-B to and including VI-B, especially zirconium and thorium compounds and including especially acetyl-acetonates of these two metals. Attempts have also been made to use V+<3->acetylacetonates and hydrated oxides of titanium and zirconium. But all these catalysts give a low polymerization rate and low polymer yield compared to the use of titanium tetrachloride at low pressures. If a working pressure of 50-150 atmospheres is used, the polymerization rate of ethylene is somewhat increased, but is still relatively small, and polymer yields of no more than 5 g per g catalyst, even under these severe conditions.

Det er videre blitt vist, at vanadium-estere av typen (RO),VO, hvor R er en organisk alkylgruppe, avviker betydelig, hva katalyttisk aktivitet angår, fra titanestere av liknende type, dvs. Ti(OR)-t, eller fra titantrialkoksyder. Titanestere som f. eks. tetrabutyltitanat i kombinasjon med et aluminiumalkyl gir en hurtig polymerisasjon av etylen, men hovedproduktet er den dimere. Anvendes det vanadium-estere, som f. eks. trietylvanadat eller tri-n-butylvanadat går polymerisasjonen meget langsommere, men den dannede polymere har en langt større molekylvekt. Det dannes også betydelige mengder voks av lav molekylvekt, som gjør harpiksen skjør. Det er videre kjent å anvende en katalysatorblanding som består av en trialkyl-aluminiumforbindelse i kombinasjon med vanadiumacetylacetonat eller vanadium. It has also been shown that vanadium esters of the type (RO),VO, where R is an organic alkyl group, deviate significantly, as far as catalytic activity is concerned, from titanium esters of a similar type, i.e. Ti(OR)-t, or from titanium trialkoxides. Titanium esters such as tetrabutyl titanate in combination with an aluminum alkyl gives a rapid polymerization of ethylene, but the main product is the dimer. If vanadium esters are used, such as triethyl vanadate or tri-n-butyl vanadate, the polymerization is much slower, but the polymer formed has a much higher molecular weight. Significant amounts of low molecular weight wax are also formed, which makes the resin brittle. It is also known to use a catalyst mixture consisting of a trialkyl aluminum compound in combination with vanadium acetylacetonate or vanadium.

Det er imidlertid nu blitt funnet at man oppnår en meget god polymeriser-ingskatalysator når det anvendes en blanding av en halogenfri organoaluminium-forbindelse og et vanadylsalt, idet det da. fåes etylenpolymere uten forurensning fra halogen, og som er praktisk talt fri for voks som er oppløselig, i kokende cykloheksan. However, it has now been found that a very good polymerization catalyst is obtained when a mixture of a halogen-free organoaluminum compound and a vanadyl salt is used, since ethylene polymers are obtained without contamination from halogen, and which are practically free of waxes which are soluble in boiling cyclohexane.

Organo-aluminiumforbindelsene, som representerer den ene del av katalysator-komposisjonen, kan representeres ved den alminnelige formel AIRs, i hvilken R er et enværdig alkyl- eller aryl-kullvannstoff-radikal. Disse forbindelser er vel kjente når det gjelder olefinpolymerisasjon, og de benyttes som den ene bestanddel i den vanlige Ziegler-katalysator. Tri-isobutyl-'aluminium har vist seg å være meget fordelaktig for den foreliggende oppfinnelses formål, men også tripropyl-, trietyl- eller et hvilket som helst trialkyl- eller triaryl-aluminium kan anvendes med fordel, uten at resultatene endres i vesentlig grad. The organo-aluminum compounds, which represent one part of the catalyst composition, can be represented by the general formula AIRs, in which R is a monovalent alkyl or aryl hydrocarbon radical. These compounds are well known when it comes to olefin polymerization, and they are used as one component in the usual Ziegler catalyst. Tri-isobutyl aluminum has proven to be very advantageous for the purposes of the present invention, but also tripropyl, triethyl or any trialkyl or triaryl aluminum can be used with advantage, without the results changing to a significant extent.

Polymerisasjonen av etylen i nærvær av en organo-aluminiumforbindelse og et metallsalt, ansees alminnelig å være en to-trinns reaksjon, hvor det første trin består i at etylen adderes til organo-aluminium-forbindelsen så det dannes høyere organo-amminiumfbrbindelser i henhold til den følgende likning: The polymerization of ethylene in the presence of an organo-aluminum compound and a metal salt is generally considered to be a two-step reaction, where the first step consists in the addition of ethylene to the organo-aluminum compound so that higher organo-aluminum compounds are formed according to the following equation:

hvor R,, R, og R,j er de- samme eller forskjellige alkyl- eller arylgrupper i det første tilfelle og deretter etylgrupper, og hvor x,, y og z betekner hele tall, hvis sum er lik n. Det annet trinn består i en spaltning, hvor de høyere organiske grupper som er dannet i henhold til likningen (1) og som er bundet til aluminium,, blir avspaltet og erstattet med etylgrupper i henhold til den følgende likning: where R,, R, and R,j are the same or different alkyl or aryl groups in the first case and then ethyl groups, and where x, y and z denote whole numbers, the sum of which is equal to n. The second step consists in a cleavage, where the higher organic groups formed according to equation (1) and which are bound to aluminium, are split off and replaced with ethyl groups according to the following equation:

Reaksjonene (1) og (2). representerer i kombinasjon en virkelig katalyttisk reaksjon, hvis resulterende produkt bestemmes av den relative hastighet av addisj ons-reaksjonen (1) i forhold til spaltningsre-aksjonen (2). Addisj onsreaksj onen med A1R;! foregår langsomt ved lave tempera-turer, men allikevel- hurtigere' enn spaltningsreaksj onen. Men. når temperaturen stiger blir hastigheten av spaltereaksjonen større enn hastigheten av addisj onsreaksj onen. Ved hevning av temperaturen til et punkt hvor addisj onen av etylen til AIR., har en hastighet som er teknisk brukbar er derfor, spaltningsreaksj onen blitt den fremherskende faktor,, og det fås en polymer av lav molekylvekt. Reactions (1) and (2). represents in combination a true catalytic reaction, the resulting product of which is determined by the relative rate of the addition reaction (1) in relation to the cleavage reaction (2). The addition reaction with A1R;! takes place slowly at low temperatures, but still faster than the cleavage reaction. But. as the temperature rises, the rate of the cleavage reaction becomes greater than the rate of the addition reaction. By raising the temperature to a point where the addition of ethylene to AIR., has a rate that is technically usable, the cleavage reaction has therefore become the predominant factor, and a polymer of low molecular weight is obtained.

For at- polymerisasj onsreaksj.onen skal foregå hurtig,, og også en polymer av høy For the polymerization reaction to take place quickly, and also a polymer of high

molekylvekt skal dannes, blir det i forbindelse med organo-aluminium-katalysato-ren anvendt en aktivator eller sam-katalysator i form av et metall eller metallsalt. Disse aktivatorer har, alt etter deres art og mengde, en sterk dirigerende og akseler-ende innvirkning på polymerisasjonen, og bestemmer stort sett fremgangsmåtens effektivitet. molecular weight is to be formed, an activator or co-catalyst in the form of a metal or metal salt is used in connection with the organo-aluminum catalyst. These activators, depending on their nature and amount, have a strong directing and accelerating effect on the polymerization, and largely determine the effectiveness of the process.

Det er som aktivatorer blitt foreslått mange metaller og metallholdige anorga-niske forbindelser, deriblant titan, zirkonium,. torium og vanadium og generelt metaller i gruppen IV-B til VI-B i Demings periodiske system. Videre er det blitt foreslått, mange organiske forbindelser av visse metaller, spesielt av vanadium, som har forskjellige innvirkninger på etylenpolymerisasjon. Disse variasjoner i aktivitet har forbindelse med den kjemiske natur av de organiske radikaler som er knyttet til metallatomet, men den nøyaktige me-kanisme ved hvilken metallatomets aktivitet påvirkes er ennå ikke fullstendig for-stått. Betydelig forbedret polymerisasjon av etylen kan imidlertid nå oppnås ved å inkludere de i kravet angitte vanadylsalter. Many metals and metal-containing inorganic compounds, including titanium, zirconium, have been proposed as activators. thorium and vanadium and generally metals in group IV-B to VI-B in Deming's periodic table. Furthermore, many organic compounds of certain metals, especially of vanadium, have been proposed which have different effects on ethylene polymerization. These variations in activity are related to the chemical nature of the organic radicals which are linked to the metal atom, but the exact mechanism by which the activity of the metal atom is affected is not yet fully understood. However, significantly improved polymerization of ethylene can now be achieved by including the vanadyl salts specified in the claim.

Vanadylforbindelsene er karakterisert ved at minst et oksygenatom har dobbelt-binding til vanadiumatomet og ikke til noe annet atom. Uttrykket vanadylsalter, slik som det anvendes i det foreliggende krav, betekner organovanadiumforbindelser av den alminnelige formel (O = V)RS, hvor valensen av (O = V)radikalet er +2 og R er resten av en karbonsyre med en eller to karboksylgrupper og x er lik 1 hvis begge karboksylgruppene i en tobasisk syre er forbundet med (O = V)++-gruppen, og er lik 2 hvis bare en karboksylgruppe i en hvilken som helst R-gruppe er forbundet med (0-V)++-radikalet. The vanadyl compounds are characterized by at least one oxygen atom having a double bond to the vanadium atom and not to any other atom. The expression vanadyl salts, as used in the present claim, denotes organovanadium compounds of the general formula (O = V)RS, where the valence of the (O = V) radical is +2 and R is the residue of a carboxylic acid with one or two carboxyl groups and x is equal to 1 if both carboxyl groups of a dibasic acid are connected to the (O = V)++ group, and is equal to 2 if only one carboxyl group of any R group is connected to (0-V)++ -the radical.

Som det vil forstås er det bare nød-vendig at to karboksylgrupper er forbundet med (O = V)++-radikalet. Det er ikke nødvendig at begge en tobasisk syres karboksylgrupper er bundet til (O = V)++-gruppen, men i stedet kan to forskjellige, eller identiske, tobasisksyregrupper være slik forbundet dermed, at bare en karboksylgruppe fra hver går inn i bindingen. As will be understood, it is only necessary that two carboxyl groups are connected to the (O = V)++ radical. It is not necessary that both carboxyl groups of a dibasic acid are bound to the (O = V)++ group, but instead two different, or identical, dibasic acid groups can be so connected that only one carboxyl group from each enters the bond.

På liknende måte er det, hvor det dreier seg om enbasiske karbonsyreioner, ikke nødvendig at begge ionene er identiske. En tobasisk og en enbasisk syreion bindes til (O = V)++-radikalet på samme tid. Similarly, where monobasic carboxylic acid ions are concerned, it is not necessary that both ions are identical. A dibasic and a monobasic oxygen ion are attached to the (O = V)++ radical at the same time.

Dette skal imidlertid ikke forstås på den måte at alle vanadylsalter som bevirker polymerisasjon av etylen i nærvær av et aluminiumalkyl har lik innvirkning på polymerisasjonen. Et spesielt vanadylsalt kan være langt mere effektivt hva polyme-risasjonshastigheten angår men samtidig gi en forholdsvis større mengde av lavmolekylær voks enn en annen vanadyl-forbindelse gir. However, this should not be understood to mean that all vanadyl salts which cause polymerization of ethylene in the presence of an aluminum alkyl have the same effect on the polymerization. A particular vanadyl salt can be far more effective as far as the rate of polymerization is concerned, but at the same time give a relatively larger amount of low molecular weight wax than another vanadyl compound gives.

Av disse grunner er de foretrukne vanadylsalter de som har den alminnelige formel (O = VRX, hvor R betekner et alkyl- eller alkenylkarbonsyreion som inneholder minst to kullstoffatomer, hvor et alkylendikar-bonsyreion har minst ett kullstoffatom som adskiller karboksylgruppene, et fenyl-karboksynsyreion eller et fenylendikarbon-syreion, og hvor x har verdien 1 hvis begge karboksylgruppene deltar i bindingen i (O = V)++-radikalet og verdien 2 hvis bare en karboksylgruppe i en hvilken som helst av R-gruppene er bundet til (O = V)++-radikalet. For these reasons, the preferred vanadyl salts are those having the general formula (O = VRX, where R represents an alkyl or alkenyl carboxylic acid ion containing at least two carbon atoms, an alkylenedicarboxylic acid ion having at least one carbon atom separating the carboxyl groups, a phenyl carboxylic acid ion or a phenylenedicarboxylic acid ion, and where x has the value 1 if both carboxyl groups participate in the bond in the (O = V)++ radical and the value 2 if only one carboxyl group in any of the R groups is bound to (O = V )++ radical.

De mest foretrukne vanadylsalter er vanadylsaltene av eddiksyre, propionsyre-, 2-etylheksansyre, 2-etylsmørsyre, adipinsyre, benzoesyre og maleinsyre. The most preferred vanadyl salts are the vanadyl salts of acetic acid, propionic acid, 2-ethylhexanoic acid, 2-ethylbutyric acid, adipic acid, benzoic acid and maleic acid.

I den kjemiske litteratur er det blitt beskrevet mange fremgangsmåter til fremstilling av vanadylsalter. De salter som anvendes i den foreliggende oppfinnelse kan imidlertid generelt fremstilles ved at vanadiumacetat reagerer med de foran be-skrevne syrer. Vanadylacetat kan fremstilles ved å la V205 reagere med eddiksyre eller med eddiksyreanhydrid. Spesifike re-aksjonsbetingelser for fremstilling av re-presentative vanadylsalter er angitt i de nedenstående eksempler. In the chemical literature, many methods for the production of vanadyl salts have been described. However, the salts used in the present invention can generally be prepared by reacting vanadium acetate with the acids described above. Vanadyl acetate can be prepared by reacting V 2 O 5 with acetic acid or with acetic anhydride. Specific reaction conditions for the production of representative vanadyl salts are indicated in the examples below.

De nye katalysatorkomposisjoner fremstilles ved at den valgte trialkylaluminium-forbindelser blandes med den valgte vana-dylsaltforbindelse i et inert organisk opp-løsningsmiddel, f. eks. toluol. Foretrukne molare forhold mellom aluminium og vanadium er i området ca. 1 : 10 til 10 : 1, fortrinsvis ca. 3 mol aluminium pr. 1 mol vanadium. Ved polymerisasjoner som fore-tas under trykk har det vist seg fordelaktig å anvende et overskudd av trialkylaluminium, for å motvirke forurensninger i den etylenmonomere. Generelt behøves det ca. 1 millimol trialkylaluminium pr. liter oppløsningsmiddel, som inneholder den etylenmonomere, hvis det ikke fore-kommer noen forurensninger i systemet. The new catalyst compositions are prepared by mixing the selected trialkylaluminium compounds with the selected vanadyl salt compound in an inert organic solvent, e.g. toluene. Preferred molar ratios between aluminum and vanadium are in the range of approx. 1:10 to 10:1, preferably approx. 3 moles of aluminum per 1 mole of vanadium. In polymerizations carried out under pressure, it has proven advantageous to use an excess of trialkylaluminium, in order to counteract contamination in the ethylene monomer. In general, approx. 1 millimol of trialkyl aluminum per liter of solvent, which contains the ethylene monomer, if there are no contaminants in the system.

Disse forurensninger, som består av vanndamp, oksygen og kulldioksyd, reagerer irreversibelt med trialkylaluminiumet og nedsetter dettes effektivitet i høy grad. These contaminants, which consist of water vapour, oxygen and carbon dioxide, react irreversibly with the trialkylaluminium and reduce its effectiveness to a high degree.

De følgende eksempler angir fremstilling av typiske vanadylsaltaktivatorer, fullstendige trialkylaluminiumvanadylsalt-katalysatorkomposisjoner, og spesifikke forsøk som viser disse komposisjoners nytte. The following examples set forth the preparation of typical vanadyl salt activators, complete trialkylaluminum vanadyl salt catalyst compositions, and specific experiments demonstrating the utility of these compositions.

Eksempel 1. Example 1.

En prøve av et vanadylacetat, som ifølge analyse inneholdt 27,0 pst. vanadium, til sammenlikning med bereknet 27,54 pst. for A sample of a vanadyl acetate, which according to analysis contained 27.0 per cent vanadium, for comparison with the calculated 27.54 per cent for

O O

II II

0 = V(OCCH:1)2 ble fremstilt ved at man 1 ca. 6 timer, under anvendelse av tilbake-løpskjøling, opphetet en blanding av 182 g V205, 408 g eddiksyreanhydrid og 120 g edddiksyre. Ureagert eddiksyre og eddik- 0 = V(OCCH:1)2 was produced by taking 1 approx. 6 hours, using reflux, heated a mixture of 182 g of V 2 O 5 , 408 g of acetic anhydride and 120 g of acetic acid. Unreacted acetic acid and acetic

syreanhydrid ble fjernet ved vakuumdestillasjon (0,5 mm Hg) ved 100° C. Man fikk 372 g av et fast vanadylacetatprodukt som hadde en grønngrå farge. acid anhydride was removed by vacuum distillation (0.5 mm Hg) at 100° C. 372 g of a solid vanadyl acetate product was obtained which had a greenish gray color.

Eksempel II. Example II.

Det ble fremstilt et vanadyladipat ved reaksjon mellom adipinsyre og vanadylacetat som var blitt fremstilt i henhold til eksempel I. 37 g (0,2 mol) vanadylacetat ble blandet med 29,2 g .(0,2 mol) adipinsyre i en passende beholder som var utstyrt med et destillasjonsuttak og med slike an-ordninger at en vakuumdestillasjon kunne utføres. Blandingen av de to bestanddeler fikk reagere ved en temperatur av 150— 250° C i flere timer ved atmosfæretrykk, inntil ca. 85 pst. av den bereknede eddiksyre hadde destillert av. Det ble deretter etablert vakuumdestillasjonsbetingelser, og resten av eddiksyren, sammen med en liten mengde adipinsyre, ble fjernet. Man fikk 42,4 g vanadyladipat (bereknet 42,2 g) som ifølge analyse inneholdt 24,0 pst. som er bereknet for A vanadyl adipate was prepared by reaction between adipic acid and vanadyl acetate which had been prepared according to Example I. 37 g (0.2 mol) vanadyl acetate was mixed with 29.2 g (0.2 mol) adipic acid in a suitable container which was equipped with a distillation outlet and with such arrangements that a vacuum distillation could be carried out. The mixture of the two components was allowed to react at a temperature of 150-250° C for several hours at atmospheric pressure, until approx. 85 per cent of the calculated acetic acid had distilled off. Vacuum distillation conditions were then established and the remainder of the acetic acid, together with a small amount of adipic acid, was removed. 42.4 g of vanadyl adipate (calculated 42.2 g) was obtained, which according to analysis contained 24.0 percent, which is calculated for

Dette vanadyladipat var praktisk talt uopp-løselig i en oppløsning av triisobutyl- eller trimetylaluminium. This vanadyl adipate was practically insoluble in a solution of triisobutyl or trimethylaluminum.

Eksempel III. Example III.

Det ble fremstilt et vanadylbenzoat ved å blande 18,5 g tørt vanadylacetat med 50 g benzoesyre og anbringe blandingen i en med et destillasjonsuttak forsynt beholder, hvoretter beholderen med innhold ble opphetet langsomt i et oljebad til 250° C. Under opphetningen destillerte ca. 10,5 g eddiksyre bort. Ved en vakuumdestillasjon ble det meste av overskuddet av benzoesyre fjernet. Den resterende benzoesyre ble fjernet fra vanadylbenzoatet ved ekstra - hering med kokende eter. Man fikk 30,5 g av et fast stoff, som ifølge analyse inneholdt 16,5 pst. vanadium, til sammenlikning med 16,5 pst. bereknet for A vanadyl benzoate was prepared by mixing 18.5 g of dry vanadyl acetate with 50 g of benzoic acid and placing the mixture in a container fitted with a distillation outlet, after which the container containing the contents was heated slowly in an oil bath to 250° C. During the heating, approx. 10.5 g of acetic acid removed. By vacuum distillation, most of the excess benzoic acid was removed. The remaining benzoic acid was removed from the vanadyl benzoate by extraction with boiling ether. 30.5 g of a solid was obtained, which according to analysis contained 16.5 percent vanadium, for comparison with 16.5 percent calculated for

Det ble av vanadylacetat og triisobutyl-aluminium fremstilt en katalysatorkomposisjon ved den følgende metode: Et vanadylacetat, som var blitt fremstilt i henhold til eksempel I, ble malt til en fin suspen-sjon i toluol i en vibrende stålkulemølle. Suspensjonen ble fortynnet til 0,075 g vanadylacetat pr. ml toluol. Av denne sus-pensjon ble 7,6 ml (0,57 g vanadylacetat) tilsatt i en liten, tørr, med argon fyllt flaske som inneholdt 7,8 g triisobutyl-aluminium-toluoloppløsning. Vanadylacetatet oppløs-tes under utvikling av noe varme, og man fik en brunsvart oppløsning. Komposisjo-nen viste seg å være en effektiv katalysator for polymerisasjonen av etylen. A catalyst composition was prepared from vanadyl acetate and triisobutyl aluminum by the following method: A vanadyl acetate, which had been prepared according to Example I, was ground to a fine suspension in toluene in a vibrating steel ball mill. The suspension was diluted to 0.075 g of vanadyl acetate per ml toluene. Of this suspension, 7.6 ml (0.57 g of vanadyl acetate) was added to a small, dry, argon filled flask containing 7.8 g of triisobutyl aluminum toluene solution. The vanadyl acetate dissolved while developing some heat, and a brown-black solution was obtained. The composition proved to be an effective catalyst for the polymerization of ethylene.

Eksempel V. Example V.

En polymerisasjon av etylen under at-mosfærisk trykk og under isotermiske betingelser ble utført på følgende måte: I en 1-liters Morton-kolbe, som var utstyrt med et røreverk, og som inneholdt 500 ml tørr toluol, ble det tilsatt 1,46 g vanadylacetat og 4,75 g triisobutylaluminium (i form av en 20 volumpst. oppløsning i toluol). Etylen ble boblet gjennom toluo-len i 3 timer ved atmosfæretrykk, stadig omrøring og en konstant reaksjonstempe-ratur på 35—40° C. I løpet av denne periode ble det dannet ca. 24 g polyetylen, som strengliknende partikler. Polymeri-sasjonsproduktet ble skilt fra katalysator-restene ved vasking med alkoholisk svovel-syreoppløsning. Det på denne måte ren-sede produkt hadde en smelteindeks på null. Ved ekstrahering med kokende cykloheksan i 16 timer var vekttapet på grunn av oppløst lavmolekylær voks bare 2,2 pst., til forskjell fra polyetylener fremstilt under anvendelse av TiCU-katalysatorer A polymerization of ethylene under atmospheric pressure and under isothermal conditions was carried out as follows: In a 1-liter Morton flask, which was equipped with a stirrer, and which contained 500 ml of dry toluene, was added 1.46 g vanadyl acetate and 4.75 g of triisobutylaluminum (in the form of a 20% by volume solution in toluene). The ethylene was bubbled through the toluene for 3 hours at atmospheric pressure, constant stirring and a constant reaction temperature of 35-40° C. During this period approx. 24 g polyethylene, as string-like particles. The polymerization product was separated from the catalyst residues by washing with alcoholic sulfuric acid solution. The product purified in this way had a melt index of zero. When extracted with boiling cyclohexane for 16 hours, the weight loss due to dissolved low molecular weight wax was only 2.2 percent, in contrast to polyethylenes produced using TiCU catalysts

(aktivatorer) som viste et innhold på 7,5— 14 vektpst. voks. (activators) which showed a content of 7.5-14 wt. wax.

Eksempel VI. Example VI.

Polymerisasjon av etylen under trykk ble utført på følgende måte: I en 2 liters autoklav av rustfritt stål, som inneholdt 1 liter toluol, ble det tilsatt 0,73 g vanadylacetat og 2,38 g triisobutylaluminium. Etylen ble drevet inn i autoklaven inntil det totale indre trykk var 35 kg/cm<2> ved 50° C. Reaksjonen startet straks under varmeut-vikling, som i løpet av ca. 45 minutter hevet temperaturen til ca. 125° C. Når den kata-lyserte polymerisasjon ga seg sank temperaturen til 115° C, og fra nå av ble det til-ført varme utenfra, for å holde temperaturen på mellom 115° og 145° C. Den ram-lede reaksjonstid var 3 timer. Det dannede polymere materiale ble vasket, først med etanol som inneholdt litt svovelsyre, og deretter med vandig etanol og tilslutt med vannfri etanol. Man fikk 103 g polyetylen, som hadde en smelteindeks på null og en sp.v. av 0,949 ved 25° C. En analyse med infrarøde stråler viste at produktet ikke inneholdt sidekjeder, dvs. at den polymere var praktisk talt lineær. Ekstrahering med kokende cykloheksan viser at produktet bare inneholder 2,0 pst. lavmolekylær voks. Polymerization of ethylene under pressure was carried out as follows: In a 2 liter autoclave of stainless steel, which contained 1 liter of toluene, 0.73 g of vanadyl acetate and 2.38 g of triisobutylaluminum were added. The ethylene was driven into the autoclave until the total internal pressure was 35 kg/cm<2> at 50° C. The reaction started immediately under heat development, which during approx. 45 minutes raised the temperature to approx. 125° C. When the catalyzed polymerization gave way, the temperature dropped to 115° C, and from now on heat was added from the outside, to keep the temperature between 115° and 145° C. The ram-led reaction time was 3 hours. The polymeric material formed was washed, first with ethanol containing a little sulfuric acid, and then with aqueous ethanol and finally with anhydrous ethanol. 103 g of polyethylene was obtained, which had a melt index of zero and a sp.v. of 0.949 at 25° C. An infrared analysis showed that the product contained no side chains, i.e., that the polymer was practically linear. Extraction with boiling cyclohexane shows that the product contains only 2.0 percent low molecular weight wax.

Eksempel VII. Example VII.

I en 2 liters autoklav, som inneholdt 1 liter tørr toluol, ble det tilsatt en suspen-sjon av 0,53 g finmalt vanadyladipat og 2,85 g trietylaluminium i 20 ml toluol. Deretter ble det i autoklaven presset inn etylen inntil et innvendig trykk på 14—21 kg/ cm<2> ved 40° C var oppnådd. Etyleninnholdet, målt ved dette indre trykk i autoklaven, ble opprettholdt i ca. 6 timer. I de tidligste trinn av reaksjonen bevirket varmeutviklingen en temperaturstigning til ca. 75 pst., hvoretter temperaturen sank langsomt til ca. 55° C. Utbyttet av 173 g polyetylen var i form av nesten tørre korn, som lett kunne vaskes med alkohol. Ektra-hering med kokennde cykloheksan viste et voksinnhold på bare 0,8 pst. In a 2 liter autoclave, which contained 1 liter of dry toluene, a suspension of 0.53 g of finely ground vanadyl adipate and 2.85 g of triethylaluminum in 20 ml of toluene was added. Ethylene was then pressed into the autoclave until an internal pressure of 14-21 kg/cm<2> at 40° C was achieved. The ethylene content, measured at this internal pressure in the autoclave, was maintained for approx. 6 hours. In the earliest stages of the reaction, the generation of heat caused a temperature rise to approx. 75 per cent, after which the temperature slowly dropped to approx. 55° C. The yield of 173 g of polyethylene was in the form of almost dry grains, which could easily be washed with alcohol. Extraction with boiling cyclohexane showed a wax content of only 0.8 percent.

Eksempel VIII. Example VIII.

I en 2-liters autoklav, son inneholder 1 liter tørr toluol, tilføres det en suspen-sjon av 0,53 g finmalt vanadyladipat og og 2,85 g trietylaluminium i 20 ml toluol. Deretter ble autoklaven tilført etylen, inntil det var oppnådd et indre trykk av 14—21 kg/cm- ved 40° C. Etyleninnholdet, målt ved dette indre trykk i autoklaven, ble opprettholdt i ca. 6 timer. I de første trinn av reaksjonen bevirket varmeutviklingen en temperaturstigning til ca. 75°, hvoretter temperaturen sank langsomt til ca. 55° C. Utbyttet av 173 g polyetylen erholdtes i form av nesten tørre korn, som lett kunne vaskes med alkohol. Ekstrahering med kokende cykloheksan viste et voksinnhold på bare 0,8 pst. In a 2-litre autoclave, which contains 1 liter of dry toluene, a suspension of 0.53 g of finely ground vanadyl adipate and 2.85 g of triethylaluminum in 20 ml of toluene is added. Ethylene was then added to the autoclave, until an internal pressure of 14-21 kg/cm- at 40° C had been achieved. The ethylene content, measured at this internal pressure in the autoclave, was maintained for approx. 6 hours. In the first stages of the reaction, the generation of heat caused a temperature rise to approx. 75°, after which the temperature slowly dropped to approx. 55° C. The yield of 173 g of polyethylene was obtained in the form of almost dry grains, which could easily be washed with alcohol. Extraction with boiling cyclohexane showed a wax content of only 0.8 percent.

Eksempel IX. Example IX.

I en 2-liters autoklav, som inneholdt 1 liter tør toluol, tilsettes det 33 ml av en katalysatorkomposisjon som er blitt fremstilt ved å løse opp 0,85 g vanadylbenzoat i 45 ml av en 20 volum-pst.'s oppløsning av triisobutylaluminium i toluol. Deretter ble autoklaven tilført etylen inntil et indre trykk av 35 kg/cm- ved 35° var oppnådd. Reaksjonen startet øyeblikkelig og varmeutviklingen hevet temperaturen til 120— 125° C i løpet av ca. 1 time. Ettersom reaksjonen saknet av fikk systemets temperatur falle til ca. 100—125° C. Into a 2-liter autoclave, which contained 1 liter of dry toluene, is added 33 ml of a catalyst composition which has been prepared by dissolving 0.85 g of vanadyl benzoate in 45 ml of a 20% by volume solution of triisobutylaluminum in toluene. Ethylene was then added to the autoclave until an internal pressure of 35 kg/cm - at 35° was achieved. The reaction started immediately and the development of heat raised the temperature to 120-125° C during approx. 1 hour. As the reaction slowed down, the system's temperature dropped to approx. 100—125° C.

Det maksimale trykk som oppnåddes i autoklaven var 44,8 kg/cm-. Etter slutten av 4 timer var trykket sunket til 21,7 kg/ cm-. Etter slutten av 4 timer var trykket sunket til 21,7 kg/cm- og reaksjonen var avsluttet. Utbytte av polyetylen etter vasking for å fjerne katalysatorrester og andre forurensninger var 150 g. Ekstrahering med kokende cykloheksan antyder et voksinnhold på 2,6 pst. Det ble foretatt et liknende forsøk med anvendelse av den samme katalysatorkomposisjon og forhold ellers bortsett fra at reaksjonstiden var ca. 20 timer. Utbyttet ble øket med ca. The maximum pressure achieved in the autoclave was 44.8 kg/cm-. After the end of 4 hours the pressure had dropped to 21.7 kg/cm-. After the end of 4 hours the pressure had dropped to 21.7 kg/cm- and the reaction was finished. The yield of polyethylene after washing to remove catalyst residues and other impurities was 150 g. Extraction with boiling cyclohexane suggests a wax content of 2.6 percent. A similar experiment was carried out using the same catalyst composition and conditions except that the reaction time was approx. . 20 hours. The dividend was increased by approx.

25 pst. 25 percent

Det ble foretatt seks ytterligere forsøk med etylen under liknende forhold og i liknende apparater som i eks. V, hvis reaksjonen foregår ved atmosfæretrykk, eller som i f. eks. VI, hvis polymerisasjon skjer under trykk. Resultatene er angitt i den følgende tabell I. Six further tests were carried out with ethylene under similar conditions and in similar devices as in ex. V, if the reaction takes place at atmospheric pressure, or as in e.g. VI, whose polymerization takes place under pressure. The results are set out in the following Table I.

Polyetylener, som fremstilles ved vanlige polymeriseringsprosesser, under atmos-færisk trykk og ved anvendelse av trialkylaluminium og et vanadylsalt, er helt lineær Polyethylenes, which are produced by ordinary polymerization processes, under atmospheric pressure and using trialkyl aluminum and a vanadyl salt, are completely linear

og har lavt innhold av voks, men spesielt and has a low wax content, but especially

gode egenskaper finnes hos polyetylener good properties are found in polyethylenes

som fås ved relativt høye trykk, når de which are obtained at relatively high pressures, when they

samme katalysatorkomposisjoner anvendes. the same catalyst compositions are used.

Eksempelvis ga polyetylen, som er blitt For example, gave polyethylene, which has become

fremstilt ved 50—145° C ved trykk på ca. produced at 50-145° C at a pressure of approx.

35 kg/cm<2>, og med triisobutyl-aluminium 35 kg/cm<2>, and with triisobutyl aluminium

og vanadylacetat som katalysatormateriale, and vanadyl acetate as catalyst material,

ingen som helst metylgrenkjeder, bestemt no methyl branch chains whatsoever, definitely

ved infrarød analyse. Dette tyder på en by infrared analysis. This suggests a

meget sterk linearitet, faktisk noe bedre very strong linearity, actually somewhat better

enn hos en typisk prøve på et polymetylen than in a typical sample of a polymethylene

av høy molekylarvekt. Den sp.v. ved 25° C of high molecular weight. The sp.v. at 25°C

ble funnet å være 0,949 og smelteindeksen was found to be 0.949 and the melt index

hadde verdien null. had the value zero.

De angitte eksempler er naturligvis bare The given examples are, of course, only

å anse som rene beskrivelseseksempler, som to consider as pure description examples, which

ikke begrenser oppfinnelsen. Nyheten ved does not limit the invention. The news at

oppfinnelsen ligger prinsipielt i bruken av the invention principally lies in the use of

visse vanadylsalter som aktivatorer eller certain vanadyl salts as activators or

samkatalysatorer sammen med vanlige co-catalysts along with common ones

organo-aluminium-katalysatorer, hvor po-lymerisasjonsbtingelsene kan varieres i høy organo-aluminium catalysts, where the polymerization conditions can be varied in high

gard, men dog i ligge innenfor oppfinnel-sens ramme. Spesielt kan temperaturen gard, but still within the framework of invention. In particular, the temperature can

varieres fra 25 til 145° C og trykket fra 1 is varied from 25 to 145° C and the pressure from 1

til 50 atmosfærer, hvis det ønskes. to 50 atmospheres, if desired.

Generelt anvendes katalysatorkompo-sisjonen dispergert eller opløst i en inert In general, the catalyst composition is used dispersed or dissolved in an inert

kullvannstoffvæske. Med inert menes at coal hydrogen liquid. By inert is meant that

denne væske ikke inneholder reaktive this liquid does not contain reactive

grupper som hydroksyl, halogen, amin og groups such as hydroxyl, halogen, amine and

nitro og heller ikke slike forurensninger nitro nor such contaminants

som oksygen og vann. Blant egnede inerte such as oxygen and water. Among suitable inerts

kullvannstoffer er renset heptan, oktan, coal hydrocarbons are purified heptane, octane,

benzol og toluol. benzene and toluene.

Claims (6)

1. Katalysatorblanding for polymerisasjon av etylen bestående av en forbindelse av vanadium og en organo-aluminiumforbindelse som har den generelle formel AIR.,, hvor R er et organisk hydro-1. Catalyst mixture for the polymerization of ethylene consisting of a compound of vanadium and an organo-aluminum compound having the general formula AIR.,, where R is an organic hydro- karbonradikal, karakterisert ved at vanadiumforbindelsen er et vanadylsalt av en karbonsyre og har formelencarbon radical, characterized in that the vanadium compound is a vanadyl salt of a carbonic acid and has the formula hvor R' er et alkyl-, alkenyl- eller aryl-hydrokarbonradikal, eller at vanadiumforbindelsen har formelen: i hvilken n har en verdi av 1 eller høyere. where R' is an alkyl, alkenyl or aryl hydrocarbon radical, or that the vanadium compound has the formula: in which n has a value of 1 or greater. 2. Katalysator ifølge påstand 1, karakterisert ved at det molare forhold mellom aluminium og vanadium er fra 1:1 til 10 : 1. 2. Catalyst according to claim 1, characterized in that the molar ratio between aluminum and vanadium is from 1:1 to 10:1. 3. Katalysator ifølge påstand 2, karakterisert ved at det molare forhold mellom aluminium og vanadium er fra 3 : 1. 3. Catalyst according to claim 2, characterized in that the molar ratio between aluminum and vanadium is from 3:1. 4. Katalysator ifølge påstand 1, karakterisert ved at alkylhydrokarbon-radikalet R' er et metyl-, propyl-2-etyl-pentyl-, 2-etylbutyl- eller 2-etylpropyl-radikal. 4. Catalyst according to claim 1, characterized in that the alkyl hydrocarbon radical R' is a methyl, propyl-2-ethyl-pentyl, 2-ethylbutyl or 2-ethylpropyl radical. 5. Katalysator ifølge påstand 1, karakterisert ved at vanadylsaltet er vanadylbenzoat. 5. Catalyst according to claim 1, characterized in that the vanadyl salt is vanadyl benzoate. 6. Katalysator ifølge påstand 1, karakterisert ved at vanadylsaltet er vanadylmaleat eller vanadyladipat.6. Catalyst according to claim 1, characterized in that the vanadyl salt is vanadyl maleate or vanadyl adipate.
NO1537/72A 1971-05-03 1972-05-02 NO131616C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7115911A FR2147771B1 (en) 1971-05-03 1971-05-03

Publications (2)

Publication Number Publication Date
NO131616B true NO131616B (en) 1975-03-17
NO131616C NO131616C (en) 1975-06-25

Family

ID=9076338

Family Applications (2)

Application Number Title Priority Date Filing Date
NO1538/72A NO131617C (en) 1971-05-03 1972-05-02
NO1537/72A NO131616C (en) 1971-05-03 1972-05-02

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO1538/72A NO131617C (en) 1971-05-03 1972-05-02

Country Status (13)

Country Link
US (2) US3788073A (en)
JP (2) JPS554913B1 (en)
CA (2) CA957360A (en)
DE (2) DE2221700C3 (en)
DK (2) DK135865B (en)
ES (1) ES402339A1 (en)
FR (1) FR2147771B1 (en)
GB (2) GB1394201A (en)
IT (1) IT954956B (en)
NL (2) NL149259B (en)
NO (2) NO131617C (en)
SE (2) SE393430B (en)
SU (1) SU633496A3 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791628A (en) * 1972-07-26 1974-02-12 Ocean Science & Eng Motion compensated crown block system
US3948486A (en) * 1973-09-07 1976-04-06 Institut Francaise Du Petrole, Des Carburants Et Lubrifiants New device for applying a determined force to an element connected to an installation subjected to alternating movements
US3943868A (en) * 1974-06-13 1976-03-16 Global Marine Inc. Heave compensation apparatus for a marine mining vessel
GB2005751B (en) * 1977-09-05 1982-04-21 Vickers Ltd Tensioning of members
US4688764A (en) * 1984-10-31 1987-08-25 Nl Industries, Inc. Crown block compensator
US5520369A (en) * 1984-12-28 1996-05-28 Institut Francais Du Petrole Method and device for withdrawing an element fastened to a mobile installation from the influence of the movements of this installation
FR2575452B1 (en) * 1984-12-28 1987-11-13 Inst Francais Du Petrole METHOD AND DEVICE FOR REMOVING AN ELEMENT HANGING FROM A MOBILE INSTALLATION TO THE MOVEMENTS OF THIS INSTALLATION
US4867418A (en) * 1986-03-03 1989-09-19 N.L. Industries, Inc. Apparatus for increasing the load handling capability of support and manipulating equipment
US4739584A (en) * 1986-10-23 1988-04-26 Peter Zellman Garage door locking mechanism
DE3735236A1 (en) * 1987-10-17 1989-04-27 Teves Gmbh Alfred DEVICE FOR ADAPTING THE CHARACTERISTIC OF A HYDRO STORAGE TO THE CHARACTERISTIC OF A CONSUMER
US5160219A (en) * 1991-01-15 1992-11-03 Ltv Energy Products Company Variable spring rate riser tensioner system
US6585455B1 (en) 1992-08-18 2003-07-01 Shell Oil Company Rocker arm marine tensioning system
US5641248A (en) * 1993-04-15 1997-06-24 Continental Emsco Company Variable spring rate compression element and riser tensioner system using the same
US5482406A (en) * 1993-04-15 1996-01-09 Continental Emsco Company Variable spring rate compression element and riser tensioner system using the same
US5454408A (en) * 1993-08-11 1995-10-03 Thermo Power Corporation Variable-volume storage and dispensing apparatus for compressed natural gas
US5628586A (en) * 1995-06-23 1997-05-13 Continental Emsco Company Elastomeric riser tensioner system
US20110011320A1 (en) * 2009-07-15 2011-01-20 My Technologies, L.L.C. Riser technology
NO341753B1 (en) * 2013-07-03 2018-01-15 Cameron Int Corp Motion Compensation System
FR3025787B1 (en) * 2014-09-16 2019-06-07 IFP Energies Nouvelles SYSTEM FOR MONITORING THE MOVEMENT OF A LOAD
FR3060549B1 (en) * 2016-12-19 2018-12-07 IFP Energies Nouvelles SYSTEM FOR MOTION COMPENSATION OF A LOAD ATTACHED TO A MOBILE INSTALLATION WITH MAIN VERSION AND SECONDARY VERIN
USD835678S1 (en) * 2017-07-08 2018-12-11 Daqing Dannuo Petroleum Technology Development Co., Ltd. Pumping unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163005A (en) * 1962-11-19 1964-12-29 Jersey Prod Res Co Apparatus for use on floating drilling platforms
US3208728A (en) * 1962-11-19 1965-09-28 Exxon Production Research Co Apparatus for use on floating drilling platforms
US3687205A (en) * 1970-10-28 1972-08-29 Gulf Research Development Co Floating rig motion compensator

Also Published As

Publication number Publication date
NL149253B (en) 1976-04-15
DE2221654B2 (en) 1973-09-06
ES402339A1 (en) 1975-11-01
DK135866C (en) 1977-12-05
CA956922A (en) 1974-10-29
SE393429B (en) 1977-05-09
DE2221700C3 (en) 1974-04-25
DE2221654A1 (en) 1972-11-30
CA957360A (en) 1974-11-05
NL7205930A (en) 1972-11-07
NO131616C (en) 1975-06-25
FR2147771A1 (en) 1973-03-16
IT954956B (en) 1973-09-15
FR2147771B1 (en) 1974-05-31
NL149259B (en) 1976-04-15
US3788074A (en) 1974-01-29
NL7205929A (en) 1972-11-07
SU633496A3 (en) 1978-11-15
JPS554913B1 (en) 1980-02-01
DK135865B (en) 1977-07-04
JPS5429961B1 (en) 1979-09-27
DE2221700A1 (en) 1972-11-16
GB1394202A (en) 1975-05-14
US3788073A (en) 1974-01-29
NO131617B (en) 1975-03-17
DK135866B (en) 1977-07-04
SE393430B (en) 1977-05-09
GB1394201A (en) 1975-05-14
DE2221654C3 (en) 1974-04-18
NO131617C (en) 1975-06-25
DK135865C (en) 1977-11-28
DE2221700B2 (en) 1973-09-27

Similar Documents

Publication Publication Date Title
NO131616B (en)
JPH0720972B2 (en) Method for producing aluminoxane
US4435314A (en) Process of preparing a polymerization catalyst and preparation of ethylene polymers with this catalyst
US3061602A (en) Polymerization catalysts and processes therefor
JPH04268309A (en) Cationic polymerization of 1-olefin
US4434243A (en) Aqueous titanation of catalyst support containing chromium with solubilized Ti(OR)4
JPH0529034B2 (en)
US4442275A (en) Polymerization process using catalyst having aqueous titanation of support with solubilized Ti(OR)4
NO150763B (en) PROCEDURE FOR CATALYTIC POLYMERIZATION OF PROPYL
JP6804944B2 (en) Method for producing α-olefin low polymer
JPH0516445B2 (en)
CA1172271A (en) Preparation of linear olefin products
JPS6015410A (en) Solution process for manufacturing polymers of alpha-olefins
US3151181A (en) High molecular weight hydrocarbon polymers
JPH0322887B2 (en)
JPH0232286B2 (en)
NO161263B (en) PROCEDURE FOR BLOCK COPOLYMERIZATION FOR PREPARING EFFECTIVE ETHYLENE PROPYLENE BLOCK POLYMERS.
US4208304A (en) Catalyst system for producing ethylene polymers
NO800079L (en) CATALYST FOR POLYMERIZATION OF ALKENES AND PROCEDURES FOR POLYMERIZATION USING THE CATALYST
JPH0753637A (en) Production of ethylene-alpha-olefin copolymer
EP0137097A2 (en) Method of polymerizing ethylene
US4410451A (en) Catalyst and process
NO144389B (en) PROCEDURE FOR HOMOPOLYMERIZING THE ETHYL OR PROPYL OR COPOLYMERIZING THE ETHYL WITH AN ALFA-OLEFIN AND / OR DIOLEFIN, AND THE CATALYST MIXTURE FOR PERFORMANCE OF THE PROCEDURE
US2927103A (en) Process for polymerizing olefins
US3062803A (en) Halogen-free catalyst for ethylene polymerization