NO131513B - - Google Patents
Download PDFInfo
- Publication number
- NO131513B NO131513B NO78171A NO78171A NO131513B NO 131513 B NO131513 B NO 131513B NO 78171 A NO78171 A NO 78171A NO 78171 A NO78171 A NO 78171A NO 131513 B NO131513 B NO 131513B
- Authority
- NO
- Norway
- Prior art keywords
- weight
- phase
- magnesium
- metallic
- cscl
- Prior art date
Links
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 35
- 229910052749 magnesium Inorganic materials 0.000 claims description 35
- 239000011777 magnesium Substances 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 34
- 238000002844 melting Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical group [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 8
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052790 beryllium Inorganic materials 0.000 claims description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229920000914 Metallic fiber Polymers 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000006104 solid solution Substances 0.000 claims description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910000636 Ce alloy Inorganic materials 0.000 claims 1
- 229910000733 Li alloy Inorganic materials 0.000 claims 1
- 239000001989 lithium alloy Substances 0.000 claims 1
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 claims 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims 1
- 239000000395 magnesium oxide Substances 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 239000012071 phase Substances 0.000 description 54
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 12
- 229910001000 nickel titanium Inorganic materials 0.000 description 10
- 238000007792 addition Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000722 Didymium Inorganic materials 0.000 description 1
- 241000224487 Didymium Species 0.000 description 1
- 229910005438 FeTi Inorganic materials 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- OSJAVLJEMGYHGN-UHFFFAOYSA-N [Zr].[W] Chemical compound [Zr].[W] OSJAVLJEMGYHGN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- QRNPTSGPQSOPQK-UHFFFAOYSA-N magnesium zirconium Chemical compound [Mg].[Zr] QRNPTSGPQSOPQK-UHFFFAOYSA-N 0.000 description 1
- -1 magnesium-lithium-nickel-titanium Chemical compound 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/04—Light metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Metallisk materiale på magnesiu^basis. Metallic material on a magnesium basis.
Foreliggende oppfinnelse angår et metallisk materiale på magnesiumbasis med to hovedgitterebestanddeler, og det karakteriseres ved at det har en sammensetning som angis i krav 1. The present invention relates to a magnesium-based metallic material with two main lattice constituents, and it is characterized in that it has a composition as stated in claim 1.
Som varmefaste magnesiumlegeringer er slike med cerium- As heat-resistant magnesium alloys, those with cerium-
og thoriuminnhold kjent, og som som oftest gis en finere kornstruktur med zirkonium. Deres anvendelsesområde slutter dog ved ca. 320°C. Deres strekkfasthetsverdier ligger ved 20°C mellom 14 og 28 kp/mm 2 , deres tettheter mellom 1,77 og 1,83 g/cm 3. Ved fremstillingen av slike materialer av pulverblandinger av en magnesium-zirkonium-legering på den ene side og aluminium eller en aluminium-magnesium-legering på den annen side er oppnådd strekk-2 2 fasthetsverdier pa. 36,5 kp/mm og en strekkgrense pa 31 kp/mm ved en forlengelse på 8%, i den senere tid ytterligere forbedringer ved yttrium- og endelig scandiumtilsetning, noe som dog virker sterkt omkostningsforhoyende. For anvendelsestilfeller som hoy-påkjente byggeelementer i fly- og kjoretoyindustrien og motordeler, er de forannevnte materialer foretrukket brukt på grunn av deres lave vekt og det relativt gunstige forhold mellom fasthet og vekt, og på grunn av den gode sponbarhet. Imidlertid består fremdeles onsket om en forhoyelse av fasthetsverdiene og anvendelsesområdet ved forhoyet temperatur. Tallrike forsok til utvikling av legeringer har her kun fort ubetydelig videre, da storre legeringstilsetninger alltid medforte en negativ innflytelse på seighetsegen-skapene gjennom dannelse av sprode intermetalliske faser. I mot-setning til dette blir det, med gjenstanden for foreliggende oppfinnelse, gått en ny vei for magnesiumbaserte materialer, tilsetning av en kubisk romsentrert, på sin side godt formbar inter-metallisk fase av typen NiTi, generelt sagt, den såkalte AB-type med CsCl-struktur og gitterkonstanter mellom 2,60 og 3,20 Ångstrom, i vektdeler på 5% til 97%, fortrinnsvis til 65%, som i fast tilstand bare er ubetydelig loselig i heksagonalt magnesiumgitter. and thorium content known, and which is usually given a finer grain structure with zirconium. However, their area of application ends at approx. 320°C. Their tensile strength values at 20°C lie between 14 and 28 kp/mm 2 , their densities between 1.77 and 1.83 g/cm 3. In the production of such materials from powder mixtures of a magnesium-zirconium alloy on the one hand and aluminum or an aluminum-magnesium alloy, on the other hand, tensile-2 2 strength values of pa. 36.5 kp/mm and a tensile strength of 31 kp/mm at an extension of 8%, in recent times further improvements with yttrium and finally scandium addition, which however seems to greatly increase costs. For applications such as highly stressed building elements in the aircraft and vehicle toy industry and engine parts, the aforementioned materials are preferably used because of their low weight and the relatively favorable ratio between strength and weight, and because of the good machinability. However, there is still a desire for an increase in the strength values and the application area at elevated temperature. Numerous attempts to develop alloys have only made negligible progress here, as larger alloy additions always entailed a negative influence on the toughness properties through the formation of brittle intermetallic phases. In contrast to this, with the object of the present invention, a new path is taken for magnesium-based materials, the addition of a cubic space-centered, in turn well-formable inter-metallic phase of the NiTi type, generally speaking, the so-called AB type with CsCl structure and lattice constants between 2.60 and 3.20 Angstroms, in weight fractions of 5% to 97%, preferably to 65%, which in the solid state are only slightly soluble in hexagonal magnesium lattice.
Egenskapene til denne CsCl-struktur-fase er i lopet av det siste tiår inngående undersSkt på en rekke karakteristiske sammensetninger, spesielt binære MTi-legeringer med andeler mellom 54 og 60 vektprosent nikkel og andre loselige henholdsvis ulese-lige legeringstilsetninger, men også f.eks. blandingskrystallrek-ken NiTi-FeTi. Spesielt de førstnevnte har under betegnelsen "Nitinul" funnet betraktelig interesse og anvendelse som slitasje-og korrosjonsfaste, hoycLempende og "hukommelses"-legeringer. Så-ledes oppviser 55-Nitinol i glodet tilstand strekkfasthetsverdier på 88 kp/mm <2> ved 17 kp/mm <2>strekkgrense, en totalforlengelse på 60% og en innsnoring på 20%, etter koldforming en bruddstryke opptil 175 kp/mm 2 ved opptil 133 kp/mm 2 strekkgrense og en minste-forlengelse på 12%. 60-Nitinol-legeringen kan fåes med hårdhets-verdier mellom 30 og 62 Rc. Tetthetsverdiene til denne fase ligger mellom 6,45 og 7,1. The properties of this CsCl structural phase have been thoroughly investigated over the last decade on a number of characteristic compositions, especially binary MTi alloys with proportions between 54 and 60 weight percent nickel and other soluble or illegible alloy additions, but also e.g. . mixed crystal series NiTi-FeTi. Especially the former, under the name "Nitinul", have found considerable interest and use as wear- and corrosion-resistant, highly softening and "memory" alloys. Thus, 55-Nitinol in the annealed state exhibits tensile strength values of 88 kp/mm <2> at 17 kp/mm <2> tensile strength, a total elongation of 60% and a constriction of 20%, after cold forming a breaking strength of up to 175 kp/mm 2 at up to 133 kp/mm 2 tensile strength and a minimum elongation of 12%. The 60-Nitinol alloy can be obtained with hardness values between 30 and 62 Rc. The density values of this phase lie between 6.45 and 7.1.
Fra sammenstillingen av disse fasthetsegenskaper fremgår allerede i hvor stor grad tilsetningen av denne fase etter bland-ingsregelen egner seg til å hoyne fastheten og hårdheten i de teknisk vanlige utgangsmaterialer på maghesiumbasis, ved samtidig forbedring av formingsegenskapene. Derigjennom stiger også tettheten alt etter sammensetning, f.eks. ved 10 volumprosent tilsvarende 29 vektprosent legeringstilsetning til 2,2 g/ cxs?, ved 20 volumprosent tilsvarende 48 vektprosent legeringstilsetning til 2,68 g/cm^, dvs. i sistnevnte tilfelle til tettheten av tekniske aluminiumslegeringer. Langt sterkere stiger dog den spesifikke fasthet, forholdet fasthet til vekt, som legges til grunn ved konstruksjonsplanlegning. På den annen side kan imidlertid tettheten senkes vesentlig igjen ved en litiumtilsetning til magnesiumfasen, f.eks. ved en legering med 20 volumprosent tilsvarende 5,4 vektprosent litium og 10 volumprosent NiTi tilsvarende 17,9 vektprosent nikkel og 14,7 vektprosent titan, til 1,97 g/cm^. From the compilation of these strength properties, it is already clear to what extent the addition of this phase according to the mixing rule is suitable for increasing the strength and hardness of the technically common magnesium-based starting materials, by simultaneously improving the forming properties. Through this, the density also rises depending on the composition, e.g. at 10 volume percent corresponding to 29 weight percent alloy addition to 2.2 g/ cxs?, at 20 volume percent corresponding to 48 weight percent alloy addition to 2.68 g/cm^, i.e. in the latter case to the density of technical aluminum alloys. However, the specific firmness, the ratio of firmness to weight, which is used as a basis for construction planning, rises much more strongly. On the other hand, however, the density can be significantly lowered again by adding lithium to the magnesium phase, e.g. at an alloy with 20% by volume corresponding to 5.4% by weight lithium and 10% by volume NiTi corresponding to 17.9% by weight nickel and 14.7% by weight titanium, to 1.97 g/cm^.
En legering av 50 volumprosent magnesium, 40 volumprosent litium og 10 volumprosent NiTi-fase, dvs. på 50,4 vektprosent magnesium, 12,3 vektprosent litium, 20,5 vektprosent nikkel og 16,8 vektprosent titan har sogar en tetthet på bare 1,73 g/cm^, altså omtrent tilsvarende tettheten til rent magnesium, og består utover det av en faseblanding a:T bare to kubisk-romsentrerte faser, da ved tilsetning av mei enn ca. 10 vektprosent litium, dettes kubisk-romsentrerte gitter trer i stedet for det heksago-nale magnesium, og derigjennom bevirker ytterligere en forbedring i formbarheten. Derved blir te lchetsverdien til glassfiberfor-sterkede kunststoffer på 2,11 g/crn^ betydelig under skredet av et rent metallisk fibermateriale. Sogar tettheten til karbonfiber-harpiks på 1,55 g/cm^ kan underskrides av et rent metallisk mag-iesium-litium-nikkel-titan-fibermateriale, som er fast til over 220 o C, med f.eks. 1,37 g/cnr 3 for 20 volumprosent tilsvarende 25,5 vektprosent magnesium, 70 volumprosent tilsvarende 27,2 vektprosent litium og 10 volumprosent tilsvarende 47,3 vektprosent NiTi eller 26 vektprosent nikkel og 21,3 vektprosent titan. An alloy of 50 volume percent magnesium, 40 volume percent lithium and 10 volume percent NiTi phase, i.e. of 50.4 weight percent magnesium, 12.3 weight percent lithium, 20.5 weight percent nickel and 16.8 weight percent titanium even has a density of only 1 .73 g/cm^, i.e. roughly equivalent to the density of pure magnesium, and beyond that consists of a phase mixture a:T only two cubic-space-centered phases, then by adding more than approx. 10 weight percent lithium, its cubic space-centered lattice takes the place of the hexagonal magnesium, thereby effecting a further improvement in formability. Thereby, the tensile value of glass fiber-reinforced plastics of 2.11 g/crn^ is significantly below that of a purely metallic fiber material. Even the density of carbon fiber resin of 1.55 g/cm^ can be undercut by a pure metallic magnesium-lithium-nickel-titanium fiber material, which is solid above 220 o C, with e.g. 1.37 g/cnr 3 for 20 volume percent corresponding to 25.5 weight percent magnesium, 70 volume percent corresponding to 27.2 weight percent lithium and 10 volume percent corresponding to 47.3 weight percent NiTi or 26 weight percent nickel and 21.3 weight percent titanium.
I alminnelighet blir den ovre anvendelsestemperatur gitt av legeringsforholdet magnesium til titan i overensstemmelse med tilstandsdiagrammet; stabiliteten til materialene i henhold til foreliggende oppfinnelse blir gitt av den over 1200°C faste fase med CsCl-struktur. In general, the upper service temperature is given by the magnesium to titanium alloy ratio according to the state diagram; the stability of the materials according to the present invention is provided by the above 1200°C solid phase with CsCl structure.
Sammensetningsområdet til de magnesiumbaserte materialene i henhold til foreliggende oppfinnelse er forovrig definert slik, at den kubisk-romsentrerte fase av AB-typen i alminnelighet for A kan inneholde metallene nikkel, kobolt og jern enkeltvis eller kombinert, og for B kan inneholde metallene titan, aluminium, eller, når A ikke inneholder jern, beryllium enkeltvis eller kombinert innen stabilitetsgrensene til det fra tostoff-systemet nikkel-titan mellom 50 og 64 vektprosent nikkel utgående ternære, kvaternære eller flerstoffblandingskrystallområde. Det er under disse innskrenkninger entydig gitt ved formelen Nil-x-yCoxFeyTil-u-vA1uBev hvor x :1' y X' u < og v-< 1> selv The composition range of the magnesium-based materials according to the present invention is otherwise defined such that the cubic space-centered phase of the AB type can generally for A contain the metals nickel, cobalt and iron individually or combined, and for B can contain the metals titanium, aluminum , or, when A does not contain iron, beryllium singly or combined within the stability limits of that from the two-component system nickel-titanium between 50 and 64 wt. Under these restrictions, it is uniquely given by the formula Nil-x-yCoxFeyTil-u-vA1uBev where x :1' y X' u < and v-< 1> itself
om sammensetningsområdet uten omfangsrike eksperimentelle under-søkelser ikke kan angis tallmessig noyaktig. Videre kan det vari-eres ved de forskjelligste legeringstilsetninger, spesielt ved opp til 30 vektprosent krom, opptil 10 vektprosent vanadium, opptil 20 vektprosent zirkonium, opptil 4 vektprosent molybden og wolfram, opptil 2 vektprosent kobber, opptil 3 vektprosent mangan, opptil 1 vektprosent silisium, henholdsvis en kombinasjon av disse elementer. if the composition range cannot be specified numerically accurately without extensive experimental investigations. Furthermore, it can be varied by a wide variety of alloying additions, especially with up to 30 weight percent chromium, up to 10 weight percent vanadium, up to 20 weight percent zirconium, up to 4 weight percent molybdenum and tungsten, up to 2 weight percent copper, up to 3 weight percent manganese, up to 1 weight percent silicon , respectively a combination of these elements.
Den magnesiumrike fasen kan inneholde opptil 55 vektprosent litium, opptil 8 vektprosent aluminium, opptil 8 vektprosent kadmium, opptil 8 vektprosent solv, opptil 12 vektprosent sink, opptil 3 vektprosent mangan, opptil 20 vektprosent indium, opptil 2 vektprosent kobber, opptil 0,5 vektprosent silisium, opptil 4 vektprosent barium, opptil 4,0 vektprosent strontium, opptil 4 vektprosent Ce eller Ce-blandingsmetall, opptil 2,5 vektprosent didymium (neodym + praseodym), opptil 4 vektprosent thorium, opptil 1 vektprosent zirkonium, opptil 0,1 vektprosent beryllium, henholdsvis en kombinasjon av disse elementer i fast losning. Utover dette kan det eventuelt opptre andre faste faser med opptil 20% volumandel i strukturen, som danner seg f.eks. ved utskilling i fast tilstand fra de to hovedfaser, f.eks. Ni^Ti, eller også er utskilt umiddelbart fra en smelte i sammenheng eller sogar i likevekt med CsCl-struktur-f asen henholdsvis med "den mage.nsiumrike fase. Utover dette horer det inn under den foreliggende oppfinnelse at elementene i den magnesiumrike fase innen det til å begynne med utelukkende eller hovedsakelig metalliske to- eller fler-fasede materiale, helt eller delvis ved oksydasjon kan omdannes til hoytemperaturbestandige oksyder, og. den magnesiumrike fase selv til oksydfibre eller skjeletter, for hvilke nå den kubisk-romsentrerte fase av AB-typen alene danner den seige grunnmasse. The magnesium-rich phase can contain up to 55 wt% lithium, up to 8 wt% aluminum, up to 8 wt% cadmium, up to 8 wt% solv, up to 12 wt% zinc, up to 3 wt% manganese, up to 20 wt% indium, up to 2 wt% copper, up to 0.5 wt% silicon, up to 4 wt% barium, up to 4.0 wt% strontium, up to 4 wt% Ce or Ce mixed metal, up to 2.5 wt% didymium (neodymium + praseodymium), up to 4 wt% thorium, up to 1 wt% zirconium, up to 0.1 wt% beryllium, respectively a combination of these elements in solid solution. In addition to this, other solid phases may appear with up to 20% volume share in the structure, which form e.g. by separation in the solid state from the two main phases, e.g. Ni^Ti, or is separated immediately from a melt in conjunction or even in equilibrium with the CsCl structural phase or with "the magnesium-rich phase. In addition to this, it is part of the present invention that the elements in the magnesium-rich phase within the initially exclusively or mainly metallic two- or multi-phase material can be completely or partially converted by oxidation into high-temperature-resistant oxides, and the magnesium-rich phase itself into oxide fibers or skeletons, for which now the cubic-space-centered phase of AB- the type alone forms the tough base mass.
Materialer i henhold til foreliggende oppfinnelse kan Materials according to the present invention can
alt etter legeringssammensetning fremstilles pulver- eller smelte- depending on the alloy composition, powder or melt
s pp
metallurgisk under anvendelse av de forskjelligste forlegeringer, også som impregneringsmateriale. metallurgically using a wide variety of prealloys, also as impregnation material.
På grunn av den store forskjell i smeltepunktene til de to hovedfaser, byr seg muligheten til å bringe inn presslegemer fra den granulerte, spesielt forsproytede hoytsmeltende fase i en magnesiumrik smelte under vakuum, beskyttelsesgass henholdsvis under en såltdekning, såvel som sintring av pulverblandinger i nærvær av en smelteflytende fase, også under forhoyet trykk, for å oppnå spesielt finkornede legeringer, fortrinnsvis når den mikro-kornplastisitet som vanligvis oppstår ved kornstorrelser på ca. 1 <y>um skal utnyttes ved senere formingsarbeider. For å oppnå en fin kornstruktur i begge faser, og de hoyeste fasthetsverdier, er det dessuten hensiktsmessig å avkjole de smelteflytende materialer med stbrst mulig hastighet, f.eks. mer enn 100°C pr. sekund, ved sproyting til pulver eller bråavkjoling, valsing og trekking til folier, bånd eller tynne tråder, som umiddelbart anvendes eller forarbeides videre pulvermetallurgisk. Due to the large difference in the melting points of the two main phases, the possibility arises of bringing in compacts from the granulated, especially pre-sprayed high-melting phase into a magnesium-rich melt under vacuum, protective gas or under a salt blanket, as well as sintering powder mixtures in the presence of a melting liquid phase, also under elevated pressure, to obtain particularly fine-grained alloys, preferably when the micro-grain plasticity that usually occurs with grain sizes of approx. 1 <y>um must be used for later forming work. In order to achieve a fine grain structure in both phases, and the highest strength values, it is also appropriate to cool the melt-flowing materials at the fastest possible speed, e.g. more than 100°C per second, by spraying into powder or rapid cooling, rolling and drawing into foils, ribbons or thin threads, which are immediately used or further processed in powder metallurgy.
Ved den pulvermetallurgiske fremstilling av materialene In the powder metallurgical production of the materials
i henhold til foreliggende oppfinnelse, er det hensiktsmessig hvis det forbehandlede legeringspulv?1" og metallpulver allerede omtrent har den tidligere nevnte sammensetning til den tilstrebede like-vektsfase til materialet. Forst sammentreffet av den hoye duktili-. tet til den kubisk-romsentrerte fase av NiTi-typen, som undergår en martensittomvandling ved temperaturer under 200°C, med den formbare magnesiumrike fase, forer til de godt duktile, hittil ukjente materialer. according to the present invention, it is appropriate if the pre-treated alloy powder?1" and metal powder already have approximately the previously mentioned composition of the desired equilibrium phase of the material. First, the coincidence of the high ductility of the cubic-space-centered phase of The NiTi type, which undergoes a martensite transformation at temperatures below 200°C, with the malleable magnesium-rich phase, leads to the well ductile, hitherto unknown materials.
Et vesentlig trekk ved gjenstanden for foreliggende oppfinnelse er at disse magnesiumbaserte materialer i tillegg, ved sterk varm- eller kaldforming, kan bringes på "hoyeste fasthetsverdier, slik som de er kjent f.eks. fra hoyfaste stål. Det oppstår -i praksis tofase-materialer, som tillater tverrsnittsreduk-sjon ned til få ^um fibertverrsnitt og derunder, henholdsvis en slik bladtykkelse til de enkelte ved siden av hverandre og over hverandre liggende krystallitter til de to faser takket være deres store utvidelse. Meilomglbding ved-temperaturer under solidustemperaturen til den magnesiumrike fase,' spesielt omkrystalli-seringsglodning for denne fase, er også tilstrekkelig for myk-gjoring av den hoyeresmeltende kubisk-romsentrerte fase.. An essential feature of the object of the present invention is that these magnesium-based materials can also, by strong hot or cold forming, be brought to "highest strength values, as they are known, for example, from high-strength steels. This results -in practice two-phase- materials, which allow cross-sectional reduction down to a few µm fiber cross-section and below, respectively such a sheet thickness to the individual adjacent and overlying crystallites to the two phases thanks to their large expansion. magnesium-rich phase, in particular recrystallization annealing for this phase, is also sufficient for softening the high-melting cubic space-centered phase.
Til fremstilling av valse- eller strengeprofiler av materialer i henhold til foreliggende oppfinnelse, går man fordelaktig ut fra pulverblandinger av de to faser, med finest mulig kornstorrelse, f.eks. ^ 60 yum. For the production of roll or strand profiles of materials according to the present invention, one advantageously starts from powder mixtures of the two phases, with the finest possible grain size, e.g. ^ 60 yum.
Hensiktsmessig er derved at den kubisk-romsentrerte fase foreligger i granulert, pulversproytet, bråavkjolt eller mellom 800 og 1000°C forglodet tilstand. For å oppnå en god fiber, henholdsvis bladstruktur, er gjentatt strengepressing, valsing, henholdsvis pakkevalsing og hvis nodvendig trekking også med mellom-glodning, nodvendig. It is therefore expedient for the cubic space-centred phase to exist in a granulated, powder-sprayed, quenched or between 800 and 1000°C annealed state. In order to achieve a good fibre, respectively leaf structure, repeated strand pressing, rolling, respectively package rolling and, if necessary, drawing also with intermediate annealing, are necessary.
Spesielt gunstig for fasthets- og utvidelsesegenskapene til de beskrevne fibermaterialer er, når sammensetningen til de Particularly favorable for the strength and expansion properties of the described fiber materials is, when the composition of the
to metalliske strukturbestanddeler er så avstemt på hverandre, at begge ved valsing, strengepressing og/eller trekking ved den valg-te formingstemperatur, blir strukket omtrent likeverdig i form-ingsretningen. For fremstillingen av materialer med lamell-, henholdsvis lagstruktur, er det tilsvarende gunstig når, ved smiing, stuning, hamring, pressing, diagonal- og/eller kryssvalsing henholdsvis eksplosjonsforming, de to metalliske strukturbestanddeler blir til flate, parallelt liggende deler med omtrent likeverdig, jevn strekning og utbredelse. two metallic structural components are so matched to each other that both are stretched approximately equally in the forming direction by rolling, strand pressing and/or drawing at the selected forming temperature. For the production of materials with a lamellar or layer structure, it is similarly advantageous when, by forging, stunning, hammering, pressing, diagonal and/or cross rolling or explosion forming, the two metallic structural components become flat, parallel lying parts with approximately equal, even stretch and spread.
Ved tilsetning av inntil 80 volumprosent glasspulver av tilsvarende kornstorrelse, beregnet på det totale materialvolum, av en glassort med lavt mykningspunkt under den magnesiumrike fases solidustemperatur, fortrinnsvis av blyglass, kommer man til trefasematerialer, hvor spesielt hoye fasthetsegenskaper er opp-nåelige. Alt etter glassfasens viskositet og flyteegenskapene til de to faste metallfaser ved hoyere temperatur, kan -den tredimen-sjonale anordning av de enkelte fibre henholdsvis blad i slike glassfiber-metall-blandingsmaterialer varieres.vilkårlig, og over-flaten til de enkelte faser okes.vesentlig, slik at spesielt f.eks. glassfibrene blir fullstendig isolert fra hverandre.og inneslut-tet av metallfibre.. Glassandelene skrumper ved avkjoling etter den siste glodebehandling på grunn av deres mindre varmeutvidelse mindre enn de metalliske andeler, spesielt magnesiumfasen, og medvirker derigjennom, bortsett fra deres egenfasthet, til ytterligere en okning i fastheten til de metalliske fibre. I forhold til den vanlige atskilte fremstilling av glassfibre og tråder, og deres impregnering med metall henholdsvis innforing i en metallisk smelte, er den beskrevne fremstillingsmåte spesielt okonomisk og gir dessuten svært ensartede materialstykker. By adding up to 80 volume percent glass powder of corresponding grain size, calculated on the total material volume, of a type of glass with a low softening point below the solidus temperature of the magnesium-rich phase, preferably of lead glass, you arrive at three-phase materials, where particularly high strength properties are achievable. Depending on the viscosity of the glass phase and the flow properties of the two solid metal phases at higher temperatures, the three-dimensional arrangement of the individual fibers or blades in such glass fiber-metal composite materials can be varied arbitrarily, and the surface of the individual phases can be substantially increased , so that especially e.g. the glass fibers are completely isolated from each other and enclosed by metal fibers. The glass parts shrink on cooling after the last annealing treatment due to their smaller thermal expansion less than the metallic parts, especially the magnesium phase, thereby contributing, apart from their intrinsic strength, to a further increase in the firmness of the metallic fibers. In relation to the usual separate production of glass fibers and threads, and their impregnation with metal or insertion in a metallic melt, the described production method is particularly economical and also gives very uniform pieces of material.
Likeledes er det fra begynnelsen mulig, i en pulver-blanding av de to duktile metalliske faser, å' innfore opptil 70 volumprosent hoyfaste fibre eller tråder, f.eks. ubelagte eller eventuelt med silisiumkarbid belagte karbonfibre, keramiske fibre, bortråder, glasstråder, whiskers eller trukne tynne tråder f.eks. av beryllium, rustfritt stål, kromlegeringer eller wolfram eller også keramiske pulvere og fibre eller tilsvarende strenger, matter eller vev, og å strengpresse disse. Derved blir fiber-orienteringen forsterket i strengpresseretningen, metallpulverdel-ene likeledes strukket til fibre, disse flyter rundt de innbragte hoyfaste fibre, som på sin side bare forandres lite, og, hvis det dreier seg om endelose tråder, også kan rives istykker til orien-terte fiberstykker med et hoyt forhold lengde til tverrsnitt, som er atskilt fra hverandre av den magnesiumrike fase og den intermetalliske fase av NiTi-typen. Likewise, from the beginning it is possible, in a powder mixture of the two ductile metallic phases, to introduce up to 70 volume percent high-strength fibers or threads, e.g. uncoated or possibly with silicon carbide coated carbon fibres, ceramic fibres, boron wires, glass wires, whiskers or drawn thin wires, e.g. of beryllium, stainless steel, chrome alloys or tungsten or also ceramic powders and fibers or similar strands, mats or fabrics, and to strand press these. Thereby, the fiber orientation is reinforced in the strand pressing direction, the metal powder parts are likewise stretched into fibres, these float around the introduced high-strength fibres, which in turn change only slightly, and, if it is a question of endless threads, can also be torn to pieces to the orien- terred fiber pieces with a high length-to-cross-section ratio, which are separated from each other by the magnesium-rich phase and the intermetallic phase of the NiTi type.
Endelig, varmebehandlingen under magnesium-smeltepunktet utvirker seg spesielt på strukturen og egenskapene til magnesium-grunnmassen, som kan herdes på kjent måte, eller som selv kan herdes ved oksydasjon. Dog er det også mulig å herde den hoyeresmeltende hovedfase etter den sponfrie forming under smeltetempe-raturen til den magnesiumrike fase ved bråavkjoling og anlopning, henholdsvis i tillegg å herde ved avkjoling med regulert hastighet over i forste omgang i lbsning forblevne andre faste faser. Finally, the heat treatment below the magnesium melting point has a particular effect on the structure and properties of the magnesium base mass, which can be hardened in a known manner, or which itself can be hardened by oxidation. However, it is also possible to harden the high-melting main phase after the chip-free forming below the melting temperature of the magnesium-rich phase by rapid cooling and annealing, or in addition to harden by cooling at a regulated speed over other solid phases that initially remained in solution.
Ved alle de foreskrevne sinter-, glbde- og varmebehand-linger viser det seg å være fordelaktig at partiklene i de to metalliske faser blir forbundet spesielt kraftig med hverandre ved deldiffusjon til deres grenseflater. Tilsvarende gjelder for stopestykker og trykkstopestykker av materialer-i henhold til foreliggende oppfinnelse. Disse utmerker seg ved et meget gunstig forhold fasthet til tetthet, og tillater spesielt tynne vegg-tykkelser. In all the prescribed sintering, gliding and heat treatments, it turns out to be advantageous that the particles in the two metallic phases are connected particularly strongly to each other by partial diffusion to their interfaces. The same applies to stop pieces and pressure stop pieces made of materials according to the present invention. These are distinguished by a very favorable ratio of firmness to density, and allow particularly thin wall thicknesses.
De foran beskrevne" blandingsmaterialer egner seg spesielt som lettbyggematerialer med hby fasthet for rom- og luft-fartsteknikk såvel som for kjoretoyindustri og motordeler, dog The "mixed materials" described above are particularly suitable as lightweight construction materials with high strength for space and aerospace engineering as well as for the vehicle industry and engine parts, however
også for våpenteknikk, til sportsutstyr, beholdere og lignende. also for weapons technology, for sports equipment, containers and the like.
De kan anvendes i stedet for glassfiber- eller metall-fiberforsterkede materialer på kunststoffbasis til langt hbyere temperaturer, og tillater på grunn av deres hoyere fasthet og også tverrfasthet mindre veggtykkelse fra begynnelsen av, og derigjennom ytterligere vektbesparelser. Forbindelsesteknisk lager de ingen vanskeligheter og er også sponfraskillende godt forarbeidbare. They can be used instead of glass-fibre or metal-fibre-reinforced materials on a plastic basis at much higher temperatures, and due to their higher strength and also transverse strength allow less wall thickness from the start, and thereby further weight savings. From a connection point of view, they do not pose any difficulties and are also very easy to work with in terms of chip separation.
Ved anvendelse i luft ved forhoyede temperaturer, blir fortrinnsvis den magnesiumrike fase beskyttet ved oppstående tynne oksydfilmer, forblir dog forelobig metallisk i det indre. When used in air at elevated temperatures, the magnesium-rich phase is preferably protected by formed thin oxide films, but remains temporarily metallic in the interior.
Det er dog også mulig å oksydere disse faser fullstendig ved glodebehandling av disse legeringer ved konstante eller stig-ende temperaturer til ut over smeltepunktet; og på denne måte å komme til metallkeramer med MgO, henholdsvis komplekse oksyder og f.eks. glassfiberinnlegg som hoytsmeltende keramiske fasean-deler, hvilke blir holdt sammen av den intermetalliske fase av NiTi-typen. I den grad den sistnevnte også er oksydert, blir dennes seighet gjenopprettet ved en reduksjonsbehandling. En trykkpåvirkning ved oksydasjonen tjener spesielt til fortetning av det oppstående blandingsmateriale til utligning av den mulige skrumpning av magnesiumfasen. However, it is also possible to oxidize these phases completely by annealing these alloys at constant or rising temperatures to above the melting point; and in this way to arrive at metal ceramics with MgO, respectively complex oxides and e.g. glass fiber inserts as high-melting ceramic phase components, which are held together by the intermetallic phase of the NiTi type. To the extent that the latter is also oxidized, its toughness is restored by a reduction treatment. A pressure effect during the oxidation serves in particular to densify the resulting mixed material to compensate for the possible shrinkage of the magnesium phase.
Dermed blir et mål oppnådd spesielt for hoye oksydandeler, den gode innbinding ved en metallisk fase, noe som hittil, på In this way, a goal is achieved especially for high oxide proportions, the good binding by a metallic phase, something which until now, on
grunn av den dårlige fukting av oksyder som utgangsmateriale med metaller eller legeringer ved fremstilling av metallkeramer ved impregnerings- eller sintermetoder, har beredt betydelige tekniske vanskeligheter og i tillegg gjort klebestoffer nodvendlge. due to the poor wetting of oxides as starting material with metals or alloys in the production of metal ceramics by impregnation or sintering methods, has created considerable technical difficulties and additionally made adhesives necessary.
Det blir oppnådd stbtfaste og termosjokkbestandige hoy-temperaturmaterialer med hoy porefrinet, liten tetthet og med god varme- og elektrisk ledningsevne, som samtidig oppviser en hoy hårdhet og kantbestandighet og en hoy kjemisk og abrasiv bestandig-het, men som også kan formes sponlbst eller sponfraskillende. De er anvendelige spesielt opp til smeltepunktet til.fasen av NiTi-typen. De kan benyttes til elektriske kontakter, skjærematerialer, gassturbinskovler, slitasjefaste maskindeler til kald- og varmarbeid som dempningsmaterialer, dysematerialer til fastbrennstoffraketter og til varmeskjold med kjbling ved påsmeltning av den metalliske andel, hvor i forhold til de hittil vanlige, relativt tyngre wolfram-sølv-varmeskjold, ved hvilke sølvet fordamper, den høyere spesifikke varme og smeltevarmen til den_metalliske fase sammen-lignet med sølv gunstig kan utnyttes. Solid and thermal shock-resistant high-temperature materials with high porosity, low density and with good heat and electrical conductivity are obtained, which at the same time exhibit a high hardness and edge resistance and a high chemical and abrasive resistance, but which can also be formed chip-free or chip-separating . They are applicable especially up to the melting point of the NiTi-type phase. They can be used for electrical contacts, cutting materials, gas turbine blades, wear-resistant machine parts for cold and hot work such as damping materials, nozzle materials for solid fuel rockets and for heat shields with coupling by melting the metallic part, where compared to the hitherto common, relatively heavier tungsten-silver- heat shields, by which the silver evaporates, the higher specific heat and heat of fusion of the_metallic phase compared to silver can be advantageously utilized.
De beskrevne metallkeramer kan fåes i en hvilken som The metal ceramics described can be obtained in any
helst form som smi- og støpestykker, trykkstøpestykker, langstrakte formdeler som staver, rør, bånd, folier eller forkledninger, sistnevnte f.eks. over plettering, påføringssveising eller påførings-sprøyting av de metalliske utgangsmaterialer. I ethvert tilfelle er for keramer en etterfølgende oksydasjon nødvendig. Gunstig er derved alltid at det inntrer en legeringsdannelse som også holder ved den etterfølgende oksydasjon og som bevirker den ønskede binding, mellom de to metalliske faser til utgangsmaterialet og underlaget som skal pansres henholdsvis kles. preferably shapes such as forgings and castings, pressure castings, elongated shaped parts such as rods, tubes, bands, foils or covers, the latter e.g. over plating, application welding or application spraying of the metallic starting materials. In any case, a subsequent oxidation is necessary for ceramics. It is therefore always advantageous that an alloy formation occurs which also holds up to the subsequent oxidation and which causes the desired bond between the two metallic phases of the starting material and the substrate to be armored or coated.
Dette gjelder spesielt hvis magnesiummaterialene i henhold til foreliggende oppfinnelse benyttes som keramikkloddemasse. This applies in particular if the magnesium materials according to the present invention are used as ceramic solder.
Man har samtidig fordelen av en lav arbeidstemperatur som alt etter loddemassesammensetningen kan velges ned til nærheten av smeltepunktet til den magnesiumrike fase, og av en etter sammensetningen aktiv loddemasse, og kan allikevel velge driftstemperaturen til de loddede deler etter oksydasjon av den lavtsmeltende metalliske fase til tett oppunder smeltepunktet til den høytsmeltende metalliske utgangsfase. Som keramikkloddemasse er materialene i henhold til foreliggende oppfinnelse anvendelige for metallkeramer såvel som for full-keramer, grafitt, karbonfibermaterialer og for høytsmeltende metaller, som f .eks. zirkonium wolfram, molybden,, titan, støpejern og deres forbindelser seg imellom. At the same time, one has the advantage of a low working temperature which, depending on the composition of the solder paste, can be selected down to close to the melting point of the magnesium-rich phase, and of an active solder paste depending on the composition, and can still select the operating temperature of the soldered parts after oxidation of the low-melting metallic phase to close below the melting point of the high-melting metallic starting phase. As ceramic solder paste, the materials according to the present invention are applicable for metal ceramics as well as for full ceramics, graphite, carbon fiber materials and for high-melting metals, such as e.g. zirconium tungsten, molybdenum,, titanium, cast iron and their compounds among themselves.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO7572A NO134561C (en) | 1970-03-07 | 1972-01-14 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19702010841 DE2010841C (en) | 1970-03-07 | Magnesium alloys and fiber materials and their use |
Publications (2)
Publication Number | Publication Date |
---|---|
NO131513B true NO131513B (en) | 1975-03-03 |
NO131513C NO131513C (en) | 1975-06-11 |
Family
ID=5764409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO78171A NO131513C (en) | 1970-03-07 | 1971-03-02 |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS5522544B1 (en) |
AT (1) | AT320999B (en) |
FR (1) | FR2084320A5 (en) |
GB (2) | GB1354363A (en) |
NO (1) | NO131513C (en) |
SU (1) | SU505344A3 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6029431A (en) * | 1983-07-28 | 1985-02-14 | Toyota Motor Corp | Production of alloy |
JPH032339A (en) * | 1989-05-30 | 1991-01-08 | Nissan Motor Co Ltd | Fiber reinforced magnesium alloy |
US5143795A (en) * | 1991-02-04 | 1992-09-01 | Allied-Signal Inc. | High strength, high stiffness rapidly solidified magnesium base metal alloy composites |
GB2259309A (en) * | 1991-09-09 | 1993-03-10 | London Scandinavian Metall | Ceramic particles |
JP3611759B2 (en) * | 1999-10-04 | 2005-01-19 | 株式会社日本製鋼所 | Magnesium alloy and magnesium alloy heat-resistant member with excellent heat resistance and castability |
US9921038B2 (en) | 2013-03-15 | 2018-03-20 | Schott Corporation | Glass-bonded metal powder charge liners |
CN105603282A (en) * | 2015-12-30 | 2016-05-25 | 天津理工大学 | Method for preparing magnesium alloy laparoscope hemostasis clip |
CN114959335B (en) * | 2022-06-29 | 2023-04-07 | 中南大学 | Magnesium-lead alloy material, preparation method and battery |
-
1971
- 1971-02-25 AT AT163671A patent/AT320999B/en not_active IP Right Cessation
- 1971-03-02 NO NO78171A patent/NO131513C/no unknown
- 1971-03-08 FR FR7107950A patent/FR2084320A5/fr not_active Expired
- 1971-03-08 JP JP1241371A patent/JPS5522544B1/ja active Pending
- 1971-04-19 GB GB2320071A patent/GB1354363A/en not_active Expired
- 1971-04-19 GB GB1354873D patent/GB1354873A/en not_active Expired
-
1972
- 1972-06-21 SU SU1801098A patent/SU505344A3/en active
Also Published As
Publication number | Publication date |
---|---|
GB1354873A (en) | 1974-06-05 |
FR2084320A5 (en) | 1971-12-17 |
JPS5522544B1 (en) | 1980-06-17 |
SU505344A3 (en) | 1976-02-28 |
GB1354363A (en) | 1974-06-05 |
DE2010841B2 (en) | 1972-11-23 |
NO131513C (en) | 1975-06-11 |
AT320999B (en) | 1975-05-10 |
DE2010841A1 (en) | 1971-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2730847B2 (en) | Magnesium alloy for castings with excellent high temperature creep strength | |
Inoue et al. | Production and properties of light-metal-based amorphous alloys | |
EP0560048A1 (en) | High strength aluminum alloy | |
Wang et al. | Microstructure and formation of melting zone in the interface of Ti/NiCr explosive cladding bar | |
CN102719769B (en) | High-strength aluminum-based bulk amorphous composite material | |
EP2110451A1 (en) | L12 aluminium alloys with bimodal and trimodal distribution | |
WO2019226063A1 (en) | Aluminum alloy for additive techniques | |
NO131513B (en) | ||
Yildirim et al. | Microstructural evolution and room-temperature mechanical properties of as-cast and heat-treated Fe50Al50− nNbn alloys (n= 1, 3, 5, 7, and 9 at%) | |
CN110724885B (en) | Preparation method of large-size light magnesium-aluminum-based amorphous alloy | |
JP3110512B2 (en) | High strength and high toughness magnesium alloy material | |
USRE29547E (en) | Nickel silicon and refractory metal alloy | |
Lai et al. | Rapid formation, grain refinement and shear property of high-temperature-stable full IMC joints | |
EP0474880A1 (en) | Aluminum-chromium alloy and production thereof | |
Kreider et al. | Boron-reinforced aluminum | |
JPH0218374B2 (en) | ||
Sanin et al. | Complex boride metal-matrix composites by SHS under high gravity | |
CN108265240A (en) | A kind of SiC/Zr base noncrystal alloys bicontinuous phase compound material and preparation method thereof | |
Nieh et al. | Recent advances and developments in refractory alloys | |
Mitra | Silicides and Silicide Matrix Composites for High-Temperature Structural Applications | |
US3001870A (en) | Niobium-titanium refractory alloy | |
EP0507364A1 (en) | Oxide dispersion strengthened, precipitation hardenable nickel-chromium alloy | |
CN109468484B (en) | Method for realizing high-temperature titanium alloy composite reinforcement by adding zirconium nitride | |
DE2010841C (en) | Magnesium alloys and fiber materials and their use | |
Duan et al. | Microstructure of laser melted/rapidly solidified γ/Cr 3 Si metal silicide “in situ” composites |