NO130892B - - Google Patents

Download PDF

Info

Publication number
NO130892B
NO130892B NO01340/72A NO134072A NO130892B NO 130892 B NO130892 B NO 130892B NO 01340/72 A NO01340/72 A NO 01340/72A NO 134072 A NO134072 A NO 134072A NO 130892 B NO130892 B NO 130892B
Authority
NO
Norway
Prior art keywords
regenerator
nitrogen
auxiliary
valve
air
Prior art date
Application number
NO01340/72A
Other languages
Norwegian (no)
Other versions
NO130892C (en
Inventor
H Zechmeister
Original Assignee
Maschf Augsburg Nuernberg Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschf Augsburg Nuernberg Ag filed Critical Maschf Augsburg Nuernberg Ag
Publication of NO130892B publication Critical patent/NO130892B/no
Publication of NO130892C publication Critical patent/NO130892C/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • B29C41/042Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry
    • B29C41/045Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry the axis being placed vertically, e.g. spin casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • B29C70/323Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core on the inner surface of a rotating mould
    • B29C70/326Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core on the inner surface of a rotating mould by rotating the mould around its axis of symmetry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12333Helical or with helical component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12444Embodying fibers interengaged or between layers [e.g., paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Regeneratorsystem for luft- resp. gassfraksjoneringsanlegg. Regenerator system for air or gas fractionation plant.

Foreliggende oppfinnelse angår luft-resp. gassfraksjoneringsanlegg, og spesielt store anlegg av denne art. The present invention relates to air or gas fractionation plants, and especially large plants of this kind.

Ved luft- og gassfraksjoneringsanlegg At air and gas fractionation plants

er det nødvendig å avkjøle gassene (f. eks. luft) som skal fraksjoneres, ved kuldeveks-ling med de tilbakestrømmende fraksjone-ringsprodukter i en slik grad at de inn-strømmende gasser avkjøles til nærmest mulig kondenseringstemperaturen og at det unngås kuldetap. is it necessary to cool the gases (e.g. air) to be fractionated, by cold exchange with the returning fractionation products to such an extent that the inflowing gases are cooled to the closest possible condensation temperature and that loss of cold is avoided.

Mens dette ved de klassiske (som oftest mindre) anlegg skjer ved hjelp av rørvar-mevekslere, arbeider nyere store anlegg som oftest etter Linde-Frånkl-prinsippet med regeneratorer. Da disse arbeider dis-kontinuerlig, er det anordnet minst to, slik at den ene til enhver tid står til disposisjon for den innstrømmende gass og den annen for det utstrømmende produkt. Denne fordeling veksler i regelmessige tidsav-snitt. Som det nedenfor skal forklares mer detaljert i forbindelse med tegningene, oppstår der følgende ulemper ved de kjente regeneratorsystemer: For det første må fraksjoneringspro-sessen stanses under omkoblingen fra en regenerator til den annen såvel på inn-gangssiden som på utgangssiden av frak-s j oneringsanlegget. While this is done in classic (usually smaller) plants using pipe heat exchangers, newer large plants usually work according to the Linde-Frånkl principle with regenerators. As these work discontinuously, at least two are arranged, so that one is at all times available for the inflowing gas and the other for the outflowing product. This distribution alternates at regular intervals. As will be explained in more detail below in connection with the drawings, the following disadvantages arise with the known regenerator systems: Firstly, the fractionation process must be stopped during the switching from one regenerator to the other both on the input side and on the output side of the fractionator onation facility.

En særlig tungtveiende ulempe består A particularly weighty disadvantage remains

i at regeneratoren som skal omkobles fra nitrogen til luft, ikke kan avgi sitt inn-hold av nitrogen, som av den innstrøm-mende luft trykkes ned i den nedre del av fraksjoneringsapparatet, hvor regeneratoren, i stedet for å bidra til fremstillingen in that the regenerator, which is to be switched from nitrogen to air, cannot release its nitrogen content, which is pushed down by the inflowing air into the lower part of the fractionation apparatus, where the regenerator, instead of contributing to the production

av oksygen, tvertimot forstyrrer fraksjo-neringen på uønsket måte. of oxygen, on the contrary, disturbs the fractionation in an undesirable way.

En videre ulempe ved kjente systemer består i at den i den luftførende regenerator inneholdte pressluft delvis går tapt. A further disadvantage of known systems is that the compressed air contained in the air-carrying regenerator is partially lost.

Ifølge foreliggende oppfinnelse unngås de nevnte ulemper derved at det er anordnet en eller flere med de øvrige regeneratorer samvirkende, fortrinnsvis forholdsvis små hjelperegeneratorer gjennom hvilken eller hvilke bortstrømningen av det fra den øvre del av fraksjoneringsapparatet utstrømmende nitrogen og/eller gjennom hvilken eller hvilke bortstrømningen av nitrogenet fra den til luft omkoblete regenerator kan finne sted, uten forstyrrelse under omkoblingstiden. According to the present invention, the aforementioned disadvantages are avoided by arranging one or more co-operating with the other regenerators, preferably relatively small auxiliary regenerators through which or which the outflow of the nitrogen flowing from the upper part of the fractionation apparatus and/or through which or which the outflow of the nitrogen from the regenerator switched to air can take place, without disturbance during the switchover time.

Herunder kan hjelperegeneratoren, resp. en av disse, stå i forbindelse med de øvrige regeneratorer over en normalt stengt, styrbar ventil, hvis åpning og stengning er koblet mekanisk eller elektromag-netisk med åpningen og stengningen av en overstrømventil. Below, the auxiliary generator, resp. one of these, stand in connection with the other regenerators via a normally closed, controllable valve, the opening and closing of which is connected mechanically or electromagnetically with the opening and closing of an overflow valve.

Dessuten kan der mellom hjelperegeneratoren og nitrogenutstrømningslednin-gen fra regeneratorene være anordnet en forbindelsesledning med en ventil hvis åpning finner sted ved stengning av regeneratorventilene for luft og nitrogen. In addition, a connection line with a valve can be arranged between the auxiliary regenerator and the nitrogen outflow line from the regenerators, the opening of which takes place when the regenerator valves for air and nitrogen are closed.

Videre kan hjelperegeneratoren være forsynt med en ventil for gjennomføring av luftstrømmen som opptar den oppma gasinerte kulde i hjelperegeneratoren. Furthermore, the auxiliary generator can be provided with a valve for passing the air flow which takes up the stored cold in the auxiliary generator.

Herunder kan den nevnte ventil være styrbar ved hjelp av den i den koldere del av hjelperegeneratoren oppnådde tempe-råtur, hvorunder der fortrinnsvis er anordnet midler som etterat der er nådd en maksimal temperatur av den ved den kalde ende av hjelperegeneratoren uttredende luft, bevirkes en automatisk stengning av ventilen. For den fra fraksjoneringsapparatets lavtrykksdel utstrømmende nitrogen på den ene side av den fra den omkoblete regenerator unnvikende nitrogen på den annen side kan det likeledes være anordnet særskilte baner i hjelperegeneratoren. Below, the mentioned valve can be controlled by means of the temperature achieved in the colder part of the auxiliary generator, under which means are preferably arranged which, after a maximum temperature of the air exiting at the cold end of the auxiliary generator has been reached, an automatic closing the valve. For the nitrogen flowing out from the low-pressure part of the fractionator on one side and the nitrogen escaping from the re-switched regenerator on the other side, separate paths can likewise be arranged in the auxiliary regenerator.

For å sikre at nitrogenet som befinner seg i den til luft omkoblete regenerator, skal strømme raskt og fullstendig inn i hjelperegeneratoren og at det ikke skal finne sted noe overtrykk i retning mot fraksjoneringsapparatet, kan forbindelsesledningen mellom regeneratoren og hjelperegeneratoren sammen med nitrogentilfør-selen fra fraksjoneringsapparatet være ut-ført på lignende måte som en injektor (av samme type som et Venturi-system eller en væskestrålesugepumpe). In order to ensure that the nitrogen in the regenerator switched to air should flow quickly and completely into the auxiliary generator and that no overpressure should occur in the direction of the fractionator, the connection line between the regenerator and the auxiliary regenerator together with the nitrogen supply from the fractionator can be designed in a similar way to an injector (of the same type as a Venturi system or a liquid jet suction pump).

Hjelperegeneratoren kan helt eller delvis være utført som en rørvarmeveksler. The auxiliary generator can be fully or partially designed as a tube heat exchanger.

En foretrukken utførelsesform for en anordning ifølge oppfinnelsen oppnås ved at hjelperegeneratorene er tilordnet beholdere i hvilke det gjennom hjelperegeneratoren strømmende nitrogen strømmer inn og hvis størrelse er valgt slik at de opptar nitrogenet uten vesentlig trykkstigning. A preferred embodiment of a device according to the invention is achieved by the auxiliary generators being assigned to containers into which the nitrogen flowing through the auxiliary generator flows in and whose size is chosen so that they absorb the nitrogen without a significant increase in pressure.

Når det er anordnet to hjelperegeneratorer, kan den ene være anordnet for det fra den øvre del av fraksjoneringsapparatet utstrømmende nitrogen og den annen hjelperegenerator for det støtvis utstrømmen-de nitrogen som strømmer ut fra regeneratoren som skal omstilles. When two auxiliary regenerators are arranged, one can be arranged for the nitrogen flowing out from the upper part of the fractionator and the other auxiliary generator for the shock-flowing nitrogen that flows out from the regenerator to be converted.

For at oppfinnelsen lettere skal forstås, skal den i det følgende beskrives nær-mere i forbindelse med tegningene. In order for the invention to be more easily understood, it will be described in more detail below in connection with the drawings.

På tegningen viser fig. 1 et koblings-skje-ma for et regeneratoranlegg av kjent type som er illustrert i kombinasjon med et f raksj oneringsapparat. In the drawing, fig. 1 a connection diagram for a regenerator plant of a known type which is illustrated in combination with a fractionation device.

Fig. 2 illustrerer skjematisk et regeneratorsystem ifølge en første utførelsesform for oppfinnelsen og Fig. 2 schematically illustrates a regenerator system according to a first embodiment of the invention and

fig. 3 illustrerer på tilsvarende måte et regeneratorsystem ifølge et annet utførel-seseksempel. fig. 3 similarly illustrates a regenerator system according to another embodiment.

Ved de kjente anlegg strømmer den f. eks. til 6 atm. overtrykk komprimerte luft gjennom ledningen L og ventilen 2, resp. ventilen 2', til regeneratoren 3, resp. 3', i regeneratorparet 1. Det skal først antas at regeneratoren 3' er i drift, dvs. at luft-strømmen som skal kjøles, strømmer inn gjennom ventilen 2' mens ventilen 2 på regeneratoren 3 er stengt. At the known facilities, it flows, e.g. to 6 atm. overpressure compressed air through line L and valve 2, resp. the valve 2', to the regenerator 3, resp. 3', in the regenerator pair 1. It must first be assumed that the regenerator 3' is in operation, i.e. that the air stream to be cooled flows in through the valve 2' while the valve 2 on the regenerator 3 is closed.

Regeneratoren 3 opplades da med kulde som avgis den fra det fra øvre del a av anlegget utstrømmende nitrogen, som gjennom ledningen 5 og tilbakeslagsventilen 6 strømmer inn i regeneratoren 3 som derved i sin nedre del avkjøles til ca. —172°. Nitrogenet kommer gjennom den åpnete ventil 7 og ledningen S ut i det fri mens ventilen 7' for regeneratoren 3' forblir luk-ket. Den gjennom regeneratoren 3' strøm-mende luft kommer gjennom tilbakeslagsventilen 9' i sterkt avkjølt tilstand inn i ledningen 8. Tilbakeslagsventilen 7 er i denne driftsfase stengt da trykket i luft-ledningen 8 ligger betraktelig høyere enn trykket i nitrogenledningene. Når regeneratoren 3 i driftsfasen for regeneratoren 3' er avkjølt tilstrekkelig, finner omkoblingen av regeneratorene sted. The regenerator 3 is then charged with cold, which is emitted from the nitrogen flowing out from the upper part a of the plant, which flows through the line 5 and the non-return valve 6 into the regenerator 3, which is thereby cooled in its lower part to approx. -172°. The nitrogen comes through the opened valve 7 and the line S out into the open while the valve 7' for the regenerator 3' remains closed. The air flowing through the regenerator 3' comes through the non-return valve 9' in a strongly cooled state into the line 8. The non-return valve 7 is closed in this operating phase as the pressure in the air line 8 is considerably higher than the pressure in the nitrogen lines. When the regenerator 3 in the operating phase for the regenerator 3' has cooled sufficiently, the switching of the regenerators takes place.

I dette øyemed må ventilparene 2, 2' og 7, 7' sperres, mens overstrømningsventilen 10 åpnes for å bevirke en trykkutjevning mellom regeneratorene 3 og 3'. Den under omtrent 6 atm. overtrykk i beholderen 3' værende luft strømmer inn i beholderen 3 og skyver det der værende nitrogen foran seg. Etter åpning av ventilen 2 trykkes nitrogenet av den etterfølgende luft inn i ledningen 8, som fører til oksygensumpen 11. Under cmkoblingsperioden kommer således ingen luft og dermed ikke noe oksygen inn i oksygensumpen 11, og istedenfor avkjølt luft ledes det rent nitrogen inn i sumpen. Derfor blir de nedre deler av fraksjone-ringssøylene, i hvilke der allerede befinner seg sterkt anriket råoksygen, gjennom-strømmet av nitrogen istedenfor av luft. For this purpose, the valve pairs 2, 2' and 7, 7' must be blocked, while the overflow valve 10 is opened to effect a pressure equalization between the regenerators 3 and 3'. The one below about 6 atm. overpressure in the container 3' air flows into the container 3 and pushes the nitrogen there in front of it. After opening the valve 2, the nitrogen of the subsequent air is pressed into the line 8, which leads to the oxygen sump 11. During the cm switching period, no air and thus no oxygen enters the oxygen sump 11, and instead of cooled air, pure nitrogen is led into the sump. Therefore, the lower parts of the fractionation columns, in which there is already highly enriched raw oxygen, are flowed through with nitrogen instead of air.

På den ene side blir derved rektifika-sjonen sterkt forstyrret og på den annen side mangler oksygen rent tallmessig i sumpen. Hertil kommer at kondenseringsytel-sen som forlanges av kondensatoren 12, forhøyes ved hjelp av denne nitrogen-mengde uten at det i den øvre del a står til disposisjon en til merfordampningen svarende tilbakeløpsmengde av rent oksygen. Det i høytrykksrommet værende an-rikete oksygen kommer gjennom ledningen 17 og ventilen 18 inn i rektifikasjonskolonnen i fraksjoneringsapparatets lavtrykks-rom a. On the one hand, the rectification is thereby greatly disturbed and on the other hand oxygen is lacking purely in terms of numbers in the sump. In addition, the condensing performance required by the condenser 12 is increased with the help of this amount of nitrogen, without a return amount of pure oxygen corresponding to the additional evaporation being available in the upper part a. The enriched oxygen in the high-pressure chamber enters through the line 17 and the valve 18 into the rectification column in the low-pressure chamber a of the fractionator.

Fra skålene 13 i hvilke den i kondensatoren 12 frembrakte flytende nitrogen fly-ter ned, kommer nitrogenet gjennom ventilen 15 og ledningen 16 til kolonnens hode. From the bowls 13 in which the liquid nitrogen produced in the condenser 12 flows down, the nitrogen comes through the valve 15 and the line 16 to the head of the column.

Omkoblingsprosessen og den herved nødvendige sperring av ventilene 7, resp. 7', har videre den ulempe at ledningen under omkoblingsprosessen er sperret for tur-binutstrømningene. Herved synker om-dreiningstallet for kuldeturbinen i betraktelig grad, hvilket medfører et kuldetap. The switching process and the thereby necessary blocking of the valves 7, resp. 7', further has the disadvantage that during the switching process the line is blocked for the turbine outflows. Hereby, the number of revolutions for the cooling turbine drops to a considerable extent, which results in a loss of cooling.

Ifølge foreliggende oppfinnelse er der anordnet en hjelperegenerator 3X slik som det fremgår av fig. 2. Under omkoblingsprosessen kommer nå nitrogenet fra ledningen 5 gjennom tilbakeslagsventilen 6X og ventilen 7X ut i det fri. (Rektifikasjons-prosessen i den øvre del av apparatet blir altså ikke forstyrret og turtallet for kuldeturbinen ikke så sterkt nedsatt). Dessuten kan nitrogenet, som befinner seg i beholderen 3, gjennom ledningen 20 strømme ut i hjelperegeneratoren 3X og avgi sin kjøle-virkning her, istedenfor — som ved de kjente regeneratorer — etterat det har funnet sted trykkutjevning mellom regeneratorene og ventilen 9, resp. ventilen 9', og trykkes inn i ledningen 8 og dermed i oksygensumpen 11. Den raske overføring av nitrogenet fra regeneratoren 3 til hjelperegeneratoren 3X som hindrer en for tid-lig trykkøkning, kan ytterligere forbedres ved at ledningen 5 sammen med ledningen 20 ved det sted hvor ledningene munner ut i hjelperegeneratoren, er utført på lignende måte som en injektor, resp. som en væskestrålesugepumpe. For å nyttiggjøre den i hjelperegeneratoren oppmagasinerte kulde er det anordnet en ventil 2X gjennom hvilken komprimert luft fra ledningen L kommer inn i hjelperegeneratoren og der-fra over tilbakeslagsventilen 9' og gjennom ledningen 8 til oksygensumpen. Når hjelperegeneratoren er oppvarmet som følge av den gjennomstrømmende luft, inntil en bestemt maksimal temperatur, blir ventilen 2X automatisk stengt. De styrte ventilene 21 og 21' i forbindelsesledningene 20 og 20' åpnes ved hjelp av mekaniske, elektro-magnetiske eller på annen måte styrbare midler synkront med eller kort før åpningen av overstrømningsventilen — f. eks. ved stengning av ventilparet 2, 2' og 7, 7'. Åpningen av nitrogenventilen 7X finner automatisk sted ved stengning av nitro-genventilene 7, resp. 7'. According to the present invention, an auxiliary generator 3X is arranged as shown in fig. 2. During the switching process, the nitrogen from the line 5 now comes out into the open through the non-return valve 6X and the valve 7X. (The rectification process in the upper part of the device is therefore not disturbed and the speed of the cooling turbine is not so greatly reduced). Furthermore, the nitrogen, which is in the container 3, can flow through the line 20 into the auxiliary regenerator 3X and give off its cooling effect here, instead of — as with the known regenerators — after pressure equalization has taken place between the regenerators and the valve 9, resp. the valve 9', and is pressed into the line 8 and thus into the oxygen sump 11. The rapid transfer of the nitrogen from the regenerator 3 to the auxiliary regenerator 3X, which prevents a premature increase in pressure, can be further improved by the line 5 together with the line 20 at that location where the lines open into the auxiliary generator, is made in a similar way to an injector, resp. as a liquid jet suction pump. In order to make use of the cold stored in the auxiliary generator, a valve 2X is arranged through which compressed air from the line L enters the auxiliary generator and from there over the non-return valve 9' and through the line 8 to the oxygen sump. When the auxiliary generator is heated as a result of the flowing air, up to a certain maximum temperature, the valve 2X is automatically closed. The controlled valves 21 and 21' in the connecting lines 20 and 20' are opened by means of mechanical, electromagnetic or otherwise controllable means synchronously with or shortly before the opening of the overflow valve — e.g. when closing the valve pair 2, 2' and 7, 7'. The opening of the nitrogen valve 7X takes place automatically when the nitrogen valves 7 are closed, resp. 7'.

Fig. 3 viser en utførelsesform for oppfinnelsen ved hvilken nitrogenet ikke unn-viker i atmosfæren, men fra hjelperegeneratorene kommer til beholdere som er di-mensjonert slik at de opptar nitrogenet uten vesentlig trykkøkning. Etter omkobling av regeneratorene strømmer det i beholderne oppmagasinerte nitrogen på ny tilbake til hjelperegeneratorene, opptar på ny den avgitte kulde og avgir den, etterat den på ny har blandet seg med det øvrige bortførte nitrogen, på normal vei til regeneratoren 3 eller 3'. Fig. 3 shows an embodiment of the invention in which the nitrogen does not escape into the atmosphere, but from the auxiliary generators comes to containers which are dimensioned so that they absorb the nitrogen without a significant increase in pressure. After the regenerators are switched on, the nitrogen stored in the containers flows back to the auxiliary generators, reabsorbs the given off cold and emits it, after it has again mixed with the other carried away nitrogen, on a normal route to the regenerator 3 or 3'.

Som det fremgår mer detaljert av fig. As can be seen in more detail from fig.

3, er det istedenfor hjelperegeneratoren 3X anordnet to hjelperegeneratorer 3<X>' og 3X-. Hjelperegeneratoren 3<X>> er ved hjelp av ledningen 22' forbundet med nitrogenled-ningen 5 og opptar ved omkobling det fra den øvre del av rektifikasjonskolonnen bortstrømmende nitrogen. Hjelperegeneratoren 3X2 er ved hjelp av de allerede kjente ledningsdeler 20 og 20' under mellomkob-ling av ventilene 21 og 21' forbundet med den nedre del av begge regeneratorer. Som ved utførelsesformen ifølge fig. 2 skal nitrogenet herved kunne flyte bort fra den regenerator som er omstilt til luft. 3, two auxiliary generators 3<X>' and 3X- are arranged instead of the auxiliary generator 3X. The auxiliary regenerator 3<X>> is connected by means of the line 22' to the nitrogen line 5 and, by switching, absorbs the nitrogen flowing away from the upper part of the rectification column. The auxiliary regenerator 3X2 is connected to the lower part of both regenerators by means of the already known line parts 20 and 20' under intermediate coupling of the valves 21 and 21'. As with the embodiment according to fig. 2, the nitrogen must thereby be able to flow away from the regenerator that has been converted to air.

Man kunne tenke seg å oppmagasinere nitrogenet i den kalde del av vedkommende beholdere for etter omkoblingen å la den strømme bort på normal måte. Dette ville imidlertid nødvendiggjøre beholdere av slike dimensjoner at de ville bli utsatt for for store kuldetap. Ved utførelsesformen ifølge fig. 3 derimot kan de forholdsvis små kuldetap ved hjelperegeneratorene tas med på kjøpet for bruk av store beholdere ved normal temperatur fra hvilke nitrogenet etter omkoblingen strømmer bort, idet den avgitte kulde på ny tas med av nitrogenet som forener seg med det bortstrøm-mende nitrogen. One could imagine storing the nitrogen in the cold part of the containers in question so that after the switchover, it can flow away in the normal way. However, this would necessitate containers of such dimensions that they would be exposed to excessive cold losses. In the embodiment according to fig. 3, on the other hand, the relatively small cold losses at the auxiliary generators can be included in the purchase for the use of large containers at normal temperature from which the nitrogen flows away after the switching, as the given off cold is taken up again by the nitrogen that unites with the nitrogen flowing away.

Den på fig. 3 beskrevne utførelsesform The one in fig. 3 described embodiment

medfører ytterligere fordeler. brings additional benefits.

Da det ikke anvendes luft for gjen-vinning av kulden, bortfaller omkoblings-tapet for hjelperegeneratorene. Derved kan man dimensjonere disse rundelig. As no air is used to recover the cold, the switching loss for the auxiliary generators is eliminated. Thereby, these can be dimensioned roundly.

Som en videre vesentlig konstruktiv fordel må fremheves den omstendighet at hjelperegeneratorene kan bygges lette då den under høyt trykk stående luft ikke mere går gjennom hjelperegeneratorene og at det altså her ikke oppstår høye trykk. Av samme grunner kan også de til hjelperegeneratorene hørende samlebeholdere utføres tynnvegget. As a further significant constructive advantage, the fact that the auxiliary generators can be built light must be highlighted as the air under high pressure no longer passes through the auxiliary generators and that high pressures do not occur here. For the same reasons, the collection containers belonging to the auxiliary generators can also be made thin-walled.

Også med hensyn til utformningen av ventilene oppnås der et vesentlig frem-skritt. Således trenges der for hjelperegeneratoren 3xi hverken ventiler i den var-me eller kalde del. Hjelperegeneratoren 3X'^ trenger bare de to ventiler 21 og 21' i den kalde del. Dessuten lettes driften av anlegget i sterk grad derved at man av de trykk som innstiller seg i beholderne 23, og 232 kan beregne nitrogenmengdene. Also with regard to the design of the valves, a significant advance is achieved there. Thus, for the auxiliary generator 3xi, neither valves are needed in the hot or cold part. The auxiliary regenerator 3X'^ only needs the two valves 21 and 21' in the cold part. Furthermore, the operation of the plant is greatly facilitated by the fact that the nitrogen quantities can be calculated from the pressures that occur in the containers 23 and 232.

I det foranstående er oppfinnelsen for - klart i forbindelse med luft-nitrogenfrak-sjoneringsanlegg. Det vil imidlertid uten videre forstås at oppfinnelsen kan anvendes overalt hvor det innstrømmende flui-dum i stedet for luft er en annen gass eller et flertall andre gasskomponenter og det fra systemet utstrømmende nitrogen likeledes er en annen gass eller svarer til et flertall andre gasskomponenter. Betegnel-sene luft, resp. nitrogen, kan således om-byttes med andre betegnelser for vilkår-lige andre gasser eller gassblandinger som kan underkastes analoge fraksjonerings-prosesser. In the foregoing, the invention is clearly explained in connection with air-nitrogen fractionation plants. However, it will be readily understood that the invention can be used wherever the inflowing fluid instead of air is another gas or a majority of other gas components and the nitrogen flowing out of the system is likewise another gas or corresponds to a majority of other gas components. The term air, resp. nitrogen, can thus be interchanged with other designations for arbitrary other gases or gas mixtures that can be subjected to analogous fractionation processes.

Claims (10)

1. Regeneratorsystem for luft- resp. gassfraksjoneringsanlegg, karakterisert ved at der er anordnet en eller flere med de øvrige regeneratorer (3, 3') samvirkende, fortrinnsvis forholdsvis små hjelperegeneratorer (3X, eventuelt 3xi, 3x2) gjennom hvilken eller hvilke bortstrømningen av det fra den øvre del av fraksjoneringsanlegget utstrømmende nitrogen og/eller gjennom hvilken eller hvilke bortstrømningen av nitrogenet fra den til luft omkoblete regenerator kan finne sted uten forstyrrelser under omkoblingstiden.1. Regenerator system for air or gas fractionation plant, characterized in that there are arranged one or more co-operating with the other regenerators (3, 3'), preferably relatively small auxiliary regenerators (3X, possibly 3xi, 3x2) through which or which the outflow of the nitrogen flowing from the upper part of the fractionation plant and/or through which or which the outflow of the nitrogen from the regenerator switched to air can take place without disturbances during the switching time. 2. Regeneratorsystem som angitt i påstand 1, karakterisert ved at hjelperegeneratoren, resp. en eller flere av hjelperegeneratorene står i forbindelse med hver av de øvrige regeneratorer over en normalt stengt, styrbar ventil (21, 21'), hvis åpning er koblet f. eks. mekanisk, elektromagne-tisk e. 1. med åpningen av en overstrøm-ningsventil (10) mellom regeneratorene.2. Regenerator system as stated in claim 1, characterized in that the auxiliary regenerator, resp. one or more of the auxiliary regenerators are connected to each of the other regenerators via a normally closed, controllable valve (21, 21'), the opening of which is connected, e.g. mechanical, electromagnetic e. 1. with the opening of an overflow valve (10) between the regenerators. 3. Regeneratorsystem som angitt i påstand 1, karakterisert ved at der til en eller flere hjelperegeneratorer (3X,, 3X2) er til-koblet beholdere (23,, 232) i hvilke den gjennom hjelperegeneratoren(e) (3<X>1( 3<X>2) strømmende nitrogen strømmer inn.3. Regenerator system as stated in claim 1, characterized in that containers (23,, 232) are connected to one or more auxiliary generators (3X,, 3X2) in which, through the auxiliary generator(s) (3<X>1( 3<X>2) flowing nitrogen flows in. 4. Regeneratorsystem som angitt i påstand 1 eller 2, karakterisert ved at der mellom en hjelperegenerator (3X) og re-generatorenes nitrogenutløpsledning (S) er anordnet en med en ventil (7X) forsynt forbindelsesledning, hvorunder åpningen av den sistnevnte ventil (7X) finner sted ved stengning av regeneratorventilene for luft og nitrogen under omkoblingen fra en regenerator til en annen.4. Regenerator system as specified in claim 1 or 2, characterized in that between an auxiliary regenerator (3X) and the regenerator's nitrogen outlet line (S) a connecting line provided with a valve (7X) is arranged, during which the opening of the latter valve (7X) takes place by closing the regenerator valves for air and nitrogen during the switchover from one regenerator to another. 5. Regeneratorsystem som angitt i en av de foranstående påstander, karakteri sert ved at det til hjelperegeneratoren (3X) fører en ledning imed en ventil (2X) for å slippe igjennom den lufststrømmen som opptar den i hjelperegeneratoren (3X) oppmagasinerte kulde.5. Regenerator system as indicated in a of the preceding claims, character served by the fact that there is a line leading to the auxiliary generator (3X) with a valve (2X) to let through the air flow that absorbs the cold stored in the auxiliary generator (3X). 6. Regeneratorsystem som angitt i påstand 4, karakterisert ved at den nevnte ventil (2X) kan styres av den temperatur som hersker i den kalde del av hjelperegeneratoren (3X) hvorunder der fortrinnsvis er anordnet midler som bevirker automatisk stengning av ventilen når der nåes en maksimal temperatur i hjelperegeneratoren (3X).6. Regenerator system as stated in claim 4, characterized in that the said valve (2X) can be controlled by the temperature that prevails in the cold part of the auxiliary regenerator (3X) under which there are preferably arranged means which effect automatic closing of the valve when a maximum temperature in the auxiliary generator (3X). 7. Regeneratorsystem som angitt i en av de foranstående påstander, karakterisert ved at der for bortstrømning av det fra fraksjoneringsanleggets lavtrykksdel (a) utstrømmende nitrogen og for unnvikelse av nitrogenet fra den fra nitrogen til luft omkoblete regenerator (3, 3') er anordnet atskilte veier i hjelperegeneratoren (3X).7. Regenerator system as indicated in one of the preceding claims, characterized in that for the outflow of the nitrogen flowing from the fractionation plant's low-pressure part (a) and for the avoidance of the nitrogen from the regenerator (3, 3') switched from nitrogen to air, separate weighs in the auxiliary generator (3X). 8. Regeneratorsystem som angitt i en av de foranstående påstander, karakterisert ved at forbindelsesledningen (20, 20') mellom regeneratoren (3, 3') og hjelperegeneratoren (3X) sammen med nitrogentil-førselsledningen (5) fra fraksjoneringsapparatet er utformet som en injektor (f. eks. som et Venturi-system eller en væskestrålesugepumpe).8. Regenerator system as stated in one of the preceding claims, characterized in that the connection line (20, 20') between the regenerator (3, 3') and the auxiliary regenerator (3X) together with the nitrogen supply line (5) from the fractionator is designed as an injector (e.g. as a Venturi system or a liquid jet suction pump). 9. Regeneratorsystem som angitt i påstand 3, karakterisert ved en slik dimen-sjonering av beholderne (23,, 232) at nitrogenet kan opptas uten vesentlig trykk-økning.9. Regenerator system as stated in claim 3, characterized by such a dimensioning of the containers (23, 232) that the nitrogen can be absorbed without a significant increase in pressure. 10. Regeneratorsystem som angitt i påstand 3, og en eller flere av de øvrige påstander, karakterisert ved at der er anordnet en hjelperegenerator (3",) med etterkoblet beholder (23,) for det samtidig fra fraksjoneringsapparatet utstrømmende nitrogen og en annen hjelperegenerator (3X2) med etterkoblet beholder (232) for det støtvis fra den til luft omkoblete regenerator unnvikende nitrogen.10. Regenerator system as stated in claim 3, and one or more of the other claims, characterized in that an auxiliary regenerator (3") with a downstream container (23,) is arranged for the nitrogen simultaneously flowing out of the fractionator and another auxiliary regenerator ( 3X2) with a downstream container (232) for the nitrogen escaping from the regenerator switched to air in shock.
NO1340/72A 1971-04-19 1972-04-18 NO130892C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2118848A DE2118848C3 (en) 1971-04-19 1971-04-19 Rotationally symmetric, hollow composite body and process for its manufacture

Publications (2)

Publication Number Publication Date
NO130892B true NO130892B (en) 1974-11-25
NO130892C NO130892C (en) 1975-03-05

Family

ID=5805092

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1340/72A NO130892C (en) 1971-04-19 1972-04-18

Country Status (13)

Country Link
US (1) US3849080A (en)
JP (1) JPS5516750B1 (en)
AT (1) AT323915B (en)
BE (1) BE782239A (en)
CH (1) CH566831A5 (en)
DE (1) DE2118848C3 (en)
DK (1) DK141355C (en)
FI (1) FI52939C (en)
FR (1) FR2133852B1 (en)
GB (1) GB1393989A (en)
NL (1) NL162003C (en)
NO (1) NO130892C (en)
SE (1) SE387874B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2523074A1 (en) * 1975-05-24 1976-12-02 Christensen Diamond Prod Co PROCESS AND EQUIPMENT FOR MANUFACTURING WEAR-RESISTANT BODIES, IN PARTICULAR FOR DEEP DRILLING TECHNOLOGY
JPS5292827A (en) * 1976-01-16 1977-08-04 Honda Motor Co Ltd Method of manufacturing structures with fiber reinforced composite parts
DE2929217A1 (en) * 1979-07-19 1983-12-01 Messerschmitt-Bölkow-Blohm GmbH, 8000 München ROTATION-SYMMETRICAL HOLLOW COMPOSITE BODY
JPS5630070A (en) * 1979-08-17 1981-03-26 Honda Motor Co Ltd Manufacture of fiber-reinforced composite material
US4258756A (en) * 1979-08-27 1981-03-31 Allied Chemical Corporation Composite shell
US4834693A (en) * 1980-06-26 1989-05-30 Avco Corporation Hybrid drive shaft
AU554140B2 (en) * 1980-07-02 1986-08-07 Dana Corporation Thermally insulating coating on piston head
JPS5893813U (en) * 1981-12-18 1983-06-25 トキコ株式会社 turbine meter
DE3478035D1 (en) * 1984-01-27 1989-06-08 Chugai Ro Kogyo Kaisha Ltd Fiber reinforced metal alloy and method for the manufacture thereof
GB8518909D0 (en) * 1985-07-26 1985-09-04 Ae Plc Engineering components
US4816347A (en) * 1987-05-29 1989-03-28 Avco Lycoming/Subsidiary Of Textron, Inc. Hybrid titanium alloy matrix composites
GB2222793A (en) * 1988-09-16 1990-03-21 British Aerospace "Method of forming a fibre reinforced material"
JP3179812B2 (en) * 1991-09-17 2001-06-25 トーカロ株式会社 Carbon member having metal spray coating layer with excellent adhesion
GB9413631D0 (en) * 1994-07-06 1994-09-14 Inco Engineered Prod Ltd Manufacture of forged components
JP3650183B2 (en) * 1995-10-13 2005-05-18 栃木富士産業株式会社 Screw rotor processing method
DE19737601A1 (en) * 1997-08-28 1999-03-04 Bayerische Motoren Werke Ag Process for increasing the damping of a cast component made of a light metal material
WO2002001311A1 (en) * 2000-06-27 2002-01-03 Board Of Trustees Of The Leland Stanford Junior University Composite rotors for flywheels and methods of fabrication thereof
WO2002058917A2 (en) * 2001-01-23 2002-08-01 The Johns Hopkins University Use of a liquid during centrifugal processing to improve consolidation of a composite structure
GB201223198D0 (en) * 2012-12-21 2013-02-06 Jaguar Cars Sleeve member and method of casting
CN109203508A (en) * 2018-08-29 2019-01-15 江苏赛图新材料科技有限公司 Horizontal centrifugal forming device and forming process for fiber tube
US11510283B2 (en) 2019-05-14 2022-11-22 Intel Corporation WLAN sensing using high-efficiency (HE) trigger- based (TB) PPDUs (HE TB PPDUs)
CN112246586B (en) * 2020-09-28 2023-03-10 镇江经纬输送装备有限公司 Process for uniformly pouring polyurethane on inner wall of chute
CN113400542B (en) * 2021-07-20 2022-11-25 南通天木绝缘复合材料有限公司 Make things convenient for glass steel grating production of raw materials flash mixed with centrifugal pouring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1280909A (en) * 1916-02-05 1918-10-08 Metalco Company Manufacture of pipes.
US2197916A (en) * 1937-01-27 1940-04-23 Detroit Gasket & Mfg Company Gasket
US3427185A (en) * 1964-02-19 1969-02-11 United Aircraft Corp Composite structural material incorporating metallic filaments in a matrix,and method of manufacture
US3419952A (en) * 1966-09-12 1969-01-07 Gen Electric Method for making composite material
NL6912700A (en) * 1968-08-22 1970-02-24
US3575783A (en) * 1968-11-13 1971-04-20 United Aircraft Corp Unidirectional fiber reinforced metal matrix tape
US3608170A (en) * 1969-04-14 1971-09-28 Abex Corp Metal impregnated composite casting method

Also Published As

Publication number Publication date
JPS5516750B1 (en) 1980-05-06
FI52939B (en) 1977-09-30
DE2118848B2 (en) 1973-06-20
CH566831A5 (en) 1975-09-30
GB1393989A (en) 1975-05-14
US3849080A (en) 1974-11-19
AT323915B (en) 1975-08-11
SE387874B (en) 1976-09-20
BE782239A (en) 1972-08-16
NL162003C (en) 1980-04-15
FR2133852B1 (en) 1976-10-29
FI52939C (en) 1978-01-10
DE2118848C3 (en) 1974-01-17
NL162003B (en) 1979-11-15
DK141355C (en) 1980-08-18
NL7205164A (en) 1972-10-23
NO130892C (en) 1975-03-05
DK141355B (en) 1980-03-03
DE2118848A1 (en) 1972-11-02
FR2133852A1 (en) 1972-12-01

Similar Documents

Publication Publication Date Title
NO130892B (en)
US5533338A (en) Cryogenic vapor recovery process and system
US2873583A (en) Dual pressure cycle for air separation
RU99103335A (en) INCREASING EFFICIENCY OF CASCADE OPEN CYCLE COOLING METHOD
NO865338L (en) PROCEDURE FOR SEPARATION OF INGREDIENTS OF HYDROCARBON GASES.
KR950014798A (en) Low temperature heat exchange system and freeze dryer
NO312736B1 (en) Method and plant for cooling and possibly liquefying a product gas
US3492828A (en) Process and apparatus for heat exchange of streams in the low temperature separation of gas mixtures
SE439831C (en) PROCEDURE AND DEVICE FOR DEFROSTING MULTIPLE EVENTS
NO141812B (en) METHOD INSTRUCTION PROCEDURE FOR OFFSHORE CONSTRUCTIONS
US5271454A (en) Method and apparatus for removing heat generated in a spacecraft
US3722226A (en) Process gas forecooling system
KR950033380A (en) Method and apparatus for low temperature separation of air
US3056269A (en) Regeneration system for gas fractionating devices and the like
US5398513A (en) Regenerative vapor condenser
US2601764A (en) Apparatus for providing oxygen or other gases to meet variable demands
US4136531A (en) 3 He-4 He Dilution refrigerator
US5085037A (en) Minimizing the effects of icing in the intakes of aerospace propulsors
GB1170022A (en) Improvements in and relating to the Purification of Natural Gas
US2732691A (en) Apparatus for treating gases
GB883393A (en) Low temperature cleaning of an impurity-containing gas
US620312A (en) Apparatus for separating mixed gases by refrigeration
US3550390A (en) Method and apparatus for economizing the use of refrigerant
SU480893A1 (en) Installation of air separation by low-temperature distillation
CN208398413U (en) The high temperature heat pump system of superposition type low ambient temperature