DK141355B - ROTATION SYMMETRIC HOLE FIBER ARMED COMPULSORY AND PROCEDURE FOR PREPARING IT - Google Patents
ROTATION SYMMETRIC HOLE FIBER ARMED COMPULSORY AND PROCEDURE FOR PREPARING IT Download PDFInfo
- Publication number
- DK141355B DK141355B DK186472AA DK186472A DK141355B DK 141355 B DK141355 B DK 141355B DK 186472A A DK186472A A DK 186472AA DK 186472 A DK186472 A DK 186472A DK 141355 B DK141355 B DK 141355B
- Authority
- DK
- Denmark
- Prior art keywords
- fiber
- drum
- layers
- fibers
- compulsory
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/02—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C41/04—Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
- B29C41/042—Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry
- B29C41/045—Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry the axis being placed vertically, e.g. spin casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/02—Casting in, on, or around objects which form part of the product for making reinforced articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/32—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
- B29C70/323—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core on the inner surface of a rotating mould
- B29C70/326—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core on the inner surface of a rotating mould by rotating the mould around its axis of symmetry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12333—Helical or with helical component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12444—Embodying fibers interengaged or between layers [e.g., paper, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12465—All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12486—Laterally noncoextensive components [e.g., embedded, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12778—Alternative base metals from diverse categories
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
(®) \RB/ di) FREMLÆGGELSESSKRIFT 1^+1355 DANMARK (ευ intci.3 b 22 d 19/02 §(21) Ansøgning nr. 1864/72 (22) indleveret den 17* 8,pr. 1972 (23) Løbedag 17· &ΡΓ. 1972 (44) Ansøgningen fremlagt og fremtaggelseeekriftet offentliflejort den 3 · 018^ · 1 9^(®) \ RB / di) SUBMISSION WRITTEN 1 ^ + 1355 DENMARK (ευ intci.3 b 22 d 19/02 § (21) Application No 1864/72 (22) filed on 17 * 8, 1972 (23) Running Day 17 · & 1972 1972 (44) The application submitted and the receipt issued to the public on 3 · 018 ^ · 1 9 ^
DIREKTORATET FORDIRECTORATE OF
PATENT-OG VAREMÆRKEVÆSENET (30) Worftet begår«fra denPATENT AND TRADEMARKETENET (30) The work commits' from it
19. apr. 1971a 2118848, DEApr 19 1971a 2118848, DE
(71) MASCHINENFABRIK AUGSBURG-NUERNBERG AKTIENGESELLSCHAFT, 8000 Muenchen 50, Daohauer Straese 667a DE· (72) Opfinder: Hartwin Zechmeieter, Heinrich-Buz-Weg 10, 8000 Muenchen 50, BE.(71) MASCHINENFABRIK AUGSBURG-NUERNBERG AKTIENGESELLSCHAFT, 8000 Muenchen 50, Daohauer Straese 667a DE · (72) Inventor: Hartwin Zechmeieter, Heinrich-Buz-Weg 10, 8000 Muenchen 50, BE.
(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:
Ingeniørfirmaet Budde, Schou & Co.The engineering company Budde, Schou & Co.
(54) Rotations symmetrisk, hult, flberarmeret compoundlegeme og fremgangs* måde til fremstilling heraf.(54) Rotationally symmetrical, hollow, multi-armed compound body and method of manufacture thereof.
Den foreliggende opfindelse angår et rotationssymmetrisk, hult, fiberarmeret compoundlegeme, der består af to ligeledes rotationssymmetriske lag, hvoraf det ene er anbragt inden i og fugeløst går over i det andet, og af hvilke det indre lag består af metal, især af legeringer på nikkel-, titan-, kobolt- eller aluminiumbasis, og det ydre lag består af et fibermateriale, især af wolfram-, beryllium-, stål-, bor-, kulstof- eller silicium-carbidfibre, der er anbragt som opviklede, endeløse fibre, som fiberlængder eller som fibermåtter, hvorhos mellemrummene mellem fibrene er udstøbt med et af de forannævnte metaller.The present invention relates to a rotationally symmetrical, hollow, fiber-reinforced compound body consisting of two equally rotationally symmetrical layers, one of which is disposed within and joints seamlessly of the other, of which the inner layer consists of metal, in particular of nickel alloys. -, titanium, cobalt or aluminum base, and the outer layer consists of a fiber material, in particular tungsten, beryllium, steel, boron, carbon or silicon carbide fibers arranged as wound endless fibers which fiber lengths or as fiber mats wherein the spaces between the fibers are molded with one of the aforementioned metals.
2 1413552 141355
Det er almindelig kendt at fremstille rør, lejer og lignende af metal eller plast ved centrifugalstøbning. Det er yderligere kendt på denne måde at fremstille fiberarmerede plastcylindre, fortrinsvis til stationær anvendelse, f.eks. som master. Til fremstilling af kedler eller hurtigt roterende rør, tromler eller valser egner de kendte centrifugalstøbefremgangsmåder sig ikke, idet de på denne måde fremstillede compoundlegemer frembyder utilstrækkelig sammenhæng og tillader store radiale deformationer. Sammenhængen mellem fiberarmering og matrix er f.eks. utilstrækkelig ved store periferihastigheder af en roterende centrifugetromle, hvilket har løsning hhv. afrivning eller udvidelse af komponenterne til følge.It is generally known to manufacture tubes, bearings and the like of metal or plastic by centrifugal casting. It is further known in this manner to produce fiber-reinforced plastic cylinders, preferably for stationary use, e.g. as a master. For the production of boilers or rapidly rotating pipes, drums or rollers, the known centrifugal molding methods are not suitable, since the compound bodies thus produced provide insufficient coherence and allow large radial deformations. The relationship between fiber reinforcement and matrix is e.g. insufficient at large peripheral speeds of a rotary centrifuge drum, which has solution respectively. tearing or expansion of the components as a result.
Fra tysk ingeniørforenings tidsskrift (VDI-Zeitschrift) nr.From the German Engineers Association's journal (VDI-Zeitschrift) no.
112, 1970 side 1390/92 er det kendt til fremstilling af et materiale til meget store påvirkninger at indlejre fibre i støbelige materialer. Som fibermaterialer tjener herved bl.a. bor og kulstof, og som støbematerialer bl.a. titan, aluminium, nikkel eller kobolt.112, 1970 page 1390/92, it is known to manufacture a material for very large stresses to embed fibers in moldable materials. As fiber materials thereby serve, inter alia, boron and carbon, and as casting materials i.a. titanium, aluminum, nickel or cobalt.
Et sådant materiale med stor styrke vil, som omhandlet i svensk fremlæggelsesskrift nr. 311.064, kunne anvendes til fremstilling af en centrifugerotor ved centrifugalstøbning, idet der til støbematerialet tilsættes langstrakte partikler, der på grund af forskellig vinkelhastighed hos den ydre centrifugalstøbeform og en i denne anbragt kerne efter størkningen ligger i hovedsagen vinkelret på centrifugalstøbeformens radier og i planer, der står vinkelret på formens rotationsakse.Such high strength material, as disclosed in Swedish Laid-Open Specification No. 311,064, can be used to make a centrifuge rotor by centrifugal casting, elongate particles being added to the molding material due to different angular velocities of the outer centrifugal mold and one disposed therein. the core after solidification is generally perpendicular to the radii of the centrifugal mold and in planes perpendicular to the axis of rotation of the mold.
Når rotationslegemer af den indledningsvis anførte art, • f.eks. en centrifugetromle, bringes op på et meget højt omdrejningstal, reagerer det på forstyrrelser ved præsessions- og nuta-tionsbevægelser, som giver anledning til egensvingninger i rotationslegemet, og nærmere bestemt især til bøjningssvingninger langs rotoraksen, hvilke fører til vekslende træk- og trykspændinger i aksial retning. På grund af de store centrifugalkræfter opstår der i det roterende legeme meget store trækspændinger i tangential retning, hvilke kun et med fibre forstærket materiale kan modstå.When rotational bodies of the type initially specified, e.g. a centrifuge drum, brought up to a very high rpm, it responds to interference with precession and nutritional motions, which give rise to intrinsic oscillations in the rotary body, and more particularly to bending oscillations along the rotor axis, leading to alternating tensile and compressive stresses in the axial direction. Due to the large centrifugal forces, very large tensile stresses in the tangential direction occur in the rotating body, which only a fiber-reinforced material can withstand.
Da et sådant materiale kun kan optage trækspændinger i fiberretningen, forløber fibrene i det væsentlige i tangential retning, som det er angivet i det svenske fremlæggelsesskrift.Since such a material can only absorb tensile stresses in the fiber direction, the fibers essentially run in the tangential direction, as stated in the Swedish publication specification.
Ganske vist forøger de der omhandlede, indlejrede fiberafsnit rotorens modstandsevne mod tangentialkræfter, men samtidigt forringes vægmaterialets modstandsdygtighed føleligt mod aksialt ret- 3 141356 tede, vekslende bøjningsbelastninger, der forekommer ved svingende rotorer, idet der langs fibrene dannes h&rrevner eller kærve, der kan føre til ødelæggelse af rotoren.While the embedded fiber sections of the present invention increase the resistance of the rotor to tangential forces, at the same time, the resistance of the wall material is sensitively degraded to axially directed, alternating bending loads occurring by oscillating rotors, as the fibers may form along or rotate along the fibers. destruction of the rotor.
Det har derfor hidtil ikke været muligt at anvende fiberarmeret materiale i rotationslegemer af denne art ved meget store omdrejningstal, idet et sådant materiale ikke har været i stand til at modstå de trækspændinger, der virker vinkelret på fiberretningen ved aksialt virkende vekselbelastninger.Therefore, it has not hitherto been possible to use fiber-reinforced material in rotary bodies of this kind at very high rpm, since such material has not been able to withstand the tensile stresses acting perpendicular to the fiber direction at axially acting alternating loads.
Formålet med den foreliggende opfindelse er at tilvejebring ge et fiberarmeret rotationssymmétrisk compoundlegeme, f.eks. en centrifugerotor, der, samtidig med at det bibeholder de hos den kendte teknik foreliggende fordele såsom forøget modstandsdygtighed mod tangentiale kræfter, tillige er i stand til at optage de ved de aksiale bøjningssvingninger forårsagede, vekslende træk- og trykspændinger.The object of the present invention is to provide a fiber reinforced rotationally symmetrical compound body, e.g. a centrifuge rotor which, while retaining the advantages of the prior art such as increased resistance to tangential forces, is also capable of absorbing the alternating tensile and compressive stresses caused by the axial bending vibrations.
Denne opgave løses ifølge opfindelsen for et rotationssymmetrisk, hult compoundlegeme af den indledningsvis anførte art ved, at compoundlegemet i området, hvor lagene går fugeløst over i hinanden, har i hinanden indgribende krystaldannelse, og at det ydre lags varmeudvidelseskoefficient er mindre end eller lig med det indre lags.This object is solved according to the invention for a rotationally symmetrical hollow compound body of the type initially indicated by the fact that the compound body in the region where the layers are interlaced has intertwining crystal formation and that the coefficient of thermal expansion of the outer layer is less than or equal to the inner layer.
Når det ydre lag består af fiberarmeret metal, som har en mindre varmeudvidelseskoefficient end metallet i det indre lag, opnås / at når det ved centrifugalstøbning fremstillede rotationslegeme afkøles, trækker det indre lag sig kraftigere sammen end det ydre lag. Der opstår således en aksialt rettet træk-forspænding i det indre lag, og en trykforspænding i det ydre lag.When the outer layer consists of fiber-reinforced metal having a smaller coefficient of thermal expansion than the metal in the inner layer, it is obtained that when the rotary body made by centrifugal casting is cooled, the inner layer contracts more strongly than the outer layer. Thus, an axially directed tensile bias occurs in the inner layer and a pressure bias in the outer layer.
På grund af den aksiale trykforspænding i det ydre lag bliver de vekslende, aksiale træk- og trykspændinger omdannet til varierende trykspændinger, som et fiberforstærket rotationslegeme er i stand til at modstå.Due to the axial pressure bias in the outer layer, the alternating axial tensile and compressive stresses are transformed into varying compressive stresses that a fiber-reinforced rotary body is able to withstand.
Mens det støbte emne afkøler, holdes centrifugalstøbeformen på et højt omdrejningstal. Herunder størkner det indre lag, hvorefter det deformeres plastisk i radial retning og lægger sig så tæt mod det fiberarmerede lag, at der kan opbygges en tangential spændingstilstand mellem de to lag. Herved sikres det, at den aksiale spændingstilstand kan opretholdes langs skillefladen mellem de to lag, navnlig da de to lag yderligere indgriber i hinanden gennem krystaldannelse ved afkølingen.While the molded item cools, the centrifugal mold is kept at a high rpm. Below, the inner layer solidifies, after which it deforms plastically in the radial direction and settles so close to the fiber-reinforced layer that a tangential stress state can be established between the two layers. This ensures that the axial stress state can be maintained along the interface between the two layers, especially as the two layers further engage each other through crystal formation upon cooling.
141355 4141355 4
Den førnævnte spændingstilstand opnås ifølge opfindelsen ikke kun, når det ydre lags varmeudvidelseskoefficient er mindre end det indre lags, men også når varmeudvidelseskoefficienten for de to lag er lige stor, og nærmere bestemt fordi det indre lag afkøles først under rotation af centrifugalstøbeformen, og det ydre lag først derefter selv afkøles.The aforementioned stress state is obtained according to the invention not only when the coefficient of thermal expansion of the outer layer is less than the inner layer, but also when the coefficient of thermal expansion of the two layers is equal, and more specifically because the inner layer is cooled first during rotation of the centrifugal mold and the outer layer. layers only then self-cool.
Under brugen af rotationslegemet forekommer der således ikke længere trækspændinger i aksial retning i det fiberarmerede lag, der på sin side holder det indre lag sammen under dettes påvirkning af centrifugalkræfter. Rotationslegemer ifølge opfindelsen kan således modstå de ved hidtil uopnåelige omdrejningstalsområder forekommende centrifugalkræfter og forstyrrelsesbevægelser.Thus, during the use of the rotary body, tensile stresses in the axial direction no longer occur in the fiber-reinforced layer, which in turn holds the inner layer together under the influence of centrifugal forces. Thus, rotary bodies according to the invention can withstand the centrifugal forces and perturbation movements that occur in unreachable rpm ranges.
Ifølge opfindelsen tilvejebringes tillige en fremgangsmåde til fremstilling af et sådant rotationssymmetrisk compoundlegeme, ved hvilken støbemetallet, især legeringer på nikkel-, titan-, kobolt- og aluminiumbasis, ved hjælp af et roterende eller faststående støbeapparat, der ligger i en roterende kokilles akse, udstøbes på de mod kokillens indervæg liggende endeløse fibre, fiberlængder eller fibermåtter af fibermateriale, især af wolfram, beryllium, bor, stål, kulstof eller siliciumkarbid, og ved hvilken der i umiddelbar tilslutning hertil på det med matrixmetallet mættede, fiberforstærkede lag støbes et andet lag af et metal, især af et af de forannævnte ; metaller, hvilken fremgangsmåde er ejendommelig ved, at det ydre lag holdes varmt, medens det indre lag afkøler, og først derefter selv afkøles, og at kokillens rotation opretholdes, indtil metallet i det indre lag efter størkning har opnået sin endelige styrke. Ved afkøling af compoundlegemet optræder således aksialt rettede trykspændinger i de ydre, fiberarmerede lag og aksialt rettede trækspændinger i der indre, metalliske lag. Består af de ydre lag f.eks. af en med kulstoffibre armeret nikkellegering og de indre lag af en (uarmeret) aluminiumlegering, så er varmeudvidelseskoefficienten mindre i de ydre end i de indre lag. Ved afkøling vil det indre lag forsøge at trække sig sammen i aksial retning i forhold til det ydre lag, der i det væsentlige ikke trækker sig sammen. Derved opbygges en aksial egenspændingstilstand, der giver compoundlegemet særlig gunstige egenskaber overfor vekslende bøjningsbelastning, f.eks. ved anvendelse som centrifugetromle eller lignende, idet en bøjning af de ydre lag, der medfører trækbelastning af disse, 5According to the invention there is also provided a method for producing such a rotationally symmetrical compound body, in which the cast metal, especially nickel, titanium, cobalt and aluminum alloys, is cast by means of a rotary or fixed casting device lying in the axis of a rotating mold. on the endless fibers, fiber lengths or fiber mats lying against the inner wall of the mold, in particular of tungsten, beryllium, boron, steel, carbon or silicon carbide, and in which immediately another layer of saturated fiber reinforced with the matrix metal is cast a metal, especially one of the aforementioned; metal, which is characterized in that the outer layer is kept warm while the inner layer cools and only then cools, and that the rotation of the mold is maintained until the metal in the inner layer has reached its final strength after solidification. Thus, upon cooling of the compound body, axially directed compressive stresses occur in the outer, fiber-reinforced layers and axially directed tensile stresses in the inner metallic layers. Consists of the outer layers e.g. of a carbon fiber reinforced nickel alloy and the inner layers of an (unarmored) aluminum alloy, the coefficient of thermal expansion is less in the outer than in the inner layers. Upon cooling, the inner layer will attempt to contract in the axial direction relative to the outer layer which does not substantially contract. Thereby, an axial intrinsic stress state is built up which gives the compound body particularly favorable properties for alternating bending load, e.g. when used as a centrifuge drum or the like, with a bending of the outer layers which causes a tensile load thereof, 5
U135BU135B
på grund af trykforspændingen ikke medfører afrivning af de ydre lag.due to the pressure bias does not cause tearing of the outer layers.
Fremgangsmåden udmærker sig endvidere ved, at overgangen mellem det ydre og det indre lag forløber jævnt, og at der tilvejebringes en forankring af kraft- og formmæssig art. Et compoundlege-me med denne egenspændingstilstand fremviser ringe radial deformation ved rotation eller ved pålægning af et indre tryk. Gennem opfindelsen tilvejebringes derudover et compoundlegeme, som er egnet til anvendelse ved høje temperaturer, og ved hvilket fibrene er meget fast inkorporeret i matrix. Herved må selvfølgelig tages hensyn til, at kravene til fibrenes stabilitet ved anvendelse til høje temperaturer indskrænker udvalget af systemer til sådanne, hvis tilstandsdiagrammer ikke eller kun i begrænset omfang tillader dannelse af forbindelser, diffusionsreaktion med matrix og indre oxidation. Under hensyntagen til disse faktorer egner sig f.eks. følgende systemer til fremstillingsfremgangsmåden ifølge opfindelsen: Kulstoffibre eller wolframfibre i Ni-superlegeringer eller berylliumfibre i aluminiumlegeringer. Der foreligger yderligere den mulighed, at optimere forbindelsen mellem og komprimeringen af komponenterne til forskellige anvendelsesformål ved passende indstilling af tromlens og støbeindretningens omdrejningstal. En yderligere fordel må ses i, at der er mulighed for under støbningen at tilsætte forskelligt matrixmateriale, således at der kan fremstilles et compoundlegeme med forskellige lag med f.eks. forskelligt store, specifikke E-moduler. Således vil man ved anvendelse af compoundlegemer til centrifugetromler lade det specifikke E-mo-dul, der er forholdet mellem E-modul og massefylde, vokse indefra og udefter. Sammenhængningsegenskaberne hos et sådant compoundlegeme er væsentligt bedre end hos et viklet compoundlegeme. Compoundlegemer, der er fremstillet på denne måde egner sig f.eks. til centrifugetromler, til beholdere, til lejer og valser eller til brænd-kamre eller drivdyser i raketter.Ved fremstilling af raketdyser tilsættes efter omstændighederne udsvedningskølematerialer {schwitz-kiihlwerkstoffe), evt. grafit.The method is further characterized in that the transition between the outer and inner layers proceeds smoothly and that an anchoring of a force and shape is provided. A compound body with this intrinsic stress state exhibits slight radial deformation upon rotation or upon application of an internal pressure. The invention further provides a compound body which is suitable for use at high temperatures and at which the fibers are very firmly incorporated into matrix. Of course, this must be taken into account that the demands on the stability of the fibers when used at high temperatures limit the range of systems for those whose state diagrams do not or only to a limited extent allow the formation of compounds, diffusion reaction with matrix and internal oxidation. Taking these factors into account, e.g. The following systems for the manufacturing process of the invention: Carbon fibers or tungsten fibers in Ni superalloys or beryllium fibers in aluminum alloys. There is further the possibility of optimizing the connection between and compression of the components for various applications by appropriately adjusting the speed of the drum and molding device. A further advantage must be seen in the possibility of adding different matrix material during the casting, so that a compound body with different layers can be prepared with e.g. different sized, specific E-modules. Thus, by using compound bodies for centrifuge drums, the specific E-modulus, which is the ratio of E-module to density, will grow from the inside out. The cohesive properties of such a compound body are substantially better than that of a wound compound body. Compound bodies made in this way are suitable e.g. for centrifuge drums, for containers, for bearings and rollers or for combustion chambers or propellant nozzles in rockets. graphite.
Opfindelsen skal i det følgende beskrives nærmere, idet der henvises til tegningen, som viser et apparat til udøvelse -af fremgangsmåden ifølge opfindelsen og med et compoundlegeme ifølge opfindelsen.The invention will be described in more detail below with reference to the drawing which shows an apparatus for carrying out the method according to the invention and with a compound body according to the invention.
141355 6141355 6
Et støbeapparat 3 rager i aksial retning ind i en lodret roterende, cylindrisk tromle 2, som er lukket med en bund 1. Støbe-apparatet 3 består af en cylindrisk beholder, der er forsynet med diametralt overfor hinanden liggende, i længderetningen forløbende dyser 4. I beholderen indmunder foroven et rørformet stykke 5, foran hvilket der er indskudt et blandekammer 6, til hvilket de ønskede metaller hhv. legeringsbestanddele (pilene A,B) sættes. I støbe-apparatets 31 s midtakse er anbragt et opvarmningsorgan i form af en varmeslange 7. Dyserne eller slidserne 4 er anbragt radialt eller tangentialt i beholdervæggen. I midten af tromlen 2's bund 1 er anbragt en aksialt rettet spindel 8, der tjener til drift og lejring af tromlen 2. Det skematisk viste leje er betegnet med 9.A casting device 3 projects in an axial direction into a vertically rotating cylindrical drum 2, which is closed with a bottom 1. The casting device 3 consists of a cylindrical container provided with diametrically opposite nozzles 4 extending longitudinally. In the top of the container is a tubular piece 5, in front of which is inserted a mixing chamber 6, to which the desired metals respectively. alloy components (arrows A, B) are set. In the middle axis of the casting device 31 is a heating means in the form of a heat hose 7. The nozzles or slots 4 are arranged radially or tangentially in the container wall. At the center 1 of the bottom 1 of the drum 2 is arranged an axially directed spindle 8, which serves to operate and store the drum 2. The bearing shown diagrammatically is indicated by 9.
I tromlens væg er indlagt opvarmningsmidler 10. Tromlen omsluttes af en ring 11. Hele apparatet er omgivet af en kappe 12 (vist punkteret) , således at der efter ønske kan udstøbes i vakuum eller beskyttelsesgas .Heating means 10. The drum is enclosed in a ring 11. The whole apparatus is enclosed by a casing 12 (shown punctured), so that it can be cast into vacuum or protective gas as desired.
Efter denne beskrivelse af apparatet lader fremgangsmåden sig forklare på enkel måde. Fibrene 13, f.eks. berylliumfibre i form af fiberlængder, indlægges mod tromlens væg i flere lag i det væsentlige i periferiretningen. På lignende måde kan f.eks. indlægges fibermåtter. Matrixmaterialet 14, f.eks. en aluminiumlegering, tilføres i flydende form til blandekammeret, hvor det homogeniseres og i givet fald blandes med et befugtningsmiddel, f.eks. et fluorer-et carbonhydrid, således at en for indeslutninger fri legering med konstant temperatur tilføres det roterende støbeapparat. Herfra bliver matrixmaterialet slynget gennem dyserne mod den roterende indervæg af tromlen, hvor det med det samme omgiver fibrene og på grund af den herunder virkende store centrifugalkraft danner et tæt compoundlegeme. De i tromlens væg værende opvarmningsmidler holder compoundlegemet på 'forhøjet temperatur. Under centrifugalstøbningen kan, efter at fibrene er påslynget et tæt lag metal, støbes et andet metal 15, f.eks. med noget større specifikt E-modul men med omtrent samme eller noget større varmeudvidelseskoef-ficient, såsom en aluminium titanium legering, der eventuelt indgår forbindelse med den forud støbte metalmatrix. Disse forhold må afpasses efter det ønskede anvendelsesformål for compoundlegemet.After this description of the apparatus, the method can be explained in a simple manner. The fibers 13, e.g. beryllium fibers in the form of fiber lengths, are laid against the wall of the drum in several layers substantially in the circumferential direction. Similarly, e.g. fiber mats. The matrix material 14, e.g. an aluminum alloy, is fed in liquid form to the mixing chamber where it is homogenized and, where appropriate, mixed with a wetting agent, e.g. a fluorine-hydrocarbon such that a constant temperature alloy free of inclusions is supplied to the rotary molding apparatus. From here, the matrix material is thrown through the nozzles against the rotating inner wall of the drum, where it immediately surrounds the fibers and, due to the large centrifugal force acting below, forms a dense compound body. The heaters in the wall of the drum keep the compound body at an elevated temperature. During the centrifugal casting, after the fibers are coiled a dense layer of metal, another metal 15, e.g. with a somewhat larger specific E-module but with about the same or somewhat larger coefficient of thermal expansion, such as an aluminum titanium alloy, optionally connected to the pre-cast metal matrix. These conditions must be adapted to the desired use of the compound body.
F.eks. fremstilles det ydre lag med større massefylde end det indre, 7 1A1355 når legemet skal anvendes som svinghjul. Efter afslutning af udstøb-ningen af metal gennem dyserne fortsættes tromlens rotation, indtil de indre lag er afkølet tilnærmelsesvis til rumtemperatur. Ved den fortsatte rotation indtræder en størkning af det indre lag. Først derefter afkøles ifølge opfindelsen det ydre, i det væsentlige endnu plastiske lag til rumtemperatur. Som følge af krystallisationen opnås tillige en indbyrdes forankring af det indre og ydre lag. De herved opstående spændingsforhold kan uden videre påvirkes hhv. optimeres ved ændring af temperaturen af tromlens væg. Smeltning og centrifugalstøbning i vakuum eller beskyttelsesgas medfører de kendte fordele, ifølge hvilke det er muligt at fremstille materialer med den største renhed med bestemte kemiske og fysiske egenskaber, uden at man behøver at frygte sugninger, oxidation* og lignende i compoundmaterialet.Eg. the outer layer is made with greater density than the inner, 7 1A1355 when the body is to be used as flywheel. After finishing the casting of the metal through the nozzles, the rotation of the drum is continued until the inner layers are cooled approximately to room temperature. With the continued rotation, the inner layer solidifies. Only then, according to the invention, is the outer, substantially yet plastic layer, cooled to room temperature. As a result of the crystallization, an anchoring of the inner and outer layers is also achieved. The resulting stress conditions can easily be affected, respectively. optimized by changing the temperature of the drum wall. Melting and centrifugal casting in vacuum or protective gas provide the known advantages according to which it is possible to produce materials of the highest purity with certain chemical and physical properties, without the need to fear suction, oxidation * and the like in the compound material.
Ved fremstilling af compoundlegemer af større længder kan det være fordelagtigt at anbringe støbeapparatet aksialt forskydeligt i tromlen, således at støbeapparatet under støbningen bevæger sig fra den ene ende af tromlen til den anden. Ved passende valg af støbemateriale og afpasning af støbeapparatets tilspænding og tromlens omdrejningstal samt afkølingsbetingelserne kan der fremstilles et compoundlegerne, som har de til anvendelsesformålet ønskede, optimale egenskaber. Ved anvendelse af en længere tromle til fremstilling af længere compoundlegemer er en yderligere lejring af tromlen naturligvis nødvendig.In the manufacture of larger length compound bodies, it may be advantageous to position the casting axially slidably in the drum such that during casting the casting member moves from one end of the drum to the other. By appropriately selecting the casting material and adjusting the casting tension and the speed of the drum as well as the cooling conditions, a compound doctor can be produced which has the optimum properties desired for the purpose of use. Of course, when using a longer drum to produce longer compound bodies, further storage of the drum is required.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2118848A DE2118848C3 (en) | 1971-04-19 | 1971-04-19 | Rotationally symmetric, hollow composite body and process for its manufacture |
DE2118848 | 1971-04-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK141355B true DK141355B (en) | 1980-03-03 |
DK141355C DK141355C (en) | 1980-08-18 |
Family
ID=5805092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK186472A DK141355C (en) | 1971-04-19 | 1972-04-17 | Rotationally symmetrical, hollow, fiber-reinforced composite bodies and methods of manufacture thereof |
Country Status (13)
Country | Link |
---|---|
US (1) | US3849080A (en) |
JP (1) | JPS5516750B1 (en) |
AT (1) | AT323915B (en) |
BE (1) | BE782239A (en) |
CH (1) | CH566831A5 (en) |
DE (1) | DE2118848C3 (en) |
DK (1) | DK141355C (en) |
FI (1) | FI52939C (en) |
FR (1) | FR2133852B1 (en) |
GB (1) | GB1393989A (en) |
NL (1) | NL162003C (en) |
NO (1) | NO130892C (en) |
SE (1) | SE387874B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2523074A1 (en) * | 1975-05-24 | 1976-12-02 | Christensen Diamond Prod Co | PROCESS AND EQUIPMENT FOR MANUFACTURING WEAR-RESISTANT BODIES, IN PARTICULAR FOR DEEP DRILLING TECHNOLOGY |
JPS5292827A (en) * | 1976-01-16 | 1977-08-04 | Honda Motor Co Ltd | Method of manufacturing structures with fiber reinforced composite parts |
DE2929217A1 (en) * | 1979-07-19 | 1983-12-01 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | ROTATION-SYMMETRICAL HOLLOW COMPOSITE BODY |
JPS5630070A (en) * | 1979-08-17 | 1981-03-26 | Honda Motor Co Ltd | Manufacture of fiber-reinforced composite material |
US4258756A (en) * | 1979-08-27 | 1981-03-31 | Allied Chemical Corporation | Composite shell |
US4834693A (en) * | 1980-06-26 | 1989-05-30 | Avco Corporation | Hybrid drive shaft |
AU554140B2 (en) * | 1980-07-02 | 1986-08-07 | Dana Corporation | Thermally insulating coating on piston head |
JPS5893813U (en) * | 1981-12-18 | 1983-06-25 | トキコ株式会社 | turbine meter |
DE3478035D1 (en) * | 1984-01-27 | 1989-06-08 | Chugai Ro Kogyo Kaisha Ltd | Fiber reinforced metal alloy and method for the manufacture thereof |
GB8518909D0 (en) * | 1985-07-26 | 1985-09-04 | Ae Plc | Engineering components |
US4816347A (en) * | 1987-05-29 | 1989-03-28 | Avco Lycoming/Subsidiary Of Textron, Inc. | Hybrid titanium alloy matrix composites |
GB2222793A (en) * | 1988-09-16 | 1990-03-21 | British Aerospace | "Method of forming a fibre reinforced material" |
JP3179812B2 (en) * | 1991-09-17 | 2001-06-25 | トーカロ株式会社 | Carbon member having metal spray coating layer with excellent adhesion |
GB9413631D0 (en) * | 1994-07-06 | 1994-09-14 | Inco Engineered Prod Ltd | Manufacture of forged components |
JP3650183B2 (en) * | 1995-10-13 | 2005-05-18 | 栃木富士産業株式会社 | Screw rotor processing method |
DE19737601A1 (en) * | 1997-08-28 | 1999-03-04 | Bayerische Motoren Werke Ag | Process for increasing the damping of a cast component made of a light metal material |
WO2002001311A1 (en) * | 2000-06-27 | 2002-01-03 | Board Of Trustees Of The Leland Stanford Junior University | Composite rotors for flywheels and methods of fabrication thereof |
WO2002058917A2 (en) * | 2001-01-23 | 2002-08-01 | The Johns Hopkins University | Use of a liquid during centrifugal processing to improve consolidation of a composite structure |
GB201223198D0 (en) * | 2012-12-21 | 2013-02-06 | Jaguar Cars | Sleeve member and method of casting |
CN109203508A (en) * | 2018-08-29 | 2019-01-15 | 江苏赛图新材料科技有限公司 | Horizontal centrifugal forming device and forming process for fiber tube |
US11510283B2 (en) | 2019-05-14 | 2022-11-22 | Intel Corporation | WLAN sensing using high-efficiency (HE) trigger- based (TB) PPDUs (HE TB PPDUs) |
CN112246586B (en) * | 2020-09-28 | 2023-03-10 | 镇江经纬输送装备有限公司 | Process for uniformly pouring polyurethane on inner wall of chute |
CN113400542B (en) * | 2021-07-20 | 2022-11-25 | 南通天木绝缘复合材料有限公司 | Make things convenient for glass steel grating production of raw materials flash mixed with centrifugal pouring device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1280909A (en) * | 1916-02-05 | 1918-10-08 | Metalco Company | Manufacture of pipes. |
US2197916A (en) * | 1937-01-27 | 1940-04-23 | Detroit Gasket & Mfg Company | Gasket |
US3427185A (en) * | 1964-02-19 | 1969-02-11 | United Aircraft Corp | Composite structural material incorporating metallic filaments in a matrix,and method of manufacture |
US3419952A (en) * | 1966-09-12 | 1969-01-07 | Gen Electric | Method for making composite material |
NL6912700A (en) * | 1968-08-22 | 1970-02-24 | ||
US3575783A (en) * | 1968-11-13 | 1971-04-20 | United Aircraft Corp | Unidirectional fiber reinforced metal matrix tape |
US3608170A (en) * | 1969-04-14 | 1971-09-28 | Abex Corp | Metal impregnated composite casting method |
-
1971
- 1971-04-19 DE DE2118848A patent/DE2118848C3/en not_active Expired
-
1972
- 1972-04-11 AT AT313772A patent/AT323915B/en not_active IP Right Cessation
- 1972-04-17 DK DK186472A patent/DK141355C/en active
- 1972-04-17 BE BE782239A patent/BE782239A/en unknown
- 1972-04-18 FR FR7213593A patent/FR2133852B1/fr not_active Expired
- 1972-04-18 CH CH572072A patent/CH566831A5/xx not_active IP Right Cessation
- 1972-04-18 NL NL7205164.A patent/NL162003C/en not_active IP Right Cessation
- 1972-04-18 NO NO1340/72A patent/NO130892C/no unknown
- 1972-04-19 SE SE7205126A patent/SE387874B/en unknown
- 1972-04-19 JP JP3950072A patent/JPS5516750B1/ja active Pending
- 1972-04-19 GB GB1821872A patent/GB1393989A/en not_active Expired
- 1972-04-19 US US00245575A patent/US3849080A/en not_active Expired - Lifetime
- 1972-04-19 FI FI1103/72A patent/FI52939C/fi active
Also Published As
Publication number | Publication date |
---|---|
JPS5516750B1 (en) | 1980-05-06 |
FI52939B (en) | 1977-09-30 |
DE2118848B2 (en) | 1973-06-20 |
CH566831A5 (en) | 1975-09-30 |
GB1393989A (en) | 1975-05-14 |
US3849080A (en) | 1974-11-19 |
AT323915B (en) | 1975-08-11 |
SE387874B (en) | 1976-09-20 |
BE782239A (en) | 1972-08-16 |
NL162003C (en) | 1980-04-15 |
FR2133852B1 (en) | 1976-10-29 |
FI52939C (en) | 1978-01-10 |
DE2118848C3 (en) | 1974-01-17 |
NL162003B (en) | 1979-11-15 |
DK141355C (en) | 1980-08-18 |
NL7205164A (en) | 1972-10-23 |
NO130892C (en) | 1975-03-05 |
NO130892B (en) | 1974-11-25 |
DE2118848A1 (en) | 1972-11-02 |
FR2133852A1 (en) | 1972-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK141355B (en) | ROTATION SYMMETRIC HOLE FIBER ARMED COMPULSORY AND PROCEDURE FOR PREPARING IT | |
US6634413B2 (en) | Centrifugal casting of nickel base superalloys in isotropic graphite molds under vacuum | |
US6482248B1 (en) | Aluminum composite for gun barrels | |
EP2490844A1 (en) | Casting long products | |
US3731367A (en) | Method of assemblying compound body | |
Eremin et al. | Development of a technology for the fabrication of articles made of complex-modified polytetrafluoroethylene for dry friction assemblies | |
RU2060067C1 (en) | Roll for cold and hot rolling | |
CN102549283A (en) | Cage, anti-friction bearing, machine tool, and method of manufacturing cage | |
US2275503A (en) | Process for making composite metal articles and apparatus therefor | |
US2027788A (en) | Bearing | |
Wang et al. | Influence of casting temperature and mold preheating temperature on centrifugal casting by numerical simulation | |
US1527729A (en) | Pipe-making machine | |
US6783621B1 (en) | Method of manufacturing a thermostructural composite material bowl, in particular for an installation that produces silicon single crystals | |
JPH0796273B2 (en) | Method of making rings of gears with internal and external teeth and use of said composite rings for making internal or external gears | |
KR970706930A (en) | METHOD FOR MAKING A BIMETAL MILLING ROLLER, AND RESULTING MILLING ROLLER | |
US4240494A (en) | Method for centrifugal casting of tubular metal blanks | |
JP6803297B2 (en) | Sliding member | |
CN101518922B (en) | Ceramic-lined composite steel tube centrifuge | |
Kumar et al. | Modeling of Cooling and Solidification of TNT based Cast High Explosive Charges. | |
Li et al. | A review of critical issues in the design of lightweight flywheel rotors with composite materials | |
JP4002628B2 (en) | Method for diffusion treatment of condensed material and material obtained by the method | |
NO335404B1 (en) | LIQUID, ROTATING UNIT | |
US5248289A (en) | Cast iron roll with one or more cemented carbide roll rings metallurgically bonded thereto | |
AU657296B2 (en) | A roll including a cemented carbide ring cast into a cast iron body | |
US4063721A (en) | Method for the separation of segregations and impurities from material mixtures by centrifuging and equipment for the execution of the method |