NO130740B - - Google Patents

Download PDF

Info

Publication number
NO130740B
NO130740B NO03893/72A NO389372A NO130740B NO 130740 B NO130740 B NO 130740B NO 03893/72 A NO03893/72 A NO 03893/72A NO 389372 A NO389372 A NO 389372A NO 130740 B NO130740 B NO 130740B
Authority
NO
Norway
Prior art keywords
storage container
heat transfer
transfer medium
medium
temperature
Prior art date
Application number
NO03893/72A
Other languages
Norwegian (no)
Other versions
NO130740C (en
Inventor
E Tornay
Original Assignee
Conch Int Methane Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conch Int Methane Ltd filed Critical Conch Int Methane Ltd
Publication of NO130740B publication Critical patent/NO130740B/no
Publication of NO130740C publication Critical patent/NO130740C/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature

Description

Fremgangsmåte og system for opp-Procedure and system for up-

varmning av en beholder for kryogene væsker. heating a container for cryogenic liquids.

Foreliggende oppfinnelse angår oppvarmningssystemer for isolerte lagringsbeholdere for kryogene væsker efter at væs-kene er tappet ut. The present invention relates to heating systems for insulated storage containers for cryogenic liquids after the liquids have been drained.

Oppfinnelsen kan f.eks. anvendes i tankskip forsynt med isolerte lagertanker, beregnet for transport av kryogene væsker som f.eks. kolde flytendegjorte gasser, f.eks. petroleums-gasser som propan eller butan, eller flytendegjort naturgass (LNG). Ved slik transport er det av stor økonomisk betydning at skipenes liggetid i havnene reduseres til et minimum og fra tid til annen f.eks. for vedlikehold, er det nødvendig å varme opp tankene til omgivelsenes temperatur. Det er derfor ønskelig å redusere den tid som går med til denne oppvarmning til et minimum. The invention can e.g. used in tankers equipped with insulated storage tanks, intended for the transport of cryogenic liquids such as cold liquefied gases, e.g. petroleum gases such as propane or butane, or liquefied natural gas (LNG). With such transport, it is of great economic importance that the ships' stay in the ports is reduced to a minimum and from time to time, e.g. for maintenance, it is necessary to heat the tanks to ambient temperature. It is therefore desirable to reduce the time required for this heating to a minimum.

Oppfinnelsen omfatter en fremgangsmåte ved oppvarmning av en isolert lagerbeholder for en kryogen væske efter at væsken er tappet ut av beholderen, innbefattende tilveiebringel- The invention comprises a method for heating an insulated storage container for a cryogenic liquid after the liquid has been drained from the container, including providing

se av en kilde for et varmeoverføringsmedium og fremføring av mediet til et rørsystem i lagerbeholderen,karakterisert vedsee of a source for a heat transfer medium and conveyance of the medium to a pipe system in the storage container, characterized by

a) bruk av et varmeoverføringsmedium som forblir i flytende tilstand ved et passende trykk over et temperaturområ- a) use of a heat transfer medium which remains in a liquid state at a suitable pressure over a temperature range;

de fra omgivelsens temperatur tilnærmet til kokepunktet for den kryogene væske; b) tilførsel av latent varme til varmeoverførings-mediet under fordampning av mediet ved forhøyet trykk, og those from the ambient temperature approximately to the boiling point of the cryogenic liquid; b) supply of latent heat to the heat transfer medium during vaporization of the medium at elevated pressure, and

c) innføring av det fordampete varmeoverføringsme -c) introduction of the evaporated heat transfer me -

dium ved sitt forhøyete trykk i lagerbeholderen for indirekte dium by its elevated pressure in the storage container for indirect

varmeveksling med kulden i denne beholder, hvilken varmeveksling bevirker at varmeoverføringsmediet kondenseres ved tilnærmet sam- heat exchange with the cold in this container, which heat exchange causes the heat transfer medium to condense by approxi-

me forhøyete trykk, hvilket trykk innstilles slik at det bidrar til å opprettholde strømmen av mediet gjennom lagerbeholderen. me elevated pressure, which pressure is set so as to help maintain the flow of the medium through the storage container.

Oppfinnelsen omfatter videre et oppvarmningssystemThe invention also includes a heating system

for en lagerbeholder for kryogene_væsker, omfattende en forråds-beholder for et varmeoverføringsmedium, pumper for tilførsel av varmeoverføringsmediet samt'et rørsystem anordnet i lagerbeholde- for a storage container for cryogenic liquids, comprising a storage container for a heat transfer medium, pumps for supplying the heat transfer medium as well as a piping system arranged in the storage container

ren for opptakelse av mediet,karakterisert vedat en fordamper er anordnet mellom pumpen og rørsystemet, at rørsystemet omfatter et indirekte varmevekslerelement, samt en returledning innkoblet direkte mellom varmevekslerelementet og beholderen, idet arrangementet virker slik at mediet i væskeform tilføres fordamperen, fordampes i denne ved et høyere trykk og deretter føres til lagerbeholderen for indirekte varmeveksling med denne. clean for absorbing the medium, characterized in that an evaporator is arranged between the pump and the pipe system, that the pipe system includes an indirect heat exchanger element, as well as a return line connected directly between the heat exchanger element and the container, as the arrangement works so that the medium in liquid form is supplied to the evaporator, vaporized in it by a higher pressure and then fed to the storage vessel for indirect heat exchange with it.

For LNG kan varmeoverføringsmediet hensiktsmessigFor LNG, the heat transfer medium can be appropriate

være en petroleumhydrokarbon som propan, isobutan, isopentan, propylen, 1-buten eller 1-penten eller en fluorert hydrokarbon som mono-klordifluormetan eller diklordifluormetan, selv om det fortrinnsvis anvendes isopentan. be a petroleum hydrocarbon such as propane, isobutane, isopentane, propylene, 1-butene or 1-pentene or a fluorinated hydrocarbon such as monochlorodifluoromethane or dichlorodifluoromethane, although isopentane is preferably used.

For at oppfinnelsen lettere skal forståes, skal en fremgangsmåte og et system ifølge oppfinnelsen egnet til bruk i en tankbåt utstyrt med et antall lagertanker for LNG, beskrives i det følgende under henvisning til tegningene som viser et prosessdiagram for systemet. In order for the invention to be more easily understood, a method and a system according to the invention suitable for use in a tanker equipped with a number of storage tanks for LNG shall be described in the following with reference to the drawings showing a process diagram for the system.

Isopentan lagres ved omgivelsenes temperatur og at-mosfærisk trykk i en forråds-beholder 1 og mates efter behov til en beholder 3 via en sluséventil 2 og en tilbakeslagsventil 2a. Beholderen 3 er forbundet med varmeveksleren 4 via en ledning 5 Isopentane is stored at ambient temperature and atmospheric pressure in a storage container 1 and fed as needed to a container 3 via a sluice valve 2 and a non-return valve 2a. The container 3 is connected to the heat exchanger 4 via a line 5

i hvilken der er anordnet en sluséventil 6 ved utløpet fra beholderen,, et par pumper 7.anordnet i parallell og hver forsynt med innløps- og utløpsventiler henholdsvis 7a og 7b som er forbundet med pumpene hvorunder en pumpe kan virke som en stand-by pumpe mens den annen er i drift, og en ytterligere sluséventil 8 er anordnet ved innløpet til varmeveksleren.Ledningen 5 omfatter vi- in which there is arranged a sluice valve 6 at the outlet from the container, a pair of pumps 7 arranged in parallel and each provided with inlet and outlet valves respectively 7a and 7b which are connected to the pumps under which one pump can act as a stand-by pump while the other is in operation, and a further sluice valve 8 is arranged at the inlet to the heat exchanger. Line 5 comprises vi-

dere en del 5a som er ført i parallell med pumpene 7, hvilken del omfatter en kuleventil 5b. Varmeveksleren 4 har en forbindelse fra en dampledning 9 via en reguleringsventil 10, og anordningen av varmeveksleren er slik at damp tilføres til varmeveksleren og danner en kilde for indirekte oppvarmning av det flytende isopen- you a part 5a which is led in parallel with the pumps 7, which part comprises a ball valve 5b. The heat exchanger 4 has a connection from a steam line 9 via a control valve 10, and the arrangement of the heat exchanger is such that steam is supplied to the heat exchanger and forms a source for indirect heating of the liquid isopen-

tan som passerer gjennom varmeveksleren. Kondensert damp føres fra varmeveksleren via utløpsledningen 9a. Isopentanet som fordamper i varmeveksleren 4, tilføres fra toppen av denne via en utløpsledning 11 gjennom en sluséventil 13 til en dampkledning 16 tan passing through the heat exchanger. Condensed steam is led from the heat exchanger via outlet line 9a. The isopentane that evaporates in the heat exchanger 4 is supplied from the top of this via an outlet line 11 through a sluice valve 13 to a steam lining 16

fra hvilken damp tilføres til hver enkelt av lagertankene 17 for LNG. Isopentanet i dampledningen 16 holdes ved et innstillet trykk og temperatur idet temperaturreguleringen omfatter reguleringsventi- from which steam is supplied to each of the storage tanks 17 for LNG. The isopentane in the steam line 16 is kept at a set pressure and temperature, as the temperature control includes control valves

len 10 i ledningen 9, som er tilknyttet til en temperaturregulator 15 som er anordnet i ledningen 11. len 10 in the line 9, which is connected to a temperature regulator 15 which is arranged in the line 11.

På tegningen er en av lagertankene 17 for LNG vist i forstørret målestokk i diagrammet, og det vil sees at ved denne ut-•førelsesform omfatter hver tank to separate varmevekslerkveiler 18 In the drawing, one of the storage tanks 17 for LNG is shown on an enlarged scale in the diagram, and it will be seen that in this embodiment each tank includes two separate heat exchanger coils 18

og 19 som tilføres varmevekslermedium gjennom innløpsledningene henholdsvis 21 og 22, en sluséventil 23 er anordnet for hver inn-løpsledning. Kveilene 18 og 19 er fortrinnsvis utført i form av et stort antall aluminiumrør forsynt med ribber eller finner. Ut-løpene fra kveilene 18 og 19 er ført til en felles ledning 24 og derfra via en sluséventil 25 til en væskeledning 26 for retur til forrådsbeholderen 3 og er forbundet med lagertanken 1 via en sluséventil 28 og kontrollglasset 29; lagertanken er forsynt med en nitrogenventil 30 og en avlastningsventil 31. En returledning 32 and 19 which are supplied with heat exchanger medium through the inlet lines 21 and 22 respectively, a sluice valve 23 is arranged for each inlet line. The coils 18 and 19 are preferably made in the form of a large number of aluminum tubes provided with ribs or fins. The outlets from the coils 18 and 19 are led to a common line 24 and from there via a sluice valve 25 to a liquid line 26 for return to the storage container 3 and are connected to the storage tank 1 via a sluice valve 28 and the control glass 29; the storage tank is equipped with a nitrogen valve 30 and a relief valve 31. A return line 32

er anordnet mellom forrådsbeholderen 3 og lagertanken 1, hvilken ledning er forsynt med en reguleringsventil 33 som er tilknyttet til en nivåregulator 34 for forrådsbeholderen, for å skaffe kom-pensering for enhver volumøkning av isopentanet når temperaturen heves under driften. Nivåregulatoren 34 er videre tilknyttet til is arranged between the storage container 3 and the storage tank 1, which line is provided with a control valve 33 which is connected to a level regulator 34 for the storage container, to provide compensation for any increase in volume of the isopentane when the temperature is raised during operation. The level regulator 34 is further connected to

en utkoblingsinnretning 34a for utkobling av pumpen når nivået synker under en viss grense. Ledning 32 omfatter en kjøler 35 som anvender sjøvann som kjølemedium. a disconnection device 34a for disconnecting the pump when the level drops below a certain limit. Line 32 comprises a cooler 35 which uses seawater as a cooling medium.

En reguleringsventil 36 er anordnet i ledningen 5 mellom pumpene 7 og sluseventilen 8 som er tilknyttet til en temperaturdifferensialregulator 37 anordnet mellom ledningene 16 og 26, og en videre reguleringsventil 38 er anordnet i en forbipassasje 39 som forbinder dampledningen med ledningen 27, hvilken reguleringsventil er tilknyttet til en temperaturregulator 41 anordnet i ledningen 27. A control valve 36 is arranged in the line 5 between the pumps 7 and the gate valve 8 which is connected to a temperature differential regulator 37 arranged between the lines 16 and 26, and a further control valve 38 is arranged in a bypass 39 which connects the steam line with the line 27, which control valve is connected to a temperature regulator 41 arranged in the line 27.

Virkemåten av oppvarmningssysternet når lagertankene 17 er kalde og inneholder en liten mengde LNG og systemet står under trykk med nitrogen og alle ventiler er lukket, er følgende; The operation of the heating system when the storage tanks 17 are cold and contain a small amount of LNG and the system is pressurized with nitrogen and all valves are closed is as follows;

1)Ventilene 2 og 28 åpnes ferdig til å fylle forrådsbeholderen 3 med isopentan ved omgivelsenes temperatur. 2) Ventilene 6 og 8 åpnes, og likeledes ventilene 7a, 7b for en av pumpene 7 for starting av pumpen, fylling av varmeveksleren 4 og forrådsbeholderen 3 med isopentan. ventilen 2 stenges. 3) Temperaturregulatoren innstilles på et forholdsvis lavt nivå, f.eks. 82°C, og regulatoren 15 for regulering av dampstrømmen slik at det frembringer isopentandamp ved et trykk på 3,5 kg pr. cm 2. Ventilen 13 åpnes og alle damp- og væskeventilene 23, 25 til og fra tankkveilene 18 og 19. Nitrogen fortrenges nå av isopentandampen til toppen av lagerbeholderen 1, og derefter til atmosfæren via ventilen 30. 4) Steng ventilen 28 når flytende isopentan kommer til syne i siktglasset 29. 5) Når temperaturen i beholderen 3 stabiliseres, arbei-der systemet normalt. Temperaturen av systemet kan derefter innstilles gradvis til maksimalt 160°C, 2 svarende til et trykk pa omkring 20,4 kg pr. cm ved passende innstilling av temperaturregulatoren 15 som styrer reguleringsventilen 10. Dampventilene 23 kan derefter innstilles for regulering av opp-varmningshastigheten av tankene 17. 6) Når oppvarmningen er avsluttet, stoppes pumpen 7 og . dampen i ledningen 9 stenges av. Videre stenges væskeventilen 25 og dampventilene 23 til hver av tankene- 17 og ventilen 13 for å tillate systemet å kjøles ned. 7) Fyll systemet med nitrogen. Dette oppnås ved til-førsel av nitrogen under trykk i og gjennom systemet ved ventilregulerte uttapriingspunkter, f.eks. ved de stillinger som er antydet med pilene merket N2. 8) Temperaturregulatoren 15 settes ut av funksjon og 1) The valves 2 and 28 are fully opened to fill the storage container 3 with isopentane at the ambient temperature. 2) The valves 6 and 8 are opened, and likewise the valves 7a, 7b for one of the pumps 7 for starting the pump, filling the heat exchanger 4 and the storage container 3 with isopentane. valve 2 is closed. 3) The temperature regulator is set to a relatively low level, e.g. 82°C, and the regulator 15 for regulating the steam flow so that it produces isopentane steam at a pressure of 3.5 kg per cm 2. Valve 13 is opened and all steam and liquid valves 23, 25 to and from tank coils 18 and 19. Nitrogen is now displaced by the isopentane vapor to the top of storage container 1, and then to the atmosphere via valve 30. 4) Close valve 28 when liquid isopentane becomes visible in the sight glass 29. 5) When the temperature in the container 3 stabilizes, the system works normally. The temperature of the system can then be set gradually to a maximum of 160°C, 2 corresponding to a pressure of around 20.4 kg per cm by suitable setting of the temperature regulator 15 which controls the control valve 10. The steam valves 23 can then be set to regulate the heating rate of the tanks 17. 6) When the heating is finished, the pump 7 is stopped and . the steam in line 9 is shut off. Furthermore, the liquid valve 25 and vapor valves 23 to each of the tanks 17 and the valve 13 are closed to allow the system to cool down. 7) Fill the system with nitrogen. This is achieved by supplying nitrogen under pressure in and through the system at valve-regulated discharge points, e.g. at the positions indicated by the arrows marked N2. 8) The temperature regulator 15 is put out of action and

dampkondensatet tappes ut gjennom ledningen 9a, Ventilen 36 som styres av temperaturdifferensialregu-latoren 37, tjener til å opprettholde den minimale underkjøling av isopentanet som passerer gjennom lagertankene 17 som er nødvendige for å undertrykke bråfordampning i ledningene med flytende isopentan, mens ventilen 38 i forbipassasjen 39 tjener til å hindre at temperaturen faller under den minimale temperatur som forrådsbeholderen 3 og pumpene 7 er konstruert for. - the steam condensate is drained through line 9a. Valve 36, which is controlled by temperature differential regulator 37, serves to maintain the minimal subcooling of the isopentane passing through the storage tanks 17 which is necessary to suppress flash evaporation in the lines with liquid isopentane, while valve 38 in bypass 39 serves to prevent the temperature falling below the minimum temperature for which the storage container 3 and the pumps 7 are designed. -

Fremgangsmåten og systemet som er beskrevet ovenfor, representerer et alternativ til.det for tiden anvendte system.for oppvarmning av LNG tankskip. Dette kjente system går ut på å sirkulere varm metangass gjennom lagertankene for direkte varmeveksling med disse via egnede kompressorer og varmevekslere. ulem-pene ved dette system er: 1) Det trenges store kompressorer og ledninger med stor diameter for å skaffe en tilstrekkelig massestrøm gjennom tankene, og 2) for store tanker, f.eks. av en størrelsesorden på 120 000 m 3 eller mer, vil man nå den praktiske grense for oppvarmning av tankene, og denne grense vil være av en størrelsesorden på to dager eller mer. Den begrensende faktor i dette tilfelle er stør-relsen av lett tilgjengelige kompressorer som er egnet for installasjon om bord. på et slikt tank skip. For et tankvolum på 120 000 m 3 vil det trenges en strøm på omkring 1000 m^ pr. minutt for opp varmning i løpet av to dager, og den maksimale størrelse av kompressorer som for tiden er til gjengelige på markedet, er på omkring 560 m<3>pr. minutt. Det vil derfor trenges to kompressorer, The method and system described above represent an alternative to the currently used system for heating LNG tankers. This known system involves circulating hot methane gas through the storage tanks for direct heat exchange with these via suitable compressors and heat exchangers. The disadvantages of this system are: 1) Large compressors and large diameter lines are needed to provide a sufficient mass flow through the tanks, and 2) too large tanks, e.g. of the order of 120,000 m 3 or more, the practical limit for heating the tanks will be reached, and this limit will be of the order of two days or more. The limiting factor in this case is the size of easily accessible compressors suitable for installation on board. on such a tank ship. For a tank volume of 120,000 m 3, a flow of around 1,000 m^ per minute for up heating over two days, and the maximum size of compressors currently available available on the market, is around 560 m<3>per minute. Two compressors will therefore be needed,

noe som i betydelig grad innvirker på omkostningene for hele anlegget. which significantly affects the costs for the entire facility.

Ved anvendelse av det indirekte isopentansystem somWhen using the indirect isopentane system which

er beskrevet ovenfor, vil lagertankene kunne oppvarmes over et gjennomsnittlig temperaturområde fra -151°Ctil +4,5°C i løpet av tilnærmet en dag. For et tankskip med en kapasitet på 120 000 m<3>is described above, the storage tanks will be able to be heated over an average temperature range from -151°C to +4.5°C during approximately one day. For a tanker with a capacity of 120,000 m<3>

vil man ved å anvende det ovenfor beskrevne indirekte system kunne foreta oppvarmningen på omtrent halvparten av den tid som trenges med de hittil kjente systemer. Det kan videre gjøres regning med at ved anvendelse av det indirekte system ifølge oppfinnelsen opp- by using the indirect system described above, the heating can be carried out in approximately half the time required with the previously known systems. It can also be taken into account that when using the indirect system according to the invention up-

nås en besparelse på omkring 10% i omkostningene for fremstilling av hele håndteringsanlegget for ladningen sammenlignet méd det hittil anvendte system, særlig i betraktning av at det ikke trenges særlig store kompressorer. a saving of around 10% is achieved in the costs for manufacturing the entire handling facility for the charge compared to the system used up until now, especially in view of the fact that very large compressors are not needed.

Claims (7)

1. Fremgangsmåte ved oppvarmning av en isolert lagerbeholder for en kryogen væske efter at væsken er tappet ut av beholderen, innbefattende tilveiebringelse av en kilde for et varmeoverføringsmedium og fremføring av mediet til et rørsystem i lagerbeholderen, karakterisert ved a) bruk av et varmeoverføringsmedium som forblir1. Method of heating an insulated storage container for a cryogenic liquid after the liquid has been drained from the container, including providing a source for a heat transfer medium and conveying the medium to a pipe system in the storage container, characterized by a) using a heat transfer medium that remains i flytende tilstand ved et passende trykk over et temperaturområde fra omgivelsens temperatur tilnærmet til kokepunktet for den kryogene væske; b) tilførsel av latent varme til varmeoverførings-mediet under fordampning av mediet ved forhøyet trykk, og c) innføring av det fordampete varmeoverføringsmedium ved sitt forhøyete trykk i lagerbeholderen (17) for indirekte varmeveksling med kulden i denne beholder, hvilken varmeveksling bevirker at varmeoverføringsmediet kondenseres ved tilnærmet samme forhøyete trykk, hvilket trykk innstilles slik at det bidrar til å opprettholde strømmen av mediet gjennom lagerbeholderen. in the liquid state at a suitable pressure over a temperature range from ambient temperature approximately to the boiling point of the cryogenic liquid; b) supply of latent heat to the heat transfer medium during vaporization of the medium at elevated pressure, and c) introducing the vaporized heat transfer medium at its elevated pressure into the storage container (17) for indirect heat exchange with the cold in this container, which heat exchange causes the heat transfer medium to condense at approximately the same elevated pressure, which pressure is set so as to help maintain the flow of the medium through the storage container. 2. Oppvarmningssystem for en lagerbeholder for kryogene væsker, omfattende en forrådsbeh older for et varmeoverføringsmedium, pumper for tilførsel av varmeoverføringsmediet samt et rørsystem anordnet i lagerbeholderen for opptakelse av mediet, karakterisert ved at en fordamper (4) er anordnet mellom pumpen (7) og rørsystemet, at rørsystemet omfatter et indirekte varmevekslerelement (18, 19), samt en returledning innkoblet direkte mellom varmevekslerelementet og beholderen (3), idet arrangementet virker slik at mediet i væskeform tilføres fordamperen, fordampes i denne ved et høyere trykk og derefter føres til lagerbeholderen (17) for indirekte varmeveksling med denne. 2. Heating system for a storage container for cryogenics liquids, comprising a storage container for a heat transfer medium, pumps for supplying the heat transfer medium as well as a pipe system arranged in the storage container for receiving the medium, characterized in that an evaporator (4) is arranged between the pump (7) and the pipe system, that the pipe system includes an indirect heat exchanger element (18, 19), as well as a return line connected directly between the heat exchanger element and the container (3), as the arrangement works so that the medium in liquid form is supplied to the evaporator, vaporized in it at a higher pressure and then led to the storage container (17) for indirect heat exchange with this . 3. System som angitt i krav 2, for flere lagerbeholdere, karakterisert ved at hver lagerbeholder (17) er forsynt med et varmevekslerelement (18, 19) innkoblet i systemet via ventiler (23, 25) og en felles damp- og væskeledning (henholdsvis 16 og 26), hvilke ventiler (23, 25) tjener til regulering av oppvarmning shastigheten i lagerbeholderne (17). 3. System as specified in claim 2, for several storage containers, characterized in that each storage container (17) is provided with a heat exchanger element (18, 19) connected to the system via valves (23, 25) and a common steam and liquid line (respectively 16 and 26), which valves (23, 25) serve to regulate the heating rate in the storage containers (17). 4. System som angitt i krav 2 eller 3, karakterisert ved at forrådsbeholderen (3) er forbundet med en primær-forrådsbeholder (1) for varmeoverføringsmediet og ved en forbipas- --sasje (32) anordnet mellom forrådsbeholderen (3) og den primære for-rådsbeholder (1), hvilken forbipassasje er forsynt med en reguleringsventil (33) tilknyttet til en nivåregulator (34) for forrådsbeholderen (3) og bestemt til å oppta ekspansjonen av varmeover-føringsmediet som resultat av temperaturøkning under systemets funksjon. 4. System as stated in claim 2 or 3, characterized in that the storage container (3) is connected to a primary storage container (1) for the heat transfer medium and by a bypass (32) arranged between the storage container (3) and the primary storage container (1), which passage is provided with a control valve (33) connected to a level regulator (34) for the storage container (3) and intended to accommodate the expansion of the heat transfer medium as a result of temperature rise during the operation of the system. 5. System som angitt i krav 4, karakterisert ved at en kjøler (35) er anordnet i forbipassasjen (32). 5. System as stated in claim 4, characterized in that a cooler (35) is arranged in the bypass (32). 6. System som angitt i hvilket som helst av kravene 2 til 5, karakterisert ved at det i ledningen mellom pumpen (7) og fordamperen (4) er anordnet en reguleringsventil (36) som er tilknyttet til en temperaturdifferensialregulator (31) forbundet tvers over tilførselsledningen og returledningen (henholdsvis 16 og 26) for varmevekslerelementene (18, 19) , idet regulatoren (37) innstilles slik at reguleringsventilen (36) under drift opp-rettholder en underkjøling av varmeoverføringsmediet på et nivå tilstrekkelig til å undertrykke bråfordampning i systemets væskeled-ninger. 6. System as specified in any of claims 2 to 5, characterized in that a control valve (36) is arranged in the line between the pump (7) and the evaporator (4) which is connected to a temperature differential regulator (31) connected across the supply line and the return line (respectively 16 and 26) for the heat exchanger elements (18, 19), the regulator (37) being set so that the control valve (36) during operation maintains a subcooling of the heat transfer medium at a level sufficient to suppress sudden evaporation in the system's liquid part nings. 7. System som angitt i et hvilket som helst av kravene 2 til 6, karakterisert ved at det i en forbipassas^e (39) mellom tilførsels- og returledningen (16 respektive 26) for varmevekslerelementene (18, 19) er anordnet en reguleringsventil (38) som er tilknyttet til en temperaturregulator (41) anordnet i den nevnte returledning (26), hvilken regulator (41) innstilles slik at reguleringsventilen (38) hindrer at temperaturen synker under den minimale temperatur som forrådsbeholderen (3) og pumpene (7) er konstruert for.7. System as set forth in any of the claims 2 to 6, characterized in that in a bypass (39) between the supply and return line (16 and 26 respectively) for the heat exchanger elements (18, 19) a control valve (38) is arranged which is connected to a temperature regulator (41) in the aforementioned return line (26), which regulator (41) is set so that the control valve (38) prevents the temperature from falling below the minimum temperature for which the storage container (3) and the pumps (7) are designed.
NO389372A 1971-11-17 1972-10-27 NO130740C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5348171A GB1400010A (en) 1971-11-17 1971-11-17 Method and apparatus for cryogenic warm-up

Publications (2)

Publication Number Publication Date
NO130740B true NO130740B (en) 1974-10-21
NO130740C NO130740C (en) 1975-01-29

Family

ID=10467980

Family Applications (1)

Application Number Title Priority Date Filing Date
NO389372A NO130740C (en) 1971-11-17 1972-10-27

Country Status (12)

Country Link
US (1) US3867818A (en)
JP (1) JPS4863314A (en)
CA (1) CA968269A (en)
DE (1) DE2255746A1 (en)
ES (1) ES408711A1 (en)
FR (1) FR2161676A5 (en)
GB (1) GB1400010A (en)
IT (1) IT970397B (en)
NL (1) NL7214563A (en)
NO (1) NO130740C (en)
PL (1) PL79715B1 (en)
SE (1) SE383199B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331129A (en) * 1979-07-05 1982-05-25 Columbia Gas System Service Corporation Solar energy for LNG vaporization
US20080178611A1 (en) * 2007-01-30 2008-07-31 Foster Wheeler Usa Corporation Ecological Liquefied Natural Gas (LNG) Vaporizer System
US9341400B2 (en) * 2010-08-06 2016-05-17 Braun Intertec Geothermal, Llc Mobile hydro geothermal testing systems and methods
JP6409311B2 (en) * 2014-04-15 2018-10-24 株式会社Ihi Method for discharging residual liquid from liquefied gas tank
CN104960655B (en) * 2015-04-08 2017-05-24 江苏宏强船舶重工有限公司 Ice zone heating protection system for ships

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1908552A (en) * 1929-05-27 1933-05-09 Randel Bo Folke Method of heating with steam
US1886223A (en) * 1930-05-29 1932-11-01 Fred I Raymond Steam heating system
DE1501738C3 (en) * 1965-03-15 1974-05-22 Mcmullen, John Joseph, Montclair, N.J. (V.St.A.) Heat-insulated double-walled tank for storing or transporting low-boiling liquefied gases at around atmospheric pressure
JPS4319759Y1 (en) * 1965-09-22 1968-08-17
US3392537A (en) * 1967-03-29 1968-07-16 Air Reduction Liquid cylinder system

Also Published As

Publication number Publication date
FR2161676A5 (en) 1973-07-06
NO130740C (en) 1975-01-29
PL79715B1 (en) 1975-06-30
JPS4863314A (en) 1973-09-03
SE383199B (en) 1976-03-01
NL7214563A (en) 1973-05-21
CA968269A (en) 1975-05-27
DE2255746A1 (en) 1973-05-24
GB1400010A (en) 1975-07-16
ES408711A1 (en) 1975-11-01
IT970397B (en) 1974-04-10
US3867818A (en) 1975-02-25

Similar Documents

Publication Publication Date Title
US2975607A (en) Revaporization of liquefied gases
US7155917B2 (en) Apparatus and methods for converting a cryogenic fluid into gas
US2959928A (en) Lpg tankship refrigeration system
US2535148A (en) Method of storing natural gas
NO334344B1 (en) Tank Cooling
NO332551B1 (en) Method and apparatus for storing and transporting liquefied petroleum gas
NO333065B1 (en) Apparatus and method for keeping tanks for storing or transporting a liquid gas cold
US3011321A (en) Apparatus for the maintenance of liquefied petroleum products
US3210953A (en) Volatile liquid or liquefied gas storage, refrigeration, and unloading process and system
US2783624A (en) Method of liquefying gas
NO135880B (en)
US2246875A (en) Method and apparatus for loading receptacles with volatile liquids
NO328408B1 (en) Device, system and method for regeneration of LNG
US2522026A (en) Apparatus for vaporizing liquefied gas
US2903860A (en) Apparatus for unloading cold low temperature boiling liquids from storage reservoir
NO130740B (en)
NO141812B (en) METHOD INSTRUCTION PROCEDURE FOR OFFSHORE CONSTRUCTIONS
US2328647A (en) Method and apparatus for storing gaseous materials in the liquid phase
NO20092829A1 (en) Installations that include a tank for storing liquid natural gas
KR20170033675A (en) A ReGasification System Of Liquefied Gas
NO139737B (en) WATER, EMULGATOR-FREE POLYMERIZE DISTRIBUTION, AND PROCEDURES FOR ITS PREPARATION
US3256705A (en) Apparatus for and method of gas transportation
NO124578B (en)
US3251191A (en) Frozen earth storage for liquefied gas
US20040154315A1 (en) Method for vaporizing and heating compressed liquefied gases