NO130606B - - Google Patents
Download PDFInfo
- Publication number
- NO130606B NO130606B NO00395/71*[A NO39571A NO130606B NO 130606 B NO130606 B NO 130606B NO 39571 A NO39571 A NO 39571A NO 130606 B NO130606 B NO 130606B
- Authority
- NO
- Norway
- Prior art keywords
- cell
- metals
- aluminum
- electrolysis
- alloys
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 24
- 238000005868 electrolysis reaction Methods 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- 229910052749 magnesium Inorganic materials 0.000 claims description 20
- 239000011777 magnesium Substances 0.000 claims description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- 150000002739 metals Chemical class 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 150000004820 halides Chemical class 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052770 Uranium Inorganic materials 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 229910052776 Thorium Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 41
- 239000003792 electrolyte Substances 0.000 description 25
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000003723 Smelting Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- -1 aluminum halide Chemical class 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910010165 TiCu Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910007926 ZrCl Inorganic materials 0.000 description 1
- ZAKFPEIKZGXBJS-UHFFFAOYSA-N [Th].[Mn] Chemical compound [Th].[Mn] ZAKFPEIKZGXBJS-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
- F28D7/1669—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/04—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/10—Water tubes; Accessories therefor
- F22B37/107—Protection of water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/12—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
- F24H1/14—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
- F24H1/145—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using fluid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/12—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
- F24H1/14—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
- F24H1/16—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled
- F24H1/165—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled using fluid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/003—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/40—Shell enclosed conduit assembly
- Y10S165/401—Shell enclosed conduit assembly including tube support or shell-side flow director
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geometry (AREA)
- Dispersion Chemistry (AREA)
- Metallurgy (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Combustion Of Fluid Fuel (AREA)
- Gas Burners (AREA)
- Electrolytic Production Of Metals (AREA)
Description
Fremgangsmåte og anordning til fremstilling av vanskelig utreduserbare metaller ved smelte-elektrolyse. Method and device for the production of hard-to-reduce metals by melt electrolysis.
Foreliggende oppfinnelse angår en The present invention relates to a
fremgangsmåte og en celletype for smelteelektrolytisk fremstilling av vanskelig utreduserbare metaller som zirkonium, titan, niob, vanadium, hafnium, uran, molybden, beryllium, torium mangan og krom. Fremgangsmåten kan også benyttes ved fremstilling av legeringer av sådanne metaller. method and a cell type for melting electrolytic production of hard-to-reduce metals such as zirconium, titanium, niobium, vanadium, hafnium, uranium, molybdenum, beryllium, thorium manganese and chromium. The method can also be used in the production of alloys of such metals.
Fremgangsmåten ifølge oppfinnelsen The method according to the invention
går, nevnt i korthet, i hovedsaken ut på anvendelse av cellekar av aluminium eller magnesium kombinert med benyttelse av cellekaret som oppløselig anode til smelteelektrolytisk fremstilling av vanskelig utreduserbare metaller som f. eks. ovennevn-te. is, briefly mentioned, mainly based on the use of cell vessels made of aluminum or magnesium combined with the use of the cell vessel as a soluble anode for the smelting electrolytic production of difficult-to-reduce metals such as e.g. above-mentioned.
Som kjent er det en alvorlig ulempe As you know, this is a serious drawback
ved mange smelteelektrolytiske prosesser, særlig ved bruk av elektrolyter som inneholder alkalihalogenider, at smeiten har sterk tendens til å sive gjennom cellekar eller ovnsforinger av keramisk materiale. Dette er også tilfelle med foringer av gra-fit og kull. in many melting electrolytic processes, especially when using electrolytes containing alkali halides, that the melt has a strong tendency to seep through cell vessels or furnace linings of ceramic material. This is also the case with liners made of graphite and coal.
Etter foreliggende oppfinnelse unngås sådanne lekasjer ved at det benyttes tett cellekar av aluminium eller magnesium eller av legeringer av disse metaller. According to the present invention, such leakages are avoided by using a tight cell vessel made of aluminum or magnesium or of alloys of these metals.
Smelteelektrolytisk fremstilling av flere av de nevnte metaller er kjent fra tidligere publikasjoner og patentskrifter. De hittil anvendte metoder krever for teknisk utførelse høy cellespenning og, som følge herav, høyt energiforbruk. Hertil kommer at de fleste av de tidligere foreslåtte metoder forutsetter bruk av uangripelige ano-der, hvilket medfører utvikling av korro-sive og giftige anodegasser som f. eks. klor og fluor. Denne anodiske gassutvikling be-virker også pyrosoldannelse i smeiten og forårsaker tap av' elektrolyt som følge av sprut og tåkedannelse. Melt electrolytic production of several of the mentioned metals is known from previous publications and patent documents. The methods used so far require a high cell voltage and, as a result, high energy consumption for technical implementation. In addition, most of the previously proposed methods require the use of invulnerable anodes, which results in the development of corrosive and toxic anode gases such as e.g. chlorine and fluorine. This anodic gas evolution also causes pyrosol formation in the smelting and causes loss of electrolyte as a result of spatter and fog formation.
Etter foreliggende oppfinnelse er det selve cellekaret, som består av aluminium eller magnesium eller av legeringer av disse metaller, som funksjonerer som opplø-selig anode under elektrolyseprosessen. Benyttes det således cellekar av aluminium og elektrolyt sammensatt f. eks .av klorider, vil anodeprosessen resultere i dannel-se av Alda. Er cellekaret av magnesium, vil det med kloridelektrolyt dannes Mg Ch som anodeprodukt. Som følge av alumini-ums og magnesiums sterkt elektronegative karakter vil den anodiske oppløsning av disse metaller virke sterkt reduserende på cellespenningen for elektrolyseprosessen. Det vil derfor stort sett bare trenges bad-?penning for å overvinne den ohmske mot-vand i elektrolyten samt til overvinnelse iv overspenningseffekter ved den katodis-'se metallutfelling. Da man ved bruk av oppløselig anode heller ikke får noen ano-iisk gassutvikling, unngås etter foreliggende oppfinnelse også de foran nevnte ulemper forårsaket av anodisk gassutvikling. According to the present invention, it is the cell vessel itself, which consists of aluminum or magnesium or of alloys of these metals, which functions as a soluble anode during the electrolysis process. Thus, if cells made of aluminum and an electrolyte composed of, for example, chlorides are used, the anode process will result in the formation of Alda. If the cell vessel is made of magnesium, Mg Ch will be formed with chloride electrolyte as the anode product. As a result of the strongly electronegative character of aluminum and magnesium, the anodic dissolution of these metals will have a strong reducing effect on the cell voltage for the electrolysis process. It will therefore mostly only require bath voltage to overcome the ohmic resistance in the electrolyte as well as to overcome overvoltage effects during the cathodic metal deposition. Since no anodic gas evolution is obtained when using a soluble anode, the above-mentioned disadvantages caused by anodic gas evolution are also avoided according to the present invention.
Ved bruk av cellekar som ifølge oppfinnelsen samtidig funksjonerer som opp-<T>øselig anode, må cellekaret selvsagt ut-kiftes og fornyes før det er gått så meget iv det i oppløsning at man risikerer gjen-lomtæring. For imidlertid å oppnå lengst Tiulig brukstid for ett og samme cellekar ir det ifølge foreliggende oppfinnelse al-ternativt forutsatt at det innvendig i cellen umiddelbart innenfor cellekarveggen og i metallisk kontakt med denne anbringes en lett utskiftbar beskyttelsesforing av aluminium eller magnesium som dekker over og skjermer mot angrep spesielt de områder av celleveggen der den anodiske strømtetthet og derfor det anodiske angrep er størst. Beskyttelsesforingen kan f. eks .være en åpen hylse formet etter celleveggen, eller den kan være sammensatt av flere løsbare seksjoner eller plater. Ved sådan benyttelse av beskyttelsesforing iføl-ge oppfinnelsen vil det vesentlig være foringen som løses anodisk. Foringen utskiftes hver gang mesteparten av metallet i den er forbrukt som følge av elektrolyseprosessen. When using a cell vessel which, according to the invention, also functions as a dissolvable anode, the cell vessel must of course be replaced and renewed before it has dissolved so much that there is a risk of re-cell corrosion. However, in order to achieve the longest service life for one and the same cell vessel, according to the present invention, it is alternatively assumed that an easily replaceable protective lining of aluminum or magnesium is placed inside the cell immediately inside the cell vessel wall and in metallic contact with it, which covers and shields against particularly attack the areas of the cell wall where the anodic current density and therefore the anodic attack is greatest. The protective lining can, for example, be an open sleeve shaped like the cell wall, or it can be composed of several detachable sections or plates. With such use of a protective lining according to the invention, it will essentially be the lining that is anodically dissolved. The liner is replaced every time most of the metal in it has been consumed as a result of the electrolysis process.
I det tilfelle det benyttes cellekar av aluminium vil mest effektiv beskyttelse av dette oppnås med foring av magnesium som følge av at dette metall viser sterkere tendens til anodisk oppløsning enn aluminium. Av samme grunn er det i dette tilfelle unødvendig at magnesiumforingen virkelig dekker celleveggen. Man oppnår effektiv beskyttelse av aluminiumcelleka-ret ved å plasere et større antall magne-siumstaver i smelteelektrolyten umiddelbart innenfor cellekarveggen jevnt fordelt over cellekarveggen og i metallisk kontakt med denne. Disse staver kan utskiftes in-dividuelt ettersom de forbrukes i den anodiske oppløsningsprosess. In the event that cell vessels made of aluminum are used, the most effective protection of this will be achieved with a lining of magnesium as a result of this metal showing a stronger tendency to anodic dissolution than aluminium. For the same reason, in this case it is unnecessary for the magnesium lining to really cover the cell wall. Effective protection of the aluminum cell vessel is achieved by placing a larger number of magnesium rods in the molten electrolyte immediately inside the cell vessel wall, evenly distributed over the cell vessel wall and in metallic contact with it. These rods are individually replaceable as they are consumed in the anodic dissolution process.
Ved fremstilling av vanskelig utreduserbare metaller etter foreliggende oppfinnelse har det vist seg hensiktsmessig å benytte halogenider av det metall som skal fremstilles og å foreta kontinuerlig til-setning av vedkommende halogenid til smelteelektrolyten under elektrolyseprosessen. Som smelteelektrolyt har det vist seg fordelaktig å benytte blandinger av alkalihalogenider og jordalkalihalogenider. Sådanne blandinger smelter ved relativt lave temperaturer og det aluminiumhalo-genid eller magnesiumhalogenid som dan-ner seg ved elektrolysen og oppløses i smeiten bidrar ytterligere til å redusere smel-tepunktene. Arbeides det herunder med kloridsmelte og med cellekar eller céllekar-foring av aluminium, vil den anodiske opp-løsningsprosess som nevnt resultere i dan-nelse av A1C1::. Da AlCls har ganske høyt damptrykk, vil det bare kunne anrikes i smeiten til en viss grad på grunn av den sterke fordampning. Det AlCls som for-damper fra cellen kan utkondenseres, hvor-ved man får vannfritt AICI3 som bipro-dukt. In the production of hard-to-reduce metals according to the present invention, it has proven appropriate to use halides of the metal to be produced and to continuously add the relevant halide to the molten electrolyte during the electrolysis process. As melting electrolyte, it has proven advantageous to use mixtures of alkali halides and alkaline earth halides. Such mixtures melt at relatively low temperatures and the aluminum halide or magnesium halide that forms during the electrolysis and dissolves in the smelting further contributes to reducing the melting points. If work is carried out below with chloride melt and with cell vessels or cell vessel linings made of aluminium, the anodic dissolution process as mentioned will result in the formation of A1C1::. As AlCls has a fairly high vapor pressure, it will only be possible to enrich it in the smelting to a certain extent due to the strong evaporation. The AlCls that evaporates from the cell can be condensed out, whereby anhydrous AICI3 is obtained as a by-product.
Anrikningen av AlCls i smelteelektrolyten innebærer mulighet for katodisk ut- The enrichment of AlCls in the melt electrolyte implies the possibility of cathodic
skillelse av aluminiummetall sammen med det metall man tar sikte på å fremstille, nemlig som legering med dette. Dette for-hold kan bety en ulempe eller en fordel alt etter hvilket metall man tar sikte på å fremstille. Hvorvidt sådan medutfelling av aluminium kan finne sted avhenger, for-uten av vedkommende metalls katodiske utfellingspotensial, også av den katodiske strømtetthet. Arbeides det med, meget høy katodisk strømtetthet, f. eks. over 70 am-pere/dm<2>, vil alle de forannevnte tungt utreduserbare metaller utfelles som alumi-niumlegeringer dersom smeiten , inneholder AlCln. Av teknisk interesse er f. eks. sådan direkte smelteelektrolytisk fremstilling av Al-Ti-legeringer. separation of aluminum metal together with the metal one aims to produce, namely as an alloy with this. This relationship can mean a disadvantage or an advantage, depending on which metal you aim to produce. Whether such co-precipitation of aluminum can take place depends, in addition to the cathodic precipitation potential of the metal in question, also on the cathodic current density. If you work with a very high cathodic current density, e.g. above 70 amperes/dm<2>, all the above-mentioned hard-to-reduce metals will precipitate as aluminum alloys if the melt contains AlCln. Of technical interest are e.g. such direct melt electrolytic production of Al-Ti alloys.
Ved på den annen side å arbeide ved relativt lav katodisk strømtetthet unngåes for størsteparten av de nevnte tungt re-duserbare metallers vedkommende at det skjer medutskillelse av aluminium ved den katodiske utskillelse av det ønskede metall. By, on the other hand, working at a relatively low cathodic current density, it is avoided for the majority of the mentioned heavily reducible metals that co-separation of aluminum occurs during the cathodic separation of the desired metal.
Arbeides det med cellekar eller cellekarforing av magnesium, vil den anodiske oppløsningsprosess etterhvert resultere i anrikning av MgCh i smelteelektrolyten. Ved høyt innhold av MgCls vil smelteelektrolytens viskositet øke. Ved bruk av magnesium må derfor elektrolyten tappes ut og!, erstattes med ny elektrolyt når MgCh-innholdet er blitt så høyt at smeiten be-gynner å bli for seigtflytende. Smelteelektrolyten kan imidlertid regenereres ved utfelling av magnesiuminnholdet i en se-parat elektrolyseprosess. If you work with cell vessels or cell vessel linings made of magnesium, the anodic dissolution process will eventually result in the enrichment of MgCh in the molten electrolyte. With a high content of MgCls, the melt electrolyte's viscosity will increase. When magnesium is used, the electrolyte must therefore be drained off and replaced with new electrolyte when the MgCh content has become so high that the melt begins to become too viscous. However, the molten electrolyte can be regenerated by precipitation of the magnesium content in a separate electrolysis process.
På fig. 1 er vist skisse av et eksempel på en elektrolysecelle for utførelse av en elektrolyseprosess ifølge oppfinnelsen, nemlig smelteelektrolytisk fremstilling av zirkonium fra en kloridsmelte inneholden-de ZrCli. Den på fig. 1 viste celletype har generell anvendelse også for arbeide med smelter sammensatt av andre halogenider og for fremstilling av andre tungt utreduserbare metaller enn zirkonium. In fig. 1 shows a sketch of an example of an electrolysis cell for carrying out an electrolysis process according to the invention, namely melt electrolytic production of zirconium from a chloride melt containing ZrCl. The one in fig. The cell type shown in 1 has general application also for working with melts composed of other halides and for the production of other hard-to-reduce metals than zirconium.
Selve cellekaret er en tykkvegget sy-lindrisk aluminiumbeholder 1, hvis bunn er i forbindelse med den positive strøm-skinne 2. Umiddelbart innenfor cellekarveggen og i metallisk kontakt med denne er det plasert som beskyttelsesforing en åpen tykkvegget løsbar magnesiumhylse 3. Katoden er en avrundet metallsylinder 4, opphengt i en katodeholder, som stikker ut gjennom lokket 5 til den negative strøm - skinne. I katodeholder og katode er der en central utboring for innføring av ZrCU i dampform til smelteelektrolyten umiddelbart under katoden . The cell vessel itself is a thick-walled cylindrical aluminum container 1, the bottom of which is in connection with the positive current rail 2. Immediately inside the cell vessel wall and in metallic contact with this, an open thick-walled detachable magnesium sleeve 3 is placed as a protective lining. The cathode is a rounded metal cylinder 4, suspended in a cathode holder, which protrudes through the lid 5 to the negative current - rail. In the cathode holder and cathode, there is a central bore for the introduction of ZrCU in vapor form to the molten electrolyte immediately below the cathode.
Cellekaret er omgitt av et heteelement 6 for oppheting og smelting av chargen før start av elektrolysen. Da elektrolyseprosessen arbeider med såvidt lite energiforbruk av varmeutviklingen som følge av elektrolyseprosessen blir utilstrekkelig til å dekke varmetapet utad i tilfelle det arbeides med relativt små celler, kan det i slike tilfeller være nødvendig å benytte heteelementet også under drift til opprettholdelse av passende elektrolyttemperatur. Cellekaret med heteelement er plasert i en blikkman-tel 7, innvendig pakket med hetebestandig isolasjonsmateriale 8. Varmetilførselen kan imidlertid også foregå inne i cellen ved elektrisk motstandsopphetning av smeiten ved vekselstrøm tilført gjennom to uangripelige elektroder neddykket i selve smeiten. I en celle som eksempelvis vist på fig. 1 er det vesentlig magnesiumforingen 3 som oppløses ved elektrolysen som følge av anodisk angrep, og som derfor må utskiftes forholdsvis ofte. Når det er tæret bort så meget av magnesiumforingen 3 at den må utskiftes, løftes cellelokket 9, restene av foringen fjernes og det anbringes en ny foring i ovnen. Ved elektrolysen utskilles det et lag med zirkoniumsvamp 10 på katoden. Når det er utskilt en passende mengde herav, løftes lokket 5, katoden trekkes opp og erstattes umiddelbart deretter med en ren katode. Zirkoniumbelegget skrapes av den brukte katode og går til rensing for å fjerne vedhengende elektrolytt. The cell vessel is surrounded by a heating element 6 for heating and melting the charge before starting the electrolysis. As the electrolysis process works with so little energy consumption that the heat generated as a result of the electrolysis process becomes insufficient to cover the heat loss to the outside in the case of working with relatively small cells, in such cases it may be necessary to use the heating element also during operation to maintain a suitable electrolyte temperature. The cell vessel with heating element is placed in a tin jacket 7, internally packed with heat-resistant insulation material 8. However, the heat supply can also take place inside the cell by electric resistance heating of the forge by alternating current supplied through two invulnerable electrodes immersed in the forge itself. In a cell as, for example, shown in fig. 1 is essentially the magnesium lining 3 which dissolves during the electrolysis as a result of anodic attack, and which must therefore be replaced relatively often. When so much of the magnesium lining 3 has been corroded that it must be replaced, the cell lid 9 is lifted, the remains of the lining are removed and a new lining is placed in the furnace. During the electrolysis, a layer of zirconium sponge 10 is secreted on the cathode. When a suitable amount of this has been secreted, the lid 5 is lifted, the cathode is pulled up and replaced immediately afterwards with a clean cathode. The zirconium coating is scraped off the spent cathode and goes to cleaning to remove adhering electrolyte.
Ved jevn tilførsel av ZrCU til cellen samtidig med jevnt tilførsel av likestrøm, svarende til litt over 4 F for hvert mol ZrCU som tilføres cellen, vil mesteparten av Zr-innholdet i det tilførte ZrCU utfelles på katoden som metall. Det er imidlertid vanskelig å unngå at litt ureagert ZrCU-damp unnviker til rommet over elektrolyt-nivået. For å forhindre at luft skal kunne trenge inn i cellen og bevirke oksydasjon av ZrCU-dampen og oksydasjon og nitrid-dannelse i det utfelte zirkoniummetall, holdes det inaktiv atmosfære i rommet over elektrolyten. På fig. 1 er det antydet at det gjennom røret 11 holdes argonatmosfære i rommet over elektrolyten. If ZrCU is fed evenly to the cell at the same time as direct current is fed, corresponding to a little over 4 F for each mole of ZrCU fed to the cell, most of the Zr content in the fed ZrCU will be precipitated on the cathode as metal. However, it is difficult to avoid that some unreacted ZrCU vapor escapes to the space above the electrolyte level. In order to prevent air from being able to penetrate the cell and cause oxidation of the ZrCU vapor and oxidation and nitride formation in the precipitated zirconium metal, an inactive atmosphere is kept in the space above the electrolyte. In fig. 1, it is indicated that an argon atmosphere is maintained through the tube 11 in the space above the electrolyte.
På figur 1 er det antydet at katoden henger i ro under elektrolysen. Våre for-søk har imidlertid vist at det oppnås bedre strømutbytte og mer kompakt metallbelegg på katoden dersom den ifølge foreliggende oppfinnelse holdes i rotasjon. In figure 1, it is suggested that the cathode hangs at rest during the electrolysis. However, our tests have shown that a better current yield and more compact metal coating on the cathode is achieved if it is kept in rotation according to the present invention.
Som et eksempel på driftsbetingelser ved fremstilling av zirkoniumsvamp i en celle som vist på figur 1 kan nevnes føl-gende data fra et forsøk: Smelteelektrolytens gjennomsnittlige As an example of operating conditions for the production of zirconium sponge in a cell as shown in figure 1, the following data from an experiment can be mentioned: The melting electrolyte's average
sammensetning under elektrolysen var ca. composition during the electrolysis was approx.
30 % LiCl, 30 % KC1, 20 % NaCl og 20 30% LiCl, 30% KC1, 20% NaCl and 20
% MgCh. Elektrolytprøver tatt like ved katodeoverflaten viste et innhold på ca. % MgCh. Electrolyte samples taken close to the cathode surface showed a content of approx.
1 % Zr-klorider. Elektrolysen ble utført 1% Zr chlorides. The electrolysis was carried out
ved en elektrolyttemperatur på oa. 550° C og en katodisk strømtetthet på ca. 20 am-pere pr. dm<2>. Cellespenningen var herunder gjennomsnitlig ca. 1,4 volt. Det ble utskilt en mengde zirkoniummetall svarende til et strømutbytte på ca. 90 %. Den anodisk oppløste magnesiummengde tilsvarte ca. 0,6 kg magnesium pr. kg katodisk utfelt zirkoniummetall. at an electrolyte temperature of oa. 550° C and a cathodic current density of approx. 20 ampere per dm<2>. The cell voltage was, on average, approx. 1.4 volts. A quantity of zirconium metal corresponding to a current yield of approx. 90%. The amount of magnesium dissolved anodically corresponded to approx. 0.6 kg of magnesium per kg cathodically precipitated zirconium metal.
Som eksempel på driftsbetingelser ved fremstilling av en titanaluminiumlegering skal nevnes følgende: Det ble anvendt en celle som vist på fig. 1, bare med den for-skjell at foring 3 var av aluminium og at det ble tilført TiCU-damp til smelteelektrolyten istedenfor ZrCU. Den gjennomsnittlige sammensetning av smelteelektrolyten under elektrolysen var ca. 35 % LiCl. 32 % KC1, 25 % NaCl og 8 % A1C13. Det ble arbeidet ved ca. 550° C og med en katodisk strømtetthet på ca. 80 ampere/dm<2>. Cellespenningen var herunder ca. 1,9 volt. Det ble utskilt på katoden en grovkrystal-linsk legering bestående av ca. 88 % Ti og ca. 12 % Al. Strømutbyttet av Ti + Al var ca. 88 %. As an example of operating conditions in the production of a titanium aluminum alloy, the following should be mentioned: A cell was used as shown in fig. 1, only with the difference that liner 3 was made of aluminum and that TiCU vapor was added to the melting electrolyte instead of ZrCU. The average composition of the molten electrolyte during the electrolysis was approx. 35% LiCl. 32% KC1, 25% NaCl and 8% A1C13. The work was done at approx. 550° C and with a cathodic current density of approx. 80 amps/dm<2>. The cell voltage was approx. 1.9 volts. A coarsely crystalline alloy consisting of approx. 88% Ten and approx. 12% Al. The current yield of Ti + Al was approx. 88%.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1033470A | 1970-02-11 | 1970-02-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
NO130606B true NO130606B (en) | 1974-09-30 |
NO130606C NO130606C (en) | 1975-01-08 |
Family
ID=21745255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO395/71A NO130606C (en) | 1970-02-11 | 1971-02-03 |
Country Status (8)
Country | Link |
---|---|
US (1) | US3704748A (en) |
CA (1) | CA1041079A (en) |
CH (1) | CH541790A (en) |
ES (2) | ES383984A2 (en) |
FR (1) | FR2079369B1 (en) |
GB (2) | GB1314097A (en) |
NL (1) | NL7015809A (en) |
NO (1) | NO130606C (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3921712A (en) * | 1970-03-02 | 1975-11-25 | American Standard Inc | Heat exchanger structure for a compact boiler and the like |
US3885529A (en) * | 1970-03-02 | 1975-05-27 | American Standard Inc | Heat exchanger structure for a compact boiler and the like |
US3830221A (en) * | 1972-05-31 | 1974-08-20 | Raytheon Co | Oil heater protection system |
US3908602A (en) * | 1972-10-04 | 1975-09-30 | Andre Brulfert | Steam or hot water generator using the catalytic combustion of hydrocarbons |
US4171772A (en) * | 1972-11-16 | 1979-10-23 | Amana Refrigeration, Inc. | Package heat exchanger system for heating and cooling |
US3823704A (en) * | 1973-02-14 | 1974-07-16 | Rheem International | Power burner application to fin tube heat exchanger |
US4274581A (en) * | 1973-12-06 | 1981-06-23 | Raytheon Company | Package heat exchanger system for heating and cooling |
US3967590A (en) * | 1974-01-24 | 1976-07-06 | Amana Refrigeration, Inc. | Heat exchange control system |
US4125151A (en) * | 1974-12-17 | 1978-11-14 | Raytheon Company | Package heat exchanger system for heating and cooling |
US4135487A (en) * | 1975-08-29 | 1979-01-23 | Amana Refrigeration, Inc. | Heat exchange control system |
DE2719958A1 (en) * | 1977-05-04 | 1978-11-09 | Sentras Ag | DEVICE FOR TRANSFERRING RADIANT HEAT TO A GAS OR LIQUID HEAT TRANSFER |
US4222350A (en) * | 1978-06-26 | 1980-09-16 | Boston Gas Products, Inc. | Efficient heating and domestic hot water apparatus |
US4593754A (en) * | 1980-06-24 | 1986-06-10 | Holl Richard A | Shell and tube heat transfer apparatus and process therefor |
EP0042613A3 (en) * | 1980-06-24 | 1982-08-11 | Richard Adolf Holl | Apparatus and process for heat transfer |
FR2493498A1 (en) * | 1980-11-03 | 1982-05-07 | Chavanelle Charlette | Unit for recovering energy from fluid - circulating into and out of container filled with numerous spheres |
FR2514475A1 (en) * | 1981-10-08 | 1983-04-15 | Bonnet Claude | Heat exchanger heating boiler - has axial heating coil with heat exchange disc between coils |
NL8202096A (en) * | 1982-05-21 | 1983-12-16 | Esmil Bv | HEAT EXCHANGER CONTAINING A GRANULAR CONTAINING VERTICAL TUBES. |
US4708198A (en) * | 1982-11-01 | 1987-11-24 | Holl Richard A | Construction and method for improving heat transfer and mechanical life of tube-bundle heat exchangers |
EP0160662B1 (en) * | 1983-10-05 | 1988-05-11 | Vapor Corporation | Shell and tube heat transfer apparatus and process therefor |
US4723513A (en) * | 1986-01-30 | 1988-02-09 | Lochinvar Water Heater Corporation | Gas water heater/boiler |
GB2199647B (en) * | 1987-01-07 | 1991-05-15 | Nicholas Julian Jan F Macphail | Improvements in heat exchangers |
DE9215710U1 (en) * | 1992-11-19 | 1993-09-30 | Mundt Juergen | Luminous heat generator and convector |
US6213757B1 (en) * | 1995-06-07 | 2001-04-10 | Quantum Group Inc. | Advanced emissive matrix combustion |
US6250301B1 (en) * | 1997-08-28 | 2001-06-26 | Hortal Harm B.V. | Vaporizer for inhalation and method for extraction of active ingredients from a crude natural product or other matrix |
DE10038523C1 (en) * | 2000-08-08 | 2002-06-27 | Xcellsis Gmbh | Combined component from heat exchanger and reactor |
US7073567B2 (en) * | 2001-08-14 | 2006-07-11 | Global Cooling Bv | Condenser evaporator and cooling device |
US7346210B2 (en) * | 2001-12-28 | 2008-03-18 | Nikon Corporation | Image processing device and image processing program for determining similarity factors of pixels |
US7575043B2 (en) * | 2002-04-29 | 2009-08-18 | Kauppila Richard W | Cooling arrangement for conveyors and other applications |
KR100481008B1 (en) * | 2002-06-03 | 2005-04-07 | 주성엔지니어링(주) | Gas heating apparatus for chemical vapor deposition process and semiconductor device fabrication method using the same |
EP2083217B1 (en) | 2008-01-03 | 2013-05-01 | WORGAS BRUCIATORI S.r.l. | Gas burner for boiler |
US20110300050A1 (en) * | 2010-06-08 | 2011-12-08 | Memc Electronic Materials, Inc. | Trichlorosilane Vaporization System |
WO2012094037A1 (en) * | 2011-01-07 | 2012-07-12 | Soares Joao | Device and method for producing green energy |
US20130220301A1 (en) * | 2012-02-29 | 2013-08-29 | Atul Saksena | Gas burner system for gas-powered cooking devices |
US11346611B2 (en) * | 2016-08-16 | 2022-05-31 | Hamilton Sundstrand Corporation | Heat exchangers with multiple flow channels |
US11953231B2 (en) * | 2022-07-01 | 2024-04-09 | Viessmann Climate Solutions Se | Heating device |
CN116952038B (en) * | 2023-09-14 | 2023-12-08 | 南京宜热纵联节能科技有限公司 | Indirect heat exchange device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2893702A (en) * | 1947-12-12 | 1959-07-07 | Richardson Edward Adams | Heat exchange apparatus |
FR1201074A (en) * | 1957-08-09 | 1959-12-28 | Apparatus for steam generation | |
US3118430A (en) * | 1960-11-25 | 1964-01-21 | Ace Tank And Heater Company | Water heater |
FR1313183A (en) * | 1961-11-13 | 1962-12-28 | Babcock & Wilcox France | Improvements to heat exchangers |
US3289756A (en) * | 1964-10-15 | 1966-12-06 | Olin Mathieson | Heat exchanger |
US3315646A (en) * | 1965-01-22 | 1967-04-25 | American Radiator & Standard | Boiler |
US3513908A (en) * | 1967-08-18 | 1970-05-26 | Guru B Singh | Embedded tube heat exchanger |
CA1040025A (en) * | 1968-01-24 | 1978-10-10 | Raytheon Company | Heat transfer structure |
-
1970
- 1970-02-11 US US10334A patent/US3704748A/en not_active Expired - Lifetime
- 1970-09-25 ES ES383984A patent/ES383984A2/en not_active Expired
- 1970-10-16 GB GB4934570A patent/GB1314097A/en not_active Expired
- 1970-10-16 GB GB2508172A patent/GB1314099A/en not_active Expired
- 1970-10-28 NL NL7015809A patent/NL7015809A/xx not_active Application Discontinuation
-
1971
- 1971-02-03 NO NO395/71A patent/NO130606C/no unknown
- 1971-02-10 CA CA105,018A patent/CA1041079A/en not_active Expired
- 1971-02-11 CH CH203271A patent/CH541790A/en not_active IP Right Cessation
- 1971-02-11 FR FR7104638A patent/FR2079369B1/fr not_active Expired
-
1973
- 1973-03-09 ES ES412497A patent/ES412497A2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CH541790A (en) | 1973-09-15 |
CA1041079A (en) | 1978-10-24 |
ES383984A2 (en) | 1973-03-01 |
ES412497A2 (en) | 1976-03-01 |
NO130606C (en) | 1975-01-08 |
GB1314097A (en) | 1973-04-18 |
GB1314099A (en) | 1973-04-18 |
NL7015809A (en) | 1971-08-13 |
DE2054692A1 (en) | 1973-02-22 |
FR2079369B1 (en) | 1975-04-18 |
FR2079369A1 (en) | 1971-11-12 |
US3704748A (en) | 1972-12-05 |
DE2054692B2 (en) | 1977-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO130606B (en) | ||
US5024737A (en) | Process for producing a reactive metal-magnesium alloy | |
US3114685A (en) | Electrolytic production of titanium metal | |
JP2005536638A (en) | Inert electrode temperature control and operation in the formation of metallic aluminum. | |
US2817631A (en) | Refining titanium alloys | |
EP0267054B1 (en) | Refining of lithium-containing aluminum scrap | |
NO147862B (en) | PROCEDURE FOR CONCENTRATION OF A SUSPENSION OF SOLID MATERIAL IN A PRESSURE FILTER, AND PRESSURE FILTER THEREOF | |
Yan et al. | Molten salt electrolysis for sustainable metals extraction and materials processing—A review | |
JP2019065355A (en) | Molten-salt electrolytic bath | |
NO128915B (en) | ||
Sharma | A new electrolytic magnesium production process | |
NO143809B (en) | HULL CALCULATED FOR AN OIL DRILLING PLATFORM OF THE UPPER TYPE | |
NO131807B (en) | ||
US4135994A (en) | Process for electrolytically producing aluminum | |
US2936268A (en) | Preparation of metal borides and silicides | |
JP4198434B2 (en) | Method for smelting titanium metal | |
US2939823A (en) | Electrorefining metallic titanium | |
RU2702672C1 (en) | Method of producing aluminum of high purity by electrolysis of molten salts | |
US2887443A (en) | Arc-cathode production of titanium | |
NO139668B (en) | SUSPENSION STOCK. | |
Raynes et al. | The Extractive Metallurgy of Zirconium By the Electrolysis of Fused Salts: III. Expanded Scale Process Development of the Electrolytic Production of Zirconium from | |
US2880151A (en) | Electrolytic production of magnesium metal | |
US2898276A (en) | Production of titanium | |
US2950236A (en) | Electrolytic production of magnesium metal | |
US3503857A (en) | Method for producing magnesium ferrosilicon |