NO130522B - - Google Patents

Download PDF

Info

Publication number
NO130522B
NO130522B NO01076/72A NO107672A NO130522B NO 130522 B NO130522 B NO 130522B NO 01076/72 A NO01076/72 A NO 01076/72A NO 107672 A NO107672 A NO 107672A NO 130522 B NO130522 B NO 130522B
Authority
NO
Norway
Prior art keywords
resin
binder
impregnation
epoxy
binder resin
Prior art date
Application number
NO01076/72A
Other languages
Norwegian (no)
Other versions
NO130522C (en
Inventor
H Mosimann
P Heim
W Lutz
Original Assignee
Schweizerische Isolawerke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Isolawerke filed Critical Schweizerische Isolawerke
Publication of NO130522B publication Critical patent/NO130522B/no
Publication of NO130522C publication Critical patent/NO130522C/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/50Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/10Mica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3927Including a paper or wood pulp layer
    • Y10T442/3935Mica paper layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC
    • Y10T442/56From synthetic organic fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC
    • Y10T442/59At least three layers

Description

Viklebånd for isolasjon av elektriske maskiner. Wrap tape for insulation of electrical machines.

Ved elektriske motorer og generatorer for midlere og In the case of electric motors and generators for means and

høy spenning og ytelser isoleres lederne med glimmerprodukter. high voltage and performances, the conductors are insulated with mica products.

Ved høyspenningsviklinger isoleres lederen før innbygning i sporene In the case of high-voltage windings, the conductor is insulated before installation in the tracks

med et glimmerprodukt etter foliefremgangsmåten, eller ved cmbanda- with a mica product according to the foil method, or by cmbanda-

sjering. Ved viklinger med driftsspenninger inntil ca. 6 kV anvendes i dag også den såkalte helimpregneringsfremgangsmåten, dvs. hele viklingen isoleres med porøse glimmerbånd, og etter innsetning i sporene impregneres den ferdige vikling med en oppløsningsmiddelfri impregneringsharpiks. severance. For windings with operating voltages up to approx. 6 kV, the so-called full impregnation method is also used today, i.e. the entire winding is insulated with porous mica tape, and after insertion in the slots, the finished winding is impregnated with a solvent-free impregnation resin.

Enten det dreier seg om høyspenningsledninger som Whether it concerns high-voltage lines such as

innlegges i ferdigisolert tilstand i sporene, eller om helimpregneringsfremgangsmåten med viklingen allerede i sporene, må for begge inserted in a pre-insulated state in the slots, or if the full impregnation method with the winding already in the slots, must for both

fremgangsmåter glimmerisoleringen være gjennomimpregnert fullstendig med en oppløsningsmiddelfri syntetisk harpiks. methods the mica insulation is completely impregnated with a solvent-free synthetic resin.

Bringes harpiksen først etter oppvikling av båndet på en av isolerte enkeltledere oppbygget og sammenklebet lederstav ved impregnering i viklingen, så er en forutsetning for fremgangsmåtens resultat at glimmerisoleringen gjennomimpregneres fullstendig med harpiksen i en vakuumtrykkprosess. Det anvendte viklebånd må derfor være porøst for at det kan oppta harpiksen, spesielt når det dreier seg- om sjikttykkelse på noen millimeter. If the resin is only brought after winding up the tape on one of the insulated single conductors built up and glued together by impregnation in the winding, then a prerequisite for the method's result is that the mica insulation is completely impregnated with the resin in a vacuum pressure process. The wrapping tape used must therefore be porous so that it can absorb the resin, especially when it concerns a layer thickness of a few millimeters.

Viklebåndene er sammensatt av et bæremateriale, f.eks. en glassilkevevnad av ca. 25 g/m 2 flatevekt eller et flor av glass-eller kunstfibre, samt et sjikt av glimmer. The wrapping bands are composed of a carrier material, e.g. a glass silk fabric of approx. 25 g/m 2 basis weight or a layer of glass or synthetic fibers, as well as a layer of mica.

Bærematerialet må gi det sammensatte material den nød-vendige mekaniske fasthet. For at imidlertid materialet overhodet kan håndteres må bærer og glimmer forbindes med hverandre ved hjelp av et bindemiddel. The carrier material must give the composite material the necessary mechanical strength. However, in order for the material to be handled at all, the carrier and mica must be connected to each other by means of a binder.

Vesentlig ved denne fremgangsmåte er følgende krav som stilles til utgangsmaterialene: Viklebåndet må være mekanisk motstandsdyktig og tåle påkjenningene med maskinell vikling. På den annen side må det praktisk talt være bindemiddelfritt for at viklingen helt kan gjennom-trenges av impregneringsharpiks. Essential to this method are the following requirements for the starting materials: The winding tape must be mechanically resistant and withstand the stresses of mechanical winding. On the other hand, it must be practically binder-free so that the winding can be completely penetrated by impregnation resin.

Som man ser motsier de to krav seg. Et viklebånd er nemlig i og for seg mekanisk desto sterkere jo mer bærer og glimmer er bundet ved hjelp av fleksibelt bindemiddel. Bindemidlet hindrer imidlertid den senere gjennomført impregnering. Derfor tilstreber man en mest mulig punktvis sammenklebning av bærer og glimmer. As you can see, the two requirements contradict each other. A wrapping tape is in and of itself mechanical, the stronger the more carrier and mica is bound by means of flexible binder. However, the binder prevents the subsequent impregnation. That is why we strive for the most possible pointwise bonding of carrier and mica.

Ved viklebånd, som på grunn av glimmerpapirets svake strekkfasthet sammensetter seg av glimmerpapir og en strekkfast og varmebestandig vevnad (glassvevnad eller syntetiske fibre) er det åpenbart å stille følgende krav til bindemidlet: 1. Ved den minimale mengde bindemiddel skal det frembringes en best mulig sammenklebning av glimmerpapir og bærer, således at det er In the case of wrapping tape, which due to the weak tensile strength of mica paper is composed of mica paper and a tensile and heat-resistant weave (glass weave or synthetic fibres), it is obvious that the following requirements must be placed on the binder: 1. With the minimal amount of binder, the best possible adhesion must be produced of mica paper and carrier, so that it is

sikret maskinell vikling. secured mechanical winding.

2. Ved den forlangte gode sammenklebning skal bindemidlet inntrenge minst mulig glimmerpapir og hovedsakelig eller bare tjene til sammenklebning av glimmerpapir og bærer, (foråt den etterfølgende impregnering kan foregå uhindret). 3. Bindemidlet må være forenlig med den senere anvendte impregneringsharpiks . 2. For the required good bonding, the binder must penetrate the mica paper as little as possible and mainly or only serve to bond the mica paper and carrier, (so that the subsequent impregnation can take place unhindered). 3. The binder must be compatible with the later used impregnation resin.

Impregneringsharpiksen må ved alle forlangte dielek-triske egenskaper være så lavviskøs, at den formår å trenge inn i den porøse isolasjon og sammenklebe den etter herdning med leder-bunten til en kompakt, innslutningsfri isolasjon. With all required dielectric properties, the impregnation resin must be so low-viscosity that it manages to penetrate the porous insulation and bond it together after curing with the conductor bundle into a compact, inclusion-free insulation.

Også til impregneringsharpiksen skal det stilles en rekke krav: A number of requirements must also be made for the impregnation resin:

1. Impregneringsharpiksen skal fukte glimmerisolasjonen godt. 1. The impregnation resin must wet the mica insulation well.

2. Dens viskositet skal være lav og ved impregneringstemperaturen ligge mest mulig under 300 cP. 3. For å kunne oppbevares i en tank, mest mulig uten endring, må dens viskositet tidsmessig forbli konstant, også når den under drift ofte oppvarmes til 50 til 60 C. M<s>*'"' 4. Ved herdning skal det foregå en hurtigst mulig økning av viskosi-' teten for at lite harpiks drypper av og herdningen foregår raskt, 2. Its viscosity must be low and, at the impregnation temperature, as much as possible below 300 cP. 3. To be able to be stored in a tank, as much as possible without change, its viscosity must remain constant over time, also when during operation it is often heated to 50 to 60 C. M<s>*'"' 4. During curing, it must take place a rapid increase in viscosity so that little resin drips off and curing takes place quickly,

hvorved ovnsoppholdet er av kort varighet. whereby the oven stay is of short duration.

5. Harpiksen skal være så varmebeståndig at viklingen kan drives ved de i dag vanlige driftstemperaturer (klasse F, 155°C). Den bør derfor ikke mykne sterkt ved denne temperatur; også må den ved denne temperatur i permanent drift undergå intet eller bare et lite vektstap. 5. The resin must be so heat-resistant that the winding can be operated at the current operating temperatures (class F, 155°C). It should therefore not soften strongly at this temperature; also, at this temperature in permanent operation, it must undergo no or only a small loss of weight.

fen forlanger av en høyspenningsisolasjon lave dielek-triske tap, dvs. en liten økning av tgS som funksjon av spenning og temperatur. Isolasjonen bør heller ikke mykne inntil topptemperatur-ene under drift. Disse to krav forutsetter harpikser blandet med større mengder reaktive fortynnere. Reaktive fortynnere er monofunk-sjonelle-, lavviskose epoksyforb indelser som på grunn av monofunksjo-naliteten virker som kjedeavbrytere og dermed hindrer dannelsen av lange polymerkjeder. Derved forskyves i herdet tilstand i forhold til den ikke fortynnerholdige blandingen Nkrtenspunktet (ifølge DIN 53.^62) eller formstabiliteten (ifølge ISO R 75) mot lavere tempera-turer. Utelukker man den allerede omtalte fortynnede harpiks, så påtreffer man mindre egnede impregneringsharpikssystemer med viskosi-teter under 1000 cP ved 20°C. fen requires low dielectric losses from a high-voltage insulation, i.e. a small increase in tgS as a function of voltage and temperature. The insulation should also not soften until the peak temperatures during operation. These two requirements require resins mixed with larger amounts of reactive diluents. Reactive thinners are monofunctional, low-viscosity epoxy compounds which, due to their monofunctionality, act as chain breakers and thus prevent the formation of long polymer chains. Thereby, in the hardened state, in relation to the non-diluent-containing mixture, the melting point (according to DIN 53.^62) or the shape stability (according to ISO R 75) is shifted towards lower temperatures. If one excludes the already mentioned diluted resin, one encounters less suitable impregnation resin systems with viscosities below 1000 cP at 20°C.

Da harpiksen trenger lettere inn i viklingen ved lav viskositet, forsøker man å øke temperaturen. Derved begynner impregneringsharpiksen å reagere hvorved viskositeten øker ; når nå gjennom-gangen ikke er stor_, således at det stadig kan tilføres ny harpiks, bli-r blandingen hurtig ubrukbar for det foreskrevne formål. Vkn søker altså et harpikssystem som ved impregneringstemperaturen reaggjcer minst mulig, f.eks. en epoksyharpiks eller et flytende anhydrid. Disse systemer har imidlertid den ulempe å avdryppe lenge da de også leagerer langsomt ved høyere temperatur. As the resin penetrates the winding more easily at low viscosity, an attempt is made to increase the temperature. Thereby, the impregnation resin begins to react, whereby the viscosity increases; when the passage is not large, so that new resin can be constantly added, the mixture quickly becomes unusable for the prescribed purpose. Vkn is therefore looking for a resin system that reacts as little as possible at the impregnation temperature, e.g. an epoxy resin or a liquid anhydride. However, these systems have the disadvantage of draining for a long time as they also alloy slowly at higher temperatures.

Derfor er det fremkommet den tanke å tilsette en aksellerator i viklebåndet. Vanlige akselleratortyper for slike systemer omfatter metallnaftenater og -oktoater, f.eks. kobolt- eller sinknaftenat eller -oktoat, tertiære aminer, som f.eks. benzyldimety; amin, dimetylaminomety1-fenol, 2,4,6-tri(dimetylaminoetyl) fenol eller tri(metoksykarbonyletyl)amin og bortrifluorid-aminkomplekser, f.eks. bortrifluorid-etylamin, -piperidin eller -pyridin. Således omtales f.eks. i DAS nr. 1.162.898 og 1.219-554 en fremgangsmåte til å dyppe båndrullen før viklingen i en oppløsning av en aksellerator og å tørke. Etter viklingen kommer impregneringsharpiksen i båndet i berøring med akselleratoren og reaksjonsakselleaeering skulle praktisk talt foregå lokalt i viklingen. Da det derved dreier seg om lavmolekylære stoffer, blir de delvis løst ut av impregneringsharpiksen og kommer altså i harpiksforrådet. Derved gjør den aksellererende virkning seg også gjeldende i impregneringsharpiksforrådet, spesielt fordi harpiksen ved impregneringen er 50 til 60°C varm. Therefore, the idea of adding an accelerator to the winding belt has come up. Common accelerator types for such systems include metal naphthenates and octoates, e.g. cobalt or zinc naphthenate or octoate, tertiary amines, such as benzyldimethyl; amine, dimethylaminomethyl-phenol, 2,4,6-tri(dimethylaminoethyl)phenol or tri(methoxycarbonylethyl)amine and boron trifluoride-amine complexes, e.g. boron trifluoride-ethylamine, -piperidine or -pyridine. Thus, e.g. in DAS Nos. 1,162,898 and 1,219-554 a method of dipping the tape roll before winding in a solution of an accelerator and drying. After the winding, the impregnation resin in the tape comes into contact with the accelerator and reaction axle airing should practically take place locally in the winding. As these are low molecular weight substances, they are partially dissolved out of the impregnation resin and thus end up in the resin supply. Thereby, the accelerating effect is also felt in the impregnation resin supply, especially because the resin is 50 to 60°C hot during the impregnation.

Det ble nå overraskende funnet et bindemiddel for sammenklebning av glimmerpapir med bæreren som oppfyller på det beste de dertil stillede krav og samtidig virker katalytisk på de nevnte stabile harpiks-herdnersystemer. Bindemidlet består av en oksyaminharpiks inneholdende grupper med formel I, det fremstilles ved at mai kvantitativt omsetter en epoksyharpiks, formel II, med et smeltepunk' over 50°C (ifølge ASTM E 28) og minst to epoksygrpper pr. molekyl med et sekundært amin med formel III: A binder was now surprisingly found for gluing mica paper to the carrier which fulfills the requirements set for it at best and at the same time has a catalytic effect on the aforementioned stable resin-hardener systems. The binder consists of an oxamine resin containing groups of formula I, it is produced by quantitatively reacting an epoxy resin, formula II, with a melting point above 50°C (according to ASTM E 28) and at least two epoxy groups per molecule with a secondary amine of formula III:

I dé overnevnte formler betyr og R2 hver en rettlinjet alkylgruppe med 1,2 eller 3 karbonatomer eller sammen betyr en alkylengruppe med 4 ei.ler 5. karbonatomer som kan være . avbrutt med et oksygen- eller' .svovelatom. In the above-mentioned formulas and R2 each mean a linear alkyl group with 1,2 or 3 carbon atoms or together mean an alkylene group with 4 or 5 carbon atoms which can be . interrupted by an oxygen or' .sulphur atom.

Ved den omtalte omsetning kommer man til. en klasse .av tertiære aminer, nemlig •<p>ks<y>aminhar<p>ikser. av delformel I, som egner seg meget godt som bindemiddel for bærer og gximn ;r, de virker samtidig som aksellerator for herdningen av de til impregnering etterpå tilsatte epoksyharpikssystemer. With the aforementioned turnover, you arrive at a class .of tertiary amines, namely •<p>ks<y>amine har<p>ics. of partial formula I, which is very suitable as a binder for carrier and gximn;r, they simultaneously act as an accelerator for the hardening of the epoxy resin systems added afterwards for impregnation.

Oppfinnelsen vedrører altså viklebånd bestående av et porøst bærematerialej glimmerpapir og et bindemiddel for isolering av elektriske maskiner ved impregneringsfremgangsmåten, idet viklebåndet er karakterisert ved at bindemidlet er en oksyaminharpiks, The invention therefore relates to wrapping tape consisting of a porous carrier material, mica paper, and a binder for insulating electrical machines by the impregnation method, the wrapping tape being characterized in that the binder is an oxamine resin,

som samtidig er en aksellerator for herdning av impregneringsharpiksen, idet bindemiddelharpiksen inneholder grupper med formel which is at the same time an accelerator for curing the impregnation resin, the binder resin containing groups with the formula

hvori R-j^ og R^ hver betyr en rettlinjet alkylgruppe med 1, 2 eller 3 karbonatomer eller sammen betyr en alkylengruppe med 4 eller 5 karbonatomer som kan være avbrutt med et oksygen- eller svovelatom, og er dannet ved kvantitativ omsetning av en epoksyharpiks med et smeltepunkt over 50°C ifølge ASTM E 28 og minst to epoksygrupper pr., molekyl og et sekundært amin med formel wherein R-j^ and R^ each means a linear alkyl group of 1, 2 or 3 carbon atoms or together means an alkylene group of 4 or 5 carbon atoms which may be interrupted by an oxygen or sulfur atom, and is formed by quantitative reaction of an epoxy resin with a melting point above 50°C according to ASTM E 28 and at least two epoxy groups per molecule and a secondary amine with formula

hvori R-j^ og R~, har overnevnte betydning, idet bindemiddelharpiksen fore-ligger i ©n mengde på 2 til 20 g bindemiddelharpiks pr. m^ flate. in which R-j^ and R~ have the above-mentioned meaning, the binder resin being present in an amount of 2 to 20 g of binder resin per m^ flat.

Det er nødvendig at omsetningen foregår kvantitativt, It is necessary that the turnover takes place quantitatively,

for, hvis den er ufullstendig ville de dannede tertiære aminogrupper innlede reaksjonen av de i molekylet gjenblivne epoksygrupper, og bindemidlet ville ikke være stabilt. because, if it is incomplete, the formed tertiary amino groups would initiate the reaction of the epoxy groups remaining in the molecule, and the binder would not be stable.

Av epoksyharpikser egner seg spe-sielt novolaktypene og epoksyharpikser på basis av bisfenol er foretrukket. Heterocykliske og cykloalifatiske kan også anvendes, de cykloalifatiske mindre godt. Of the epoxy resins, the novolak types are particularly suitable and epoxy resins based on bisphenol are preferred. Heterocyclic and cycloaliphatic can also be used, the cycloaliphatic less well.

Epoksynovolaker har følgende grunnstruktur: Epoxy novolac has the following basic structure:

Det dreier seg således om kjedeformede fenol-formal-dehyd-novolakerj idet de fenoliske hydroksylgrupper er substituert med glycidylgrupper. It is thus a question of chain-shaped phenol-formaldehyde-novolakers, where the phenolic hydroxyl groups are substituted with glycidyl groups.

Da de dannede oksyaminer for det meste har et lavere smeltepunkt enn utgangsharpiksene, velger man som utgangsharpikser slike med et høyere smeltepunkt. As the oxyamines formed mostly have a lower melting point than the starting resins, those with a higher melting point are chosen as starting resins.

Eksempel på egnede aminer med rettlinjede alkylgrupper resp. av egnede cykliske aminer er dimetylamin, dietylamin, di-n-propylamin, pyrrolidin, piperidin, morfolin, tiomorfolin osv. Ved forgrenede kjeder inntrer åpenbart på grunn av staiske effekter akselleringsvirkningen ikke eller bare i begrenset-grad. Av praktiske grunner foretrekker man reaksjonen med dietylamin, på grunn av dets gunstige kokepunkt. Det er ikke for flyktig ved værelsestemperatur. Det for en fullstendig omsetning nødvendige overskudd lar seg imidlertid lett fjerne fra reaksjonsmassen. Examples of suitable amines with linear alkyl groups or of suitable cyclic amines are dimethylamine, diethylamine, di-n-propylamine, pyrrolidine, piperidine, morpholine, thiomorpholine, etc. In the case of branched chains, obviously, due to static effects, the acceleration effect does not occur or only to a limited extent. For practical reasons, the reaction with diethylamine is preferred because of its favorable boiling point. It is not too volatile at room temperature. However, the surplus required for complete conversion can easily be removed from the reaction mass.

Reaksjonen med aminet gjennomføres fordelaktig i et opp-løsningsmiddel idet aminet anvendes i en mengde fra 1 til 3 ekvi-valenter referert til epoksyharpiksen. For at det dannede oksyamin lett og uten skade kan befris for overskudd av amin og fra oppløs-ningsmiddel, anvender man som oppløsningsmiddel fortrinnsvis under 150°C kokende ketoner, aromatiske hydrokarboner eller deres blandinger. The reaction with the amine is advantageously carried out in a solvent, the amine being used in an amount of from 1 to 3 equivalents referred to the epoxy resin. In order that the oxamine formed can be easily and without damage freed from excess amine and from solvent, ketones boiling below 150°C, aromatic hydrocarbons or their mixtures are preferably used as solvents.

Som porøst bærematerial egner æg spesielt en glassilkevevnad eller en filt av glass- eller kunstfibre. A glass silk fabric or a felt made of glass or artificial fibers is particularly suitable as a porous carrier material.

Til fremstilling av kombinert bindemiddel og aksellerator kan det eksempelvis gås frem på følgende måte: 1. 260 g av en epoksynovolakharpiks med en epoksyekvivalent på ca. 200 cg et smeltepunkt på 80°C oppløses ved 100°C i den samme mengde toluen. Etter avkjøling til ca. 50°C tilsettes under sterk omrøring 280 g dietylamin. Etter '5 timers reaksjon under tilbakeløp ved 60 til 70°C øker man temperaturen trinnvis og destillerer overskytende dietylamin og toluen. fen får en harpiks med et smeltepunkt på 75°C For the production of combined binder and accelerator, for example, you can proceed as follows: 1. 260 g of an epoxy novolac resin with an epoxy equivalent of approx. 200 g of a melting point of 80°C are dissolved at 100°C in the same amount of toluene. After cooling to approx. 50°C, 280 g of diethylamine are added with vigorous stirring. After 5 hours of reaction under reflux at 60 to 70°C, the temperature is gradually increased and excess diethylamine and toluene are distilled off. fen obtains a resin with a melting point of 75°C

Det er ikke nødvendig å anvende en epoksynovolakharpiks. It is not necessary to use an epoxy novolac resin.

Fan kan likeså godt gå ut fra en bisfenolharpiks som omtalt i det følgende: 2. 175 g av en epoksyharpiks på bisfenolbasis med smeltepunkt 80°C og epoksyekvivalent 555 oppløses ved 80°C i 120 g toluen. Etter avkjøling til 50°C tilsettes 70 g dietylamin og oppvarmes ved 60°C i 4 timer under tilteiakeløp. Deretter økes temperaturen langsomt for å destillere overskudd av dietylamin og toluen. Sistnevnte rester herav fjernes i vakuum ved 150 C. Fan can just as well start from a bisphenol resin as discussed in the following: 2. 175 g of a bisphenol-based epoxy resin with a melting point of 80°C and an epoxy equivalent of 555 are dissolved at 80°C in 120 g of toluene. After cooling to 50°C, 70 g of diethylamine are added and heated at 60°C for 4 hours under stirring. The temperature is then slowly increased to distill excess diethylamine and toluene. The latter residues are removed in a vacuum at 150 C.

fen får en harpiks av smeltepunkt på 78°C, med en fen obtains a resin of melting point of 78°C, with a

ikke mere påvisbar epoksydekvivalent og et hydroksydtall på 230. no more detectable epoxide equivalent and a hydroxide number of 230.

Det dannede produkt lar seg oppløse i aceton eller bedre i metyletylketon, oppløser seg i xylen varmt, faller "imidlertid igjen ut kaldt. Alkoholer og vandige oppløsningsmidler oppløser det ikke .-3. 560 g av en av to epoksyharpikser (en bisfenol- og en novolaktype) bestående blanding med et smeltepunkt på 70°C og en epoksyekvivalent på 580 oppløses i 500 g toluen ved 100°C. Etter avkjøling til 60°C tilsettes 102 g dietylamin og oppløsningen lar man reagere i 3 timer under tilbakeløp uten oppvarmning. Deretter tilsluttes en destillasjonsoppsats og temperaturen økes langsomt til 150°C, idet overskytende dietylamin og toluen avdestillerer. Deretter holdes ved samme temperatur under vakuum inntil destilleringen opphører. I det dannede produkt er det ikke mere påvisbart noen epoksygrupper, smeltepunkt ligjør 70°C. The product formed is soluble in acetone or better in methyl ethyl ketone, dissolves in xylene hot, "however falls out again cold. Alcohols and aqueous solvents do not dissolve it.-3. 560 g of one of two epoxy resins (a bisphenolic and a novolak type) consisting mixture with a melting point of 70°C and an epoxy equivalent of 580 is dissolved in 500 g of toluene at 100°C. After cooling to 60°C, 102 g of diethylamine is added and the solution is allowed to react for 3 hours under reflux without heating. is connected to a distillation apparatus and the temperature is slowly increased to 150°C, as excess diethylamine and toluene distill off. It is then kept at the same temperature under vacuum until the distillation ceases. In the product formed, there are no longer any detectable epoxy groups, melting point is 70°C.

<i>). 575 g av en epoksyharpiksb landing på bisfenolbasis med en epoksyekvivalent på 560 oppløses i 500 g toluen ved 100°C. Etter avkjøling til ca. 60°C tilsettes 140 g dipropylamin og oppløsningen omrøres i 3 timer ved 60°C. Deretter økes temperaturen langsomt til 150°C og aminooverskuddet og toluen avdestilleres. <i>). 575 g of a bisphenol-based epoxy resin blanding with an epoxy equivalent of 560 are dissolved in 500 g of toluene at 100°C. After cooling to approx. 60°C, 140 g of dipropylamine are added and the solution is stirred for 3 hours at 60°C. The temperature is then slowly increased to 150°C and the amino excess and toluene are distilled off.

Reaksjonsblandingen holdes ved samme temperatur under vakuum-inntil destilleringen opphører. Det dannede produkt mykner ved 70°C og er oppløselig i metyletylketon. 5. 575 g av en epoksyharpiks på bisfenolbasis med smeltepunkt 80°C og en epoksyekvivalent på 570 oppløses ved ca. 200°C i 500 g toluen..Etter avkjøling til 50°C tilsettes 107 g pyrrolidin og omsettes i 3 timer ved 60°C under tilbakeløp og omrøring. Deretter økes temperaturen langsomt-til 150°C, idet overskytende amin og toluen avdestillerer, de siste rester av disse fjernes i vakuum ved samme temperatur. fen-får en harpiks med et smeltepunkt på 77°C, fritt for.epoksygrupper. Harpiksen er oppløselig i metyletylketon. 6. Ved ca. 200°C oppløses 575 g av en epoksyharpiks av The reaction mixture is kept at the same temperature under vacuum until the distillation ceases. The product formed softens at 70°C and is soluble in methyl ethyl ketone. 5. 575 g of a bisphenol-based epoxy resin with a melting point of 80°C and an epoxy equivalent of 570 are dissolved at approx. 200°C in 500 g toluene..After cooling to 50°C, 107 g pyrrolidine is added and reacted for 3 hours at 60°C under reflux and stirring. The temperature is then slowly increased to 150°C, as excess amine and toluene distill off, the last residues of which are removed in vacuum at the same temperature. fen-gets a resin with a melting point of 77°C, free of epoxy groups. The resin is soluble in methyl ethyl ketone. 6. At approx. 200°C dissolve 575 g of an epoxy resin

■ novolaktypen med smeltepunkt 80°C og en epoksyekvivalent på 550 i 500 g toluen. Etter.avkjøling til 50°C tilsettes 131.g morfolin og omsettes i .3 timer ved 60°C under tilbakeløp og omrøring..Ved etterfølgende langsomme økning av temperaturen til 150°C avdestilleres ■ the novolak type with a melting point of 80°C and an epoxy equivalent of 550 in 500 g of toluene. After cooling to 50°C, 131 g of morpholine is added and reacted for 3 hours at 60°C under reflux and stirring. When the temperature is subsequently slowly increased to 150°C, the mixture is distilled off

overskytende amin og toluen, de siste rester av disse fjernes i vakuum ved samme temperatur. fen får en harpiks med et smeltepunkt excess amine and toluene, the last residues of which are removed in vacuo at the same temperature. fen obtains a resin with a melting point

på 76°C, fritt for epoksygrupper og jm er oppløselig i metyletylketon. at 76°C, free of epoxy groups and jm is soluble in methyl ethyl ketone.

I de tyntflytende epoksyd-herdnerblandinger, slik de anvendes til impregnering av ferdige viklinger, oppløser bindemidlet seg ikke i kulden, de er imidlertid økende oppløselig ved tempera-turer over 60°C. In the thin-flowing epoxy-hardener mixtures, as they are used for impregnating finished windings, the binder does not dissolve in the cold, however, they are increasingly soluble at temperatures above 60°C.

Det således fremstilte bindemiddel kan nå anvendes til sammenklebning av glimmerpapir og bærer. Harpiksen oppløses da i et egnet oppløsningsmiddel, f.eks. et keton eller en aromatisk hydrokar-bon eller deres blandinger og påføres på bærematerialet, f.eks. en. tynn glassvevnad. fen vil velge oppløsningens konsentrasjon alt etter den valgte lakkeringsinnretning, således at det påføres ca. 2 til 20 g harpiks pr. m 2 flate. Den således behandlede glassvevnad sammenklebes med glimmerpapir i maskinbredden. Av materialet som oppvikles i rulleform, kan det på båndskjæremaskiner snittes viklebånd. Harpiksmengden som begrenses til et minimum som nettopp er tilstrekkelig til en fast forbindelse av de to sjikt, således at skjæring av båndene og deres maskinelle vikling er mulig uten vanskelig-het. Jo mindre éenne mengde er, desto lettere foregår etterpå impregneringen av den ferdige vikling. The binder thus produced can now be used for gluing mica paper and carrier together. The resin is then dissolved in a suitable solvent, e.g. a ketone or an aromatic hydrocarbon or their mixtures and applied to the support material, e.g. one. thin vitreous tissue. fen will choose the concentration of the solution according to the chosen painting device, so that approx. 2 to 20 g of resin per m 2 surface. The glass fabric treated in this way is glued together with mica paper in the width of the machine. From the material that is wound up in roll form, winding tapes can be cut on tape cutting machines. The amount of resin that is limited to a minimum that is just sufficient for a firm connection of the two layers, so that cutting the bands and their mechanical winding is possible without difficulty. The smaller the quantity, the easier the impregnation of the finished winding takes place afterwards.

Da båndene og de dered fremstilte viklinger samtidig inneholder akselleratoren for impregneringsharpiksen, kan denne selv uten aksellerator holdes i impregneringstanken. Impregneringsharpiksen blir derved meget lengre holdbar. Allikevel forløper herdningen av den impregnerte vikling hurtig i ovnen, da bindemidlets aksellerator innvirker i båndet. Da akselleratoren dessuten er har-piksaktig, utvaskes den ikke under impregneringen, heller ikke ved 50 til 60°C, men f.eks. metallsalter under disse betingelser kommer i impregneringsharpiksen og påvirker dens holdbarhet. As the tapes and the windings produced there simultaneously contain the accelerator for the impregnation resin, this can be kept in the impregnation tank even without an accelerator. The impregnation resin is thereby much longer durable. Even so, the curing of the impregnated winding proceeds quickly in the oven, as the binder's accelerator acts on the tape. As the accelerator is also resin-like, it is not washed out during the impregnation, not even at 50 to 60°C, but e.g. metal salts under these conditions enter the impregnation resin and affect its durability.

Følgende tall skal anskueliggjøre disse forhold: The following figures shall illustrate these conditions:

En flytende epoksyharpiks med en epoksyekvivalent på ca. l80 ble blandet med en ekvivalent mengde heksahydroftalsyreanhydrid. Den nytilberedte blanding har en viskositet på 900 til 1-000 eps. ved 20°C. A liquid epoxy resin with an epoxy equivalent of approx. 180 was mixed with an equivalent amount of hexahydrophthalic anhydride. The freshly prepared mixture has a viscosity of 900 to 1-000 eps. at 20°C.

Det ble dermed gjort følgende forsøk: The following attempts were therefore made:

a) Blandingen ble holdt i et glasskår ved 50°C i termostat, med visse mellomrom ble uttatt prøver og bestemt deres viskositet a) The mixture was kept in a shard of glass at 50°C in a thermostat, at certain intervals samples were taken and their viscosity determined

ved 20°C. at 20°C.

b) Blandingen ble bragt'i kontakt med et bånd- ifølge oppfinnelsen og henlagt med det i 2 timer ved 50°C i kontakt. Deretter b) The mixture was brought into contact with a belt according to the invention and laid with it for 2 hours at 50°C in contact. Then

ble båndet fjernet og-blandingen holdt ved 50°C. Blandingens viskositet ble igjen kontrollert ved 20°C. c) Tilsvarende som under punkt b) ble det gått frem med et bånd som på forhånd var impregnert med en 155-ig koboltnaftenatoppløs-ning (aksellerator). Etter fjerning av b.åndet ble viskositeten av blandingen bestemt ved 20°C. the tape was removed and the mixture held at 50°C. The viscosity of the mixture was again checked at 20°C. c) Similar to point b), the procedure was carried out with a tape that had previously been impregnated with a 155% cobalt naphthenate solution (accelerator). After removal of the b.breath, the viscosity of the mixture was determined at 20°C.

Tabell I viser resultatene. Table I shows the results.

Herav lar det seg trekke følgende slutninger: The following conclusions can be drawn from this:

Bånd ifølge oppfinnelsen påvirker ikke harpiks-herdner-systemet av den i forsøket anvendte blanding, dvs. det utløses fra båndet ingen aksellerator. I motsetning hertil oppløses fra med koboltnaftenat forbehandlet bånd den lavmolekylære aksellerator, hvilket viser seg betraktelig i viskositetsøkning. Tape according to the invention does not affect the resin-hardener system of the mixture used in the experiment, i.e. no accelerator is released from the tape. In contrast, the low molecular weight accelerator dissolves from ribbons pre-treated with cobalt naphthenate, which manifests itself considerably in an increase in viscosity.

På den annen side lar det ssg påvise at det i båndet ifølge oppfinnelsen inneholdte bindemiddel ved høyere temperatur sterkt nedsetter geleringstiden av samme harpiks-herdnerblanding som ble anvendt i foregående forsøk. Derved ble geleringstiden fastslått ved 130°C og l60°C i en termostat. On the other hand, it allows ssg to demonstrate that the binder contained in the tape according to the invention at a higher temperature greatly reduces the gelation time of the same resin-hardener mixture that was used in the previous experiment. Thereby, the gelation time was determined at 130°C and 160°C in a thermostat.

IVed geleringstid forstår man tidsrommet mellom det øyeblikk da harpiks-herder-akselleratorblnndingen bringes til reaksjons-temperatur i termostaten innti det øyeblikk da blandingen ikke mere flyter fritt, men blir til gele. fen. kan fastslå dette med en tynn glasstav, som man dypper'annet hvert sekund i blandingen og trekker ut. Så lenge det danner seg dråper er gelédannelse ikke inntrådt. Til slutt danner det seg ved økende viskositet tråder, som river av i geléringsøyeblikket. Gelation time refers to the period of time between the moment when the resin-hardener-accelerator mixture is brought to reaction temperature in the thermostat until the moment when the mixture no longer flows freely, but becomes a gel. cool. can determine this with a thin glass rod, which is dipped every second into the mixture and pulled out. As long as droplets form, gel formation has not occurred. Finally, with increasing viscosity, threads form, which tear off at the moment of gelation.

Fra tabell II fremgår at det nye bindemiddel virker Table II shows that the new binder works

ennu betydelig sterkere i sin aksellerende virkning enn en i praksis . for slike harpiks-herdersystemer ofte anbefalt aksellerator. even significantly stronger in its accelerating effect than one in practice. for such resin-hardening systems often recommended accelerator.

Av de to tabeller I og II blir det tydelig at harpiksene med tertiære aminogrupper, slik de anvendes'som bindemiddel for båndet ifølge oppfinnelsen på den ene side ikke utløses av båndet ved opp-løsningsmiddelfri impregneringsharpiks, på den annen side imidlertid virker de sterkt aksellererende på herdningen av den i impregneringen gjenblivne impregneringsharpiks ved den. temperatur hvorved viklingen i praksis presses. Et tilsvarende oppbygget bindemiddelaksellerator på basis av dialkylaminer med forgrenede alkylrester viser derimot praktisk talt ingen aksellererende virkning. From the two tables I and II, it becomes clear that the resins with tertiary amino groups, as they are used as a binder for the tape according to the invention, on the one hand are not released from the tape by solvent-free impregnation resin, on the other hand, however, they have a strong accelerating effect on the hardening of the impregnation resin remaining in the impregnation by it. temperature at which the winding is in practice pressed. A similarly structured binder accelerator based on dialkylamines with branched alkyl residues, on the other hand, shows practically no accelerating effect.

Ved oppfinnelsen oppnås derfor ved et vesentlig teknisk fremskritt: 1. ]%d det nye viklebånd kan impregneringsprosessen gjennomføres uten ekstra behandling av båndet for påføring av en aksellerator, da bindemiddel og aksellerator nå er ett og samme. 2. Herdning av den til impregnering anvendte oppløsnings-middelfrie harpiks aksellereres sterkt ved båndets bindemiddel. The invention therefore achieves a significant technical advance: 1. ]%d the new wrapping tape, the impregnation process can be carried out without additional treatment of the tape for application of an accelerator, as binder and accelerator are now one and the same. 2. Hardening of the solvent-free resin used for impregnation is strongly accelerated by the tape's binder.

3- Da båndets bindemiddel kanpt er oppløselig i den opp-løsningsmiddelfrie impregneringsharpiks under impregneringstiden, 3- Since the tape's binder is barely soluble in the solvent-free impregnation resin during the impregnation time,

kan det som impregneringsharpikser anvendes langsomt herdende har-pikssystemer som kanpt forandrer seg ved kald lagring, og også ved impregneringstemperaturen bare har en liten viskositetsøkning. slow-hardening resin systems can be used as impregnation resins, which hardly change during cold storage, and also only have a slight increase in viscosity at the impregnation temperature.

Claims (3)

1. Viklebånd bestående av et porøst bæremateriale, glimmerpapir og et bindemiddel, for isolering'av elektriske maskiner ved impregneringsfremgangsmåten, karakterisert ved at bindemidlet er en oksyaminharpiks, som samtidig er en aksellerator for herdning av impregneringsharpiksen, idet bindemiddelharpiksen inneholder grupper med formel1. Wrap tape consisting of a porous carrier material, mica paper and a binder, for the insulation of electrical machines by the impregnation method, characterized in that the binder is an oxamine resin, which is at the same time an accelerator for curing the impregnation resin, the binder resin containing groups of the formula hvori R^ og R^ h\er betyr en rettlinjet alkylgruppe med 1, 2 eller 3 karbonatomer, eller sammen betyr en alkylengruppe med 4 eller 5 karbonatomer som kan være avbrutt med et oksygen- eller svovelatom, og er dannet ved kvantitativ omsetning av en epoksyharpiks med et smeltepunkt over 50°C ifølge ASTM E 28 og minst to epoksygrupper pr. molekyl, og et sekundært amin med formel hvori R-j og R2 har overnevnte betydning, idet bindemiddelharpiksen fore-ligger i en mengde på 2 til 20 g bindemiddelharpiks pr. m<2> flate . wherein R^ and R^ h\er means a linear alkyl group of 1, 2 or 3 carbon atoms, or together means an alkylene group of 4 or 5 carbon atoms which may be interrupted by an oxygen or sulfur atom, and is formed by quantitative reaction of a epoxy resin with a melting point above 50°C according to ASTM E 28 and at least two epoxy groups per molecule, and a secondary amine of formula in which R-j and R2 have the above meaning, the binder resin being present in an amount of 2 to 20 g of binder resin per m<2> surface . 2. Viklebånd ifølge krav 1, karakterisert ved at bindemiddelharpiksen er dannet nv en epoksyharpiks av novolaktypen. 2. Wrap tape according to claim 1, characterized in that the binder resin is formed from an epoxy resin of the novolak type. 3. Viklebånd ifølge krav 1, karakterisert ved at bindemiddelharpiksen er dannet av en epoksyharpiks på basis av bisfenol. H. Viklebånd ifølge krav 1* 2 eller 3, karakterisert ved at i formelen for bindemiddelharpiksen betyr R-j^ og R2 hver en etylgruppe.3. Wrap tape according to claim 1, characterized in that the binder resin is formed from an epoxy resin based on bisphenol. H. Wrap tape according to claim 1, 2 or 3, characterized in that in the formula for the binder resin, R-j^ and R2 each mean an ethyl group.
NO107672A 1971-04-08 1972-03-28 NO130522C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH517071 1971-04-08

Publications (2)

Publication Number Publication Date
NO130522B true NO130522B (en) 1974-09-16
NO130522C NO130522C (en) 1974-12-27

Family

ID=4289090

Family Applications (1)

Application Number Title Priority Date Filing Date
NO107672A NO130522C (en) 1971-04-08 1972-03-28

Country Status (19)

Country Link
US (1) US3808086A (en)
JP (1) JPS5524213B1 (en)
BE (1) BE781814A (en)
CA (1) CA966017A (en)
CH (1) CH547001A (en)
CS (1) CS174831B2 (en)
DD (1) DD97085A5 (en)
DE (1) DE2215206B2 (en)
ES (1) ES401619A1 (en)
FI (1) FI58227C (en)
FR (1) FR2132688B1 (en)
GB (1) GB1383191A (en)
HU (1) HU166501B (en)
IT (1) IT954621B (en)
NL (1) NL154858B (en)
NO (1) NO130522C (en)
SE (1) SE389757B (en)
YU (1) YU34782B (en)
ZA (1) ZA722241B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH615040A5 (en) * 1977-05-04 1979-12-28 Bbc Brown Boveri & Cie Composite material to provide electric conductors for electrical machines with an insulating serving
DE2818193C2 (en) * 1978-04-26 1984-03-29 Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel Process for the production of an impregnable mica insulating film
DE2846114C2 (en) * 1978-10-23 1982-09-09 Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel Wrapping tape made of porous carrier material, mica and a binding agent, impregnable with a liquid epoxy resin hardener system
FR2581391B1 (en) * 1985-05-06 1987-06-05 Rhone Poulenc Rech ORGANO-POLYSILAZANE COMPOSITION COMPRISING FREE RADICAL GENERATORS AND CROSSLINKABLE BY ENERGY SUPPLY
DE3838345A1 (en) * 1988-11-11 1990-05-17 Siemens Ag Coated glass fibre textiles for high voltage insulation
DE4218927A1 (en) * 1992-06-10 1993-12-16 Asea Brown Boveri High voltage insulation for stator windings of electrical machines
EP0586753A1 (en) * 1992-08-25 1994-03-16 Siemens Aktiengesellschaft Insulating tape for a winding of an electrical machine
DE19640964A1 (en) * 1996-10-04 1998-04-16 Micafil Isoliertechnik Ag Mica coated insulating tape for electrical machines
EP0996132A1 (en) * 1998-10-16 2000-04-26 ISOVOLTAÖsterreichische IsolierstoffwerkeAktiengesellschaft Process for manufacturing impregnable thin mica strips containing an accelerator
CA2723664A1 (en) * 2000-03-22 2001-09-27 Solulink, Incorporated Hydrazine-based and carbonyl-based bifunctional crosslinking reagents
US7158353B2 (en) * 2003-11-06 2007-01-02 Seagate Technology Llc Magnetoresistive sensor having specular sidewall layers
DE102014219844A1 (en) 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Isolation system for electrical machines
DE102015213535A1 (en) * 2015-07-17 2017-01-19 Siemens Aktiengesellschaft Solid insulation material, use for this purpose and insulation system manufactured therewith
JP7069833B2 (en) * 2018-02-28 2022-05-18 日本電産株式会社 motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1258937B (en) * 1961-03-11 1968-01-18 Asea Ab Mica tape for making an electrical conductor
DE1162898B (en) * 1961-06-23 1964-02-13 Siemens Ag Mica tape for the production of an insulating sleeve impregnated with a hot-curing epoxy resin mixture for electrical conductors, in particular for the winding bars or coils of electrical machines
DE1219554B (en) * 1963-03-08 1966-06-23 Siemens Ag Process for the production of insulation from foils or tapes with synthetic resin infusion
US3592711A (en) * 1963-03-14 1971-07-13 Schweizerische Isolawerke High voltage flexible winding insulation tape
DE1490427B1 (en) * 1963-07-11 1969-11-20 Siemens Ag Mica tape for the production of insulation impregnated with a hot-curing resin mixture for electrical conductors, in particular for winding bars or coils of electrical machines
DE1614058A1 (en) * 1967-05-11 1970-06-04 Licentia Gmbh High voltage winding insulation
DE1613273A1 (en) * 1967-10-02 1971-01-21 Licentia Gmbh High voltage winding insulation
US3695984A (en) * 1968-01-08 1972-10-03 Westinghouse Electric Corp Novel micaceous insulation

Also Published As

Publication number Publication date
GB1383191A (en) 1975-02-05
ZA722241B (en) 1972-12-27
CH547001A (en) 1974-03-15
DE2215206A1 (en) 1972-10-19
DD97085A5 (en) 1973-04-12
IT954621B (en) 1973-09-15
DE2215206B2 (en) 1976-11-11
YU34782B (en) 1980-03-15
DE2215206C3 (en) 1987-01-22
JPS5524213B1 (en) 1980-06-27
NO130522C (en) 1974-12-27
FI58227B (en) 1980-08-29
CA966017A (en) 1975-04-15
SE389757B (en) 1976-11-15
ES401619A1 (en) 1975-02-16
US3808086A (en) 1974-04-30
YU93372A (en) 1979-09-10
CS174831B2 (en) 1977-04-29
NL154858B (en) 1977-10-17
NL7204712A (en) 1972-10-10
FI58227C (en) 1980-12-10
HU166501B (en) 1975-03-28
FR2132688A1 (en) 1972-11-24
FR2132688B1 (en) 1977-04-01
BE781814A (en) 1972-07-31

Similar Documents

Publication Publication Date Title
NO130522B (en)
US3998983A (en) Resin rich epoxide-mica flexible high voltage insulation
US2386466A (en) Insulated conductor and insulation therefor
US2956613A (en) Treated glass cloth insulation making
KR100197167B1 (en) Electrically insulated coil, electric rotating machine, and method of manufacturing the same
US2626223A (en) Synthetic resin and insulated products produced therewith
US2707204A (en) Treated mica paper insulation
KR930002943B1 (en) Low viscosity epoxy resin compositions
US3868613A (en) Solventless epoxy resin composition and an electrical member impregnated therewith
US4112183A (en) Flexible resin rich epoxide-mica winding tape insulation containing organo-tin catalysts
RU97107986A (en) COMPOSITIONS WITH LOW CONTENTS OF VOLATILE ORGANIC CONNECTIONS FOR THE MANUFACTURE OF LAYERED PLASTICS
US4356417A (en) Catechol or pyrogallol containing flexible insulating tape having low gel time
US3783480A (en) Method of making a capacitor
KR20020016903A (en) High voltage capable non-volatile low viscosity insulating resins
CN102245661B (en) Impregnating compositions
US2594096A (en) Process for treating windings with completely-reactive compositions
US3014980A (en) Insulation systems
CN105622904A (en) Hyper-branched polyester polyol and preparation method thereof
US3763269A (en) Polyesters from tris(2-hydroxyalkyl)isocyanurate homopolymers
US4296018A (en) Catechol or pyrogallol containing flexible insulating tape having low gel time
US3127470A (en) Insulation for electrical conductors
US3038831A (en) Insulated electrical conductors and coils
US2917420A (en) Method of insulating electrical members with doubly oriented polystyrene backed micatape
US3380963A (en) Boron- and nitrogen-containing catalyst and mixtures thereof with an epoxy resin
US3042743A (en) Coil for electrical rotating machine