NO129488B - - Google Patents

Download PDF

Info

Publication number
NO129488B
NO129488B NO02642/69A NO264269A NO129488B NO 129488 B NO129488 B NO 129488B NO 02642/69 A NO02642/69 A NO 02642/69A NO 264269 A NO264269 A NO 264269A NO 129488 B NO129488 B NO 129488B
Authority
NO
Norway
Prior art keywords
oil
acid number
tall oil
tallow
tall
Prior art date
Application number
NO02642/69A
Other languages
Norwegian (no)
Inventor
O Thorsman
Original Assignee
O Thorsman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O Thorsman filed Critical O Thorsman
Publication of NO129488B publication Critical patent/NO129488B/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/48185Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar adapted for axial insertion of a wire end
    • H01R4/4819Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar adapted for axial insertion of a wire end the spring shape allowing insertion of the conductor end when the spring is unbiased
    • H01R4/4821Single-blade spring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/4828Spring-activating arrangements mounted on or integrally formed with the spring housing
    • H01R4/483Pivoting arrangements, e.g. lever pushing on the spring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/4828Spring-activating arrangements mounted on or integrally formed with the spring housing
    • H01R4/4833Sliding arrangements, e.g. sliding button
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/4846Busbar details
    • H01R4/4848Busbar integrally formed with the spring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/4846Busbar details
    • H01R4/485Single busbar common to multiple springs

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Casings For Electric Apparatus (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

Fremgangsmåte ved fremstilling av oljeherdede trefiberplater. Procedure for the production of oil-cured wood fiber boards.

Det er for herdning av trefiberplater It is for the hardening of fiberboard

kjent å anvende oljer av forskjellig art, som linolje, kinesisk treolje, hvalolje m. fl. Mest vanlig turde det dog være å anvende tall-oljeprodukter, særlig forestrert tallolje. I dette produkt er talloljen forestret med en known to use oils of various kinds, such as linseed oil, Chinese wood oil, whale oil, etc. However, it would be most common to use tall oil products, especially esterified tall oil. In this product the tall oil is esterified with a

flerverdig alkohol, som glykol, glyserin, pentaerytritt eller sorbitol, og er dessuten eventuelt blitt omsatt med andre stoffer, som er tilsatt dets dobbeltbindinger, f. eks. styrol, vinyltoluol, imaleinsyreanhydrid eller ftalsyreanhydrid. polyhydric alcohol, such as glycol, glycerin, pentaerythritol or sorbitol, and has also possibly been reacted with other substances to which its double bonds have been added, e.g. styrene, vinyltoluene, maleic anhydride or phthalic anhydride.

Forestringen av slik som herdningsolje The esterification of such as curing oil

beregnet tallolje drives så langt at dens syretall blir under 50. Grunnen hertil er at man vet at karboksylgruppene hos talloljen ikke er ønskelige når oljen skal anvendes som herdningsolje, da disse gruppers sure og hydrofile karakter svekker oljens virk-ning som herdningsolje. Impregneringen av fiberplatene med herdningsolje har jo ho-vedsakelig til oppgave å øke motstands-evnen mot vann hos platene, hvilket jo skjer mindre godt med et hydrofilt stoff. Det er derfor ønskelig å senke syretallet hos talloljen så langt som mulig, men i praksis nøyer man seg som ovenfor nevnt med å oppnå en verdi på under 50, da det ville kreve altfor lange reaksjonstider å oppnå en vesentlig lavere verdi. calculated tall oil is driven so far that its acid number is below 50. The reason for this is that it is known that the carboxyl groups in tall oil are not desirable when the oil is to be used as curing oil, as the acidic and hydrophilic nature of these groups weakens the oil's effect as curing oil. The impregnation of the fiberboards with curing oil mainly has the task of increasing the resistance to water of the boards, which happens less well with a hydrophilic substance. It is therefore desirable to lower the acid number of tallow oil as far as possible, but in practice, as mentioned above, one settles for achieving a value below 50, as it would require far too long reaction times to achieve a significantly lower value.

Slik forestret tallolje har imidlertid visse However, such esterified tall oil has certain

ulemper som herdningsolje, hvilke for det ene skyldes det forhold, at størrelsen av syrens molekyler blir vesentlig øket ved forestringen med en flerverdig alkohol, og for det annet også at esterbindingene disadvantages such as curing oil, which is due to the fact that the size of the acid's molecules is significantly increased by the esterification with a polyhydric alcohol, and also that the ester bonds

hydrolyseres relativt lett. Økningen av mo-lekylets størrelse medfører at oljens visko-sitet tiltar, hvorved dens evne til å trenge hydrolyzes relatively easily. The increase in the size of the molecule causes the oil's viscosity to increase, whereby its ability to penetrate

inn i fibrene avtar i vesentlig grad. I den grad som en hydrolyse inntrer, minsker denne ulempe, men samtidig gjendannes syrene og derved oppstår nettopp de ulemper som forestringen av karboksylgruppene hadde til oppgave å eliminere. into the fibers decreases to a significant extent. To the extent that hydrolysis occurs, this disadvantage is reduced, but at the same time the acids are restored and thereby arise precisely the disadvantages that the esterification of the carboxyl groups had the task of eliminating.

Foreliggende oppfinnelse har til formål å komme forbi disse ulemper og av tallolje å fremstille en herdningsolje med god inn-trengningsevne og stabilitet mot hydrolyse samt gode egenskaper forøvrig som herdningsolje. Ifølge oppfinnelsen oppnås dette derved at karboksylgruppene i talloljen The purpose of the present invention is to overcome these disadvantages and to produce a hardening oil from tallow oil with good penetration ability and stability against hydrolysis as well as good properties otherwise as a hardening oil. According to the invention, this is achieved by the carboxyl groups in the tall oil

«uskadeliggjøres» ved dekarboksylering i "made harmless" by decarboxylation i

slik utstrekning, at syretallet senkes minst i samme grad som ved den ovennevnte forestring. to such an extent that the acid number is lowered at least to the same extent as in the above-mentioned esterification.

I overensstemmelse med denne går den foreliggende oppfinnelse ut på en herdningsolje for trefiberplater som inneholder dekarboksylert tallolje med et syretall på under 50. Med tallolje menes da destil-lert tallolje, som er fått ved destillasjon av den rå tallolje, etter at forløpet er blitt av-destillert. In accordance with this, the present invention focuses on a hardening oil for wood fiber boards that contains decarboxylated tall oil with an acid number of less than 50. By tall oil is meant distilled tall oil, which is obtained by distillation of the raw tall oil, after the process has been - distilled.

Dekarboksyleringen av tallolje kan skje på en enkel og billig måte ved opphetning av talloljen til passende temperatur, for-trinnsvis i et temperaturintervall på 250— 350° C, uten tilførsel av kjemikalier. For å forkorte opphetningstiden eller gjennom-føre dekarboksyleringen ved lavere temperatur er det imidlertid hensiktsmessig å ut-føre opphetndngen i nærvær av en katalysator. Selv med anvendelse av katalysator kan man dog ikke hensiktsmessig utføre opphetningen ved lavere temperatur enn ca. 200° C, hvis reaksjonen skal gå tilstrek-kelig langt på rimelig tid. The decarboxylation of tall oil can take place in a simple and cheap way by heating the tall oil to a suitable temperature, preferably in a temperature range of 250-350° C, without the addition of chemicals. However, in order to shorten the heating time or carry out the decarboxylation at a lower temperature, it is appropriate to carry out the heating in the presence of a catalyst. Even with the use of a catalyst, however, the heating cannot be suitably carried out at a lower temperature than approx. 200° C, if the reaction is to go sufficiently far in a reasonable time.

Reaksjonen forløper under avspaltning av CO2 fra karboksylgruppene etter den generelle formel The reaction proceeds during the splitting off of CO2 from the carboxyl groups according to the general formula

R . COOH -v RH + CO2R . COOH -v RH + CO2

hvor R betegner en kullvannstoffrest. where R denotes a carbon hydrogen residue.

Som hensiktsmessige katalysatorer kan nevnes blekejord, borsyre og sinkklorid, hver for seg eller sammen i forskjelllige kombinasjoner. Andre eksempler er molyb-den eller nikkel i kolloidal form. Suitable catalysts include bleaching earth, boric acid and zinc chloride, individually or together in various combinations. Other examples are molybdenum or nickel in colloidal form.

Som eksempel på den praktiske utfø-relse av oppfinnelsen skal angis de følgende utførelseseksempler. As an example of the practical execution of the invention, the following execution examples shall be given.

Eksempel 1: Example 1:

En tallolje av en viss sammensetning ble opphetet til 300—335° C, hvorved syretallet sank som følger: A tallow oil of a certain composition was heated to 300-335° C, whereby the acid number decreased as follows:

Eksempel 2: Example 2:

Tallolje av samme sammensetning blir opphetet sammen med 3 % blekejord, beregnet på talloljen, ved en temperatur på 300—335° C. Man fikk da følgende senkning av s<y>retallet: Tall oil of the same composition is heated together with 3% bleaching earth, calculated for the tall oil, at a temperature of 300-335° C. The following lowering of the s<y>rate was then obtained:

Eksempel 3. Example 3.

500 g tallolje som inneholdt 27 % har-pikssyrer og hadde en brytningsindeks på 1,4932 ble opphetet sammen med 21 g blekejord og 15 g borsyre til 320° C og holdt på denne temperatur i 4 timer. I løpet av denne tid sank syretallet fra 185 til 12,5 og brytningsindeksen steg til 1,5159. 500 g of tallow oil containing 27% resin acids and having a refractive index of 1.4932 was heated together with 21 g of bleaching earth and 15 g of boric acid to 320° C. and held at this temperature for 4 hours. During this time the acid number dropped from 185 to 12.5 and the refractive index rose to 1.5159.

Eksempel 4: Example 4:

500 g tallolje av samme slag som i det foregående eksempel ble opphetet med 10 g blekejord, 10 g borsyre og 20 g sinkklorid 500 g tallow oil of the same type as in the previous example was heated with 10 g bleaching earth, 10 g boric acid and 20 g zinc chloride

tdl 330° C og holdt på denne temperatur i 5 timer. Etter denne tid var syretallet sun-ket til 2. tdl 330° C and held at this temperature for 5 hours. After this time, the acid number had dropped to 2.

Av ovenstående eksempel 1 og 2 fremgår at syretallet til en begynnelse synker hurtig men senere stadig langsommere. Det ønskes selvfølgelig i dette tilfelle, likesom ved forestringen, å oppnå så lave syretall som mulig. Å oppnå verdien 0 turde dog neppe være mulig i praksis. Av eksemplene 3 og 4 fremgår det imidlertid, at man med passende katalysatorkombinasjoner og med relativt kort opphetningstid kan oppnå me-get lave verdier av syretallet. From the above examples 1 and 2, it appears that the acid number initially drops rapidly but later increasingly more slowly. It is of course desired in this case, as with the esterification, to achieve as low an acid number as possible. Achieving the value 0 would hardly be possible in practice, however. From examples 3 and 4, however, it appears that with suitable catalyst combinations and with a relatively short heating time, very low values of the acid number can be achieved.

Når det gjelder et så sammensatt mate-riale som tallolje, må man naturligvis regne med mange sidereaksjoner. Foruten den ovennevnte avspalting av kullsyre fra karboksylgruppene kan man også tenke seg at karboksylgrupper forbrukes ved anhy-driddannelse og videre også ved forestring med alkoholer, steroler, som finnes i talloljen i små mengder og som ved høyere temperatur reagerer med syrene. De estere som derved dannes er av en noe annen type enn dem som fåes med lavmolekylære, fler-verdige alkoholer og har vist seg å være be-standigere mot hydrolyse. Ved kokning av ifølge oppfinnelsen dekarboksylert tallolje med vann kunne noen økning av syretallet ikke påvises. When it comes to such a complex material as tallow oil, one must naturally expect many side reactions. In addition to the above-mentioned separation of carbonic acid from the carboxyl groups, it is also conceivable that carboxyl groups are consumed by anhydride formation and further also by esterification with alcohols, sterols, which are found in the tall oil in small quantities and which at higher temperatures react with the acids. The esters that are thereby formed are of a somewhat different type to those obtained with low molecular weight, polyhydric alcohols and have been shown to be more resistant to hydrolysis. When boiling tallow oil decarboxylated according to the invention with water, no increase in the acid number could be detected.

Den som ovenfor angitt dekarboksylerte tallolje kan naturligvis på i og for seg kjent måte behandles videre ved anlagring av forskjellige stoffer til dens dobbeltbindinger, f. eks. maieinsyreanhydrid, styrol, vinyltoluol. The above-mentioned decarboxylated tallow oil can of course be further processed in a manner known per se by adding various substances to its double bonds, e.g. malic anhydride, styrene, vinyltoluene.

Den ifølge oppfinnelsen fremstilte herdningsolje kan anvendes på vanlig måte for impregnering av fiberplater, alene eller i blanding med andre egnede impregnerings-midler. Således kan oljen tilføres ved til-setning i blandekassen, som inneholder massesuspensjonen, ved påsprøytning på våtarfcet eller ved at platene dyppes i oljen etter pressingen. Uansett hvilken metode det ble anvendt, har det ved prøvning av platene vist seg, at bedre resultater fås ved anvendelse av denne olje enn ved bruk av en tilsvarende mengde på tidligere kjent måte forestret tallolje, hvilket fremgår av nedenstående eksempler. The curing oil produced according to the invention can be used in the usual way for impregnation of fiber boards, alone or in a mixture with other suitable impregnation agents. Thus, the oil can be added by adding it to the mixing box, which contains the pulp suspension, by spraying on the wet tarfcet or by dipping the plates in the oil after pressing. Regardless of which method was used, when testing the plates, it has been shown that better results are obtained by using this oil than by using a similar amount of esterified tallow oil in a previously known manner, as can be seen from the examples below.

Eksempel 5: Example 5:

Til prøvningen ble det anvendt hårde trefiberplater som etter pressingen ble dyp-pet i impregneringsoljen under slike forhold at ca. 6 % olje ble tatt opp av platene, som deretter ble varmeherdet i 4 timer ved 165° C. For the test, hard wood fiber boards were used which, after pressing, were dipped in the impregnation oil under such conditions that approx. 6% oil was taken up by the plates, which were then heat cured for 4 hours at 165°C.

Foruten de allerede nevnte fordeler har Besides the already mentioned advantages have

herdningsoljen ifølge oppfinnelsen ytter-ligere den fordel at den ved pressing og the hardening oil according to the invention has the further advantage that it by pressing and

herdning av fiberplater avgir betydelig mindre mengder illeluktende stoffer enn tallolje som er blitt behandlet på tidligere vanlig måte. Disse stoffer ødelegges nemlig i en curing of fiber boards emits significantly smaller amounts of foul-smelling substances than tallow oil that has been treated in the usual way in the past. These substances are destroyed in a

overveiende grad ved dekarboksyleringen. predominantly during the decarboxylation.

Claims (1)

Fremgangsmåte ved fremstilling avProcedure in the manufacture of oljeherdede trefiberplater karakteri-oil-cured wood fiber boards charac- sert ved at disse herdes ved hj eilp av dekarboksylert hydrolysebestandig tallfett-syre med et syretall under 50.certified in that these are cured with the help of decarboxylated hydrolysis-resistant tall fatty acid with an acid number below 50.
NO02642/69A 1968-06-25 1969-06-25 NO129488B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE08551/68A SE347083B (en) 1968-06-25 1968-06-25

Publications (1)

Publication Number Publication Date
NO129488B true NO129488B (en) 1974-04-16

Family

ID=20274391

Family Applications (1)

Application Number Title Priority Date Filing Date
NO02642/69A NO129488B (en) 1968-06-25 1969-06-25

Country Status (7)

Country Link
US (1) US3633148A (en)
DE (1) DE1933201A1 (en)
DK (1) DK127146B (en)
FI (1) FI49465C (en)
GB (1) GB1272784A (en)
NO (1) NO129488B (en)
SE (1) SE347083B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936126A (en) * 1973-12-07 1976-02-03 Dart Industries Inc. Electrical connector
DE2609291C2 (en) * 1976-03-06 1984-04-12 Hermann Kleinhuis GmbH & Co KG, 5880 Lüdenscheid Screwless connection terminal for power transmission from electrical conductors
DE2737594C2 (en) * 1977-08-20 1983-11-10 Phönix Elektrizitätsgesellschaft H. Knümann GmbH & Co KG, 4933 Blomberg Screwless connector
DE3346027C2 (en) * 1983-12-20 1986-03-27 Phönix Elektrizitätsgesellschaft H. Knümann GmbH & Co KG, 4933 Blomberg Electrical connector
US4772218A (en) * 1987-06-12 1988-09-20 Don Ross Terminal block
ES2009662A6 (en) * 1988-10-27 1989-10-01 Amp Espanola Center wire trap terminal and connector.
US4973263A (en) * 1989-04-04 1990-11-27 Solatrol, Inc. Electrical splice assembly
JP3878902B2 (en) * 2002-10-21 2007-02-07 日本圧着端子製造株式会社 Electrical connector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713668A (en) * 1951-06-21 1955-07-19 Hart Mfg Co Quick detachable electrical connector
US2780791A (en) * 1952-03-04 1957-02-05 Morschel Franz Wire connector with dovetailed casing
US2720634A (en) * 1954-01-15 1955-10-11 Hart Mfg Co Quick detachable electrical connector
US3324447A (en) * 1965-05-28 1967-06-06 Gen Electric Electrical connector
DE1285589B (en) * 1967-05-19 1968-12-19 Wago Kontakttechnik Gmbh Screwless connector clamp

Also Published As

Publication number Publication date
GB1272784A (en) 1972-05-03
FI49465B (en) 1975-02-28
FI49465C (en) 1975-06-10
DK127146B (en) 1973-09-24
US3633148A (en) 1972-01-04
DE1933201A1 (en) 1970-09-03
SE347083B (en) 1972-07-24

Similar Documents

Publication Publication Date Title
Mankar et al. Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics
RU2690503C1 (en) Composition containing lignin esters and oil or fatty acids
SE1451311A1 (en) Ether functionalized lignin for fuel production
NO129488B (en)
PT104160A (en) PROCESS FOR THE PRODUCTION OF LIQUID POLYOLES OF RENEWABLE ORIGIN BY LIQUEFACTION OF THE AGRO-FORESTRY AND AGRO-FOOD BIOMASS
ZA200407969B (en) Method for treating lignocellulosic materials in particular wood and material obtained by said method
US2794017A (en) Method of processing tall oil and products produced thereby
US2143831A (en) Synthetic products and process for making them
RU2475511C2 (en) Method of treating tall oil
US2240081A (en) Hydrocarbon drying oil
US2138193A (en) Esters of pine wood pitch and method of producing
US1965191A (en) Emulsifiable oxidized hydrocarbon and preparation of same
US2363506A (en) Process for breaking petroleum emulsions
US2437931A (en) Process of indurating boards of fibrous materials
US2539975A (en) Process for improving the drying qualities of tall oil
DE708683C (en) Process for the production of homogeneous reaction products, especially paint base materials
US2223548A (en) Polymerization with an alkyl phosphate polymerizing agent
US1600143A (en) Process of improving steam-distilled wood turpentine
US1624082A (en) Resins and process of making the same
US2343215A (en) Production of resinlike substances
US1870453A (en) Artificial mass and process of making the same
US1937533A (en) Synthetic resin and method of producing same
US2033297A (en) Method of purifying and stabilizing
US1884023A (en) Production of plastic masses
US2189833A (en) Resinous condensation products and method of producing same