NO127572B - - Google Patents

Download PDF

Info

Publication number
NO127572B
NO127572B NO78270A NO78270A NO127572B NO 127572 B NO127572 B NO 127572B NO 78270 A NO78270 A NO 78270A NO 78270 A NO78270 A NO 78270A NO 127572 B NO127572 B NO 127572B
Authority
NO
Norway
Prior art keywords
approx
zirconium oxide
cubic
hydrofluoric acid
mixture
Prior art date
Application number
NO78270A
Other languages
Norwegian (no)
Inventor
K Deneke
W Falkenhain
P Hack
Original Assignee
Dynamit Nobel Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamit Nobel Ag filed Critical Dynamit Nobel Ag
Publication of NO127572B publication Critical patent/NO127572B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Description

Fremgangsmåte til fremstilling av overveiende eller Method for the production of predominantly or

fullstendig kubisk krystallisert zirkonoksyd. fully cubic crystallized zirconia.

Det er kjent å fremstille såkalt stabilisert zirkonoksyd, dvs. slik som overveiende eller fullstendig er kubisk krystallisert ved at man smelter i elektrisk lysbueovn egnede zirkonholdige malmer som zirkonsand, baddeleyit eller zirkit, med den nødvendige tilsetning av kull og f.eks. kalsiumoksyd og/eller magnesiumoksyd som stabiliserende oksyder. Ved den derved inntredende reduksjon er det mulig å redusere de uønskede følgestoffer i zirkonmalmen, for det meste Si02, Fe^ O^ °S It is known to produce so-called stabilized zirconium oxide, i.e. which is predominantly or completely cubically crystallized by melting in an electric arc furnace suitable zirconium-containing ores such as zircon sand, baddeleyite or zirkite, with the necessary addition of coal and e.g. calcium oxide and/or magnesium oxide as stabilizing oxides. With the resulting reduction, it is possible to reduce the unwanted by-products in the zircon ore, mostly SiO2, Fe^ O^ °S

TiOg til metall. Derved krever imidlertid fremfor alt den høye mengde TiOg to metal. Thereby, however, above all it requires the high amount

av SiOg meget elektrisk energi. Det er videre nødvendig å korrigere de utreduserte metall-legeringer ved hjelp av metallisk, jern som for det meste tilføres smeiten i form av jernspon. Derved øker man leger- of SiO and a lot of electrical energy. It is also necessary to correct the reduced metal alloys with the help of metallic iron, which is mostly supplied to the smelter in the form of iron shavings. By doing so, you increase medical

ingens spesifikke vekt og muliggjør dens nedsynkning i smeltens nedre del. Dessuten forbedres legeringens magnetiske egenskaper, ved jern-tilsetningen, for det må la seg fjerne fullstendig ved den etterfølg-ende oppberedning ved magnetseparering. nobody's specific gravity and enables it to sink into the lower part of the melt. Furthermore, the alloy's magnetic properties are improved by the addition of iron, because it must be able to be completely removed during the subsequent preparation by magnetic separation.

Den samlede prosess er imidlertid vanskelig å beherske. Reduksjonen av malmene som har et 65 til 80%- ig zirkonoksydinnhold, However, the overall process is difficult to master. The reduction of the ores that have a 65 to 80% zirconium oxide content,

til det for stabilisert zirkonoksyd maksimalt tillatelige Si02~innhold på 0, 5% er vanskelig. Den utreduserte legering må la seg fjerne fullstendig fra produktet. Det malte gods må glødes oksyderende ved en temperatur på minst 1300°C. Tross alt omstendelighet er imidlertid meget vanskelig å oppnå et jevnt sluttprodukt, som som det meget følsomme stabiliserte zirkonoksyd er av egnet kvalitet, sml. US- to the maximum permissible SiO2 content of 0.5% for stabilized zirconia is difficult. The reduced alloy must be completely removable from the product. The painted goods must be oxidizingly annealed at a temperature of at least 1300°C. After all, however, it is very difficult to achieve a uniform end product, which, like the very sensitive stabilized zirconium oxide, is of suitable quality, etc. US

patent nr. 2.535.526.. patent no. 2,535,526..

Ifølge en annen kjent fremgangsmåte blandes zirkonmalmer med basisk reagerende oksyder, som må stå i et bestemt forhold til surt reagerende oksyder og blandingen smeltes ved ca. l800°C. Smeltegodset brytes, finmales og malmgodset klassifiseres i første rekke mekanisk i en grovere del som i det vesentlige består av zirkonoksyd, According to another known method, zircon ores are mixed with basic reactive oxides, which must be in a specific ratio to acidic reactive oxides, and the mixture is melted at approx. l800°C. The smelting material is broken, finely ground and the ore material is primarily classified mechanically into a coarser part which essentially consists of zirconium oxide,

og i en finere del av silikater. Den grovere del behandles deretter for ødeleggelse av den silikatiske mengde med saltsyre og deretter for oppløsning av dannet silikagel med natronlut, klassifiseres igjen, and in a finer part of silicates. The coarser part is then treated to destroy the silicate quantity with hydrochloric acid and then to dissolve the formed silica gel with caustic soda, classified again,

vaskes og tørkes. washed and dried.

Også denne fremgangsmåte er komplisert, dyr og vanskelig This procedure is also complicated, expensive and difficult

å beherske. Den ble senere modifisert til blanding av zirkonmalmer med dolomit og eventuelt med flusspat, idet temperaturene lå mellom 1350 og l450°C. Den videre forarbeidelse er derved tilsvarende som allerede nevnt, dvs. den delvis smeltede masse finknuses, deretter fremstilles med vann en tyntflytende slam, hvorav det i to vaskepro-sesser under anvendelse av saltsyre og natronlut utvinnes de kubiske zirkonoksydkrystaller, sml. US-patent nr. 2.578.748 og 2.721.115. to master. It was later modified to a mixture of zircon ores with dolomite and possibly with fluorspar, the temperatures being between 1350 and 1450°C. The further processing is therefore similar to that already mentioned, i.e. the partially melted mass is finely crushed, then a thin-flowing sludge is prepared with water, from which the cubic zirconia crystals, etc. are extracted in two washing processes using hydrochloric acid and caustic soda. US Patent Nos. 2,578,748 and 2,721,115.

Også en sterk fjerning av kiselsyre ved hjelp av fluss- Also a strong removal of silicic acid using flux-

syre ble forsøkt, idet man gikk direkte ut fra smeltet zirkonmalm, således at det derved krevdes en stor mengde relativt konsentrert syre. Fremstilingen av stabilisert zirkonoksyd ble derved ikke tilstrebet, acid was tried, starting directly from molten zircon ore, so that a large amount of relatively concentrated acid was thereby required. The production of stabilized zirconium oxide was therefore not pursued,

sml. tysk patent nr..647.918. coll. German patent no. 647,918.

Anvendelsen av stabilisert zirkonoksyd vinner stadig be-tydning, men også kravene til dette produkt øker. Det kan f.eks. være hensiktsmessig å anvende zirkonoksyd fullstendig stabilisert. Ofte kan det også anvendes blandinger av monoklint og kubisk zirkonoksyd, som er vesentlig mindre $Lsomt overfor temperaturveksling. Oftest forarbeides kubisk zirkonoksyd som er stabilisert med CaO. I økende grad forlanges imidlertid også den kubiske modifikasjon stabilisert med andre oksyder. Ved disse krav nødvendiggjøres således bered-gjøring av under tiden små charger, som i kjemisk og fysikalsk hen-seende er meget forskjellige. Disse sterkt vekslende krav er knapt å oppfylle med de hittil kjente fremstillingsfremgangsmåter, men kan oppfylles med følgende omtalte fremgangsmåte. The use of stabilized zirconium oxide is steadily gaining importance, but the requirements for this product are also increasing. It can e.g. be appropriate to use completely stabilized zirconia. Often, mixtures of monoclinic and cubic zirconium oxide can also be used, which are significantly less sensitive to temperature changes. Cubic zirconia, which is stabilized with CaO, is most often processed. Increasingly, however, the cubic modification stabilized with other oxides is also demanded. These requirements thus necessitate the preparation of small charges, which are chemically and physically very different. These highly varying requirements can hardly be met with the previously known production methods, but can be met with the following described method.

Oppfinnelsen vedrører altså en fremgangsmåte til fremstilling av overveiende eller fullstendig kubisk krystallisert zirkonoksyd fra monoklint zirkonoksyd med et restinnhold på ca. 0, 65% Si02, slik det fåes ved adskillelse av en- på forhånd elektrotermisk oppsluttet Zr02-Si02-blanding ved hjelp av fIotasjon, idet fremgangsmåten er karakterisert vedThe invention therefore relates to a method for producing predominantly or completely cubic crystallized zirconium oxide from monoclinic zirconium oxide with a residual content of approx. .

a) at det ennå fuktige gods, som har en midlere kornstør-relse på ca. 40 mikron, behandles 1 til 3 timer med 5 til a) that the still moist goods, which have an average grain size of approx. 40 micron, treated 1 to 3 hours with 5 to

10#-ig kald flussyre til et restinnhold på ca. 0, 2% Si02, 10# cold hydrofluoric acid to a residual content of approx. 0.2% SiO2,

hvoretter flussyren fjernes, after which the hydrofluoric acid is removed,

b) at det vaskede og tørkede material deretter blandes med b) that the washed and dried material is then mixed with

3 til 6 vket# finkornet kalsiumoksyd eller ekvimolare 3 to 6 wket# fine-grained calcium oxide or equimolar

mengder av finkornede, bare kubisk krystalliserte oksyder av flerverdige metaller, hvis ioneradius ligger i quantities of fine-grained, only cubically crystallized oxides of polyvalent metals, whose ionic radius lies in

zirkonionets størrelsesorden og the order of magnitude of the zirconium ion and

c) at blandingen omdannes i den kubiske krystallform i en fastlegemereaksjon ved oppvarmning til temperaturer mellom c) that the mixture is converted into the cubic crystal form in a solid-state reaction by heating to temperatures between

1000 og.2000°C, fortrinnsvis 1400 til 1900°C for oppnåelse av den ønskede omdannelsesgrad. 1000 and 2000°C, preferably 1400 to 1900°C to achieve the desired degree of conversion.

Som oksyder kan det da anvendes slike av kalsium, mag-nesium, yttrium, thorium, cerium eller blandinger herav, istedenfor metalloksydene kan det også anvendes slike metallforbindelser som ved spaltning under prosessen gir metalloksydene, som f.eks. hydroksyder, karbonater, bikarbonater, oksalater, acetater og lignende. As oxides, those of calcium, magnesium, yttrium, thorium, cerium or mixtures thereof can then be used. Instead of the metal oxides, such metal compounds can also be used which, when split during the process, give the metal oxides, such as e.g. hydroxides, carbonates, bicarbonates, oxalates, acetates and the like.

Fremgangsmåten ifølge oppfinnelsen består således a<y>The method according to the invention thus consists of a<y>

flere helt fra hverandre adskilte og lett beherskbare enkelttrinn. several completely separate and easily manageable single steps.

Første trinn består da i anvendelsen a<y> fremgangsmåten ifølge DAS 1.118.178. Zirkonsand innsmeltes i lysbueovn. Derved spalter smeltegodset seg i zirkonoksyd. og Si02. De to faser skilles etter finmaiing av smeltegodset ved hjelp av en fIotasjonsfremgangs-måte. Man utvinner et monoklint zirkonoksyd med et rest-innhold på ca. 0,6555 Si02: Ved annet trinn renses dette mellomprodukt videre, til et restinnhold på<:>ca. 6, 2% SiC^. Denne rensningsprosess gjennomføres under anvendelse av flussyre ved værelsestemperatur, idet overraskende den korte behandlingstid er fullstendig tilstrekkelig med en 5 til 10#-ig flussyré. Mer enn 75% av denne fortynnede syre gjenvinnes og gjenanvendes for samme prosess. DEt rensede zirkonoksyd dekanteres ogtørkes. The first step then consists in the application of the method according to DAS 1,118,178. Zircon sand is melted in an arc furnace. Thereby, the melt splits into zirconium oxide. and SiO 2 . The two phases are separated after refining the melt using a flotation process. A monoclinic zirconium oxide is extracted with a residual content of approx. 0.6555 Si02: In the second step, this intermediate product is purified further, to a residual content of approx. 6.2% SiCl3. This cleaning process is carried out using hydrofluoric acid at room temperature, the surprisingly short treatment time being completely sufficient with a 5 to 10# hydrofluoric acid. More than 75% of this diluted acid is recovered and reused for the same process. The purified zirconium oxide is decanted and dried.

Dette materiale omdannes nå i et tredje fremgangsmåte-trinn fra den monokline overveiende eller fullstendig i den kubiske modifikasjon. Dette foregår imidlertid ikke som tidligere vanlig, This material is now converted in a third process step from the monoclinic predominantly or completely into the cubic modification. However, this does not take place as usual,

over en smelte; men i en faststoffreaksjon. over a melt; but in a solid state reaction.

Stabilisert zirkonoksyd kreves i spesielt høye mengde-messige deler i høyere finheter, for det meste omtrent i kornområdet fra ca. 0 til 70 m^u. Malingen av et smeltet og allerede stabilisert produkt til denne finhet er imidlertid ikke å gjennomføre uten be-traktelige forurensninger ved malejern eller kiselsyre. Ved fremgangsmåten som er gjenstand for oppfinnelsen kan det i monoklin form i høy renhet og i tilstrekkelig finhet fra de foregående fremgangs-måtetrinn dannede materiale eller blanding delvis eller fullstendig i' den kubiske form omsettes med de for stabilisering nødvendige oksyder, f.eks. med CaO, ved temperaturer hvor det i alle tilfelle foregår en lett sintring.; I alle fall er det nødvendig med en lett sammentryk-ning av det omsatte produkt. Stabilized zirconium oxide is required in particularly high quantity-wise parts in higher finenesses, mostly approximately in the grain range from approx. 0 to 70 m^u. The grinding of a melted and already stabilized product to this fineness cannot, however, be carried out without considerable contamination by grinding iron or silicic acid. In the method which is the subject of the invention, the material or mixture formed in monoclinic form in high purity and in sufficient fineness from the preceding process steps can be partially or completely in the cubic form reacted with the oxides necessary for stabilization, e.g. with CaO, at temperatures where light sintering takes place in all cases.; In any case, a slight compression of the converted product is necessary.

Kreves grovere korninger så fremstilles formstykker av If coarser graining is required, molded pieces are made from it

den floterte og i flussyre rensende, med den nødvendige mengde av stabiliserte oksyder sammenblandede, fine monokline zirkonoksyd under anvendelse av et ved lavere temperaturer flyktig organisk klebemiddel ved lett trykning. Oppvarmes disse formstykker ved temperaturer på eksempelvis l850°C i flere timer, så inntrer en sintring. the floated and cleaned in hydrofluoric acid, mixed with the required amount of stabilized oxides, fine monoclinic zirconium oxide using a volatile organic adhesive at lower temperatures by light printing. If these shaped pieces are heated at temperatures of, for example, 1850°C for several hours, sintering occurs.

Etter maling av formstykkene får man grovere korninger After painting the mold pieces, coarser grains are obtained

av slik trykkfasthet at de er egnet til oppbygning av en kornblanding, som skal inneholde grovere korninger. of such compressive strength that they are suitable for building up a grain mixture, which must contain coarser grains.

Eksempel 1. Example 1.

1^0 kg av et ifølge DAS I.II8.178 inntil 0,65$ Si02 for-renset monoklint zirkonoksyd blandes med I50 liter 8%- ig flussyre. 1^0 kg of a monoclinic zirconium oxide pre-purified according to DAS I.II8.178 up to 0.65$ SiO2 is mixed with 150 liters of 8% hydrofluoric acid.

Denne blanding innfylles i en overfor flussyre bestandig kunststoff-beholder og beveges langsomt ca. 2 timer ved værelsestemperatur. Deretter helles flussyren av. Den kan gjenanvendes. Zirkonoksydet renses 1 ■ ■ This mixture is filled into a plastic container resistant to hydrofluoric acid and moved slowly approx. 2 hours at room temperature. The hydrofluoric acid is then poured off. It can be reused. The zirconium oxide is purified 1 ■ ■

ved hjelp av gjentatt utvasking med saltfritt vann og dekantering av vedhengende flussyre og tørkes.deretter.. Si02-innholdet av det således behandlede materiale er gått tilbake til 0,19$. by means of repeated washing with salt-free water and decantation of adhering hydrofluoric acid and then dried. The Si02 content of the thus treated material has returned to 0.19$.

200 kg av det til 0,19$ Si02 rensede monokline zirkonoksyd blandes med 9,2 kg brent kalk av høy finhet. Zirkonoksydet ligger i finhetsområdet på 0-40^u. Blandingen tilsettes noe alkohol som klebemiddel. Deretter presses under lite trykk legemer av ca.. 200 kg of monoclinic zirconium oxide purified to 0.19$ SiO2 is mixed with 9.2 kg of quicklime of high fineness. The zirconium oxide is in the fineness range of 0-40^u. Some alcohol is added to the mixture as an adhesive. Then, under low pressure, bodies of approx.

100 x 200 x 30 mm dimensjoner og disse brennes deretter i en tunnelovn. Brennetemperaturen ligger ved 1790°C. Pormlegemene bringes i løpet 100 x 200 x 30 mm dimensions and these are then fired in a tunnel kiln. The burning temperature is 1790°C. The worm bodies are brought into the race

av ca. 24 timer fra værelsestemperatur til nevnte temperatur. - Opp-holdstiden utgjør ca. 6 timer. De forlater ovnen ved ca. 80°C. Det oppstår hårdsintrede legemer som brytes, males og deretter siktes. of approx. 24 hours from room temperature to said temperature. - The downtime amounts to approx. 6 hours. They leave the oven at approx. 80°C. Hard sintered bodies are produced which are broken, ground and then sieved.

Det fremkommer i omtrent like mengder følgende korninger: The following grains appear in approximately equal amounts:

0 - 0,12 mm 0 - 0.12 mm

0,12 - 0,25 mm 0.12 - 0.25 mm

0,25 - 0,50 mm 0.25 - 0.50 mm

0,50 p 1 mm 0.50 by 1 mm

Disse korninger er tilstrekkelig faste til herav å fremstille formdeler. Røntgenundersøkelsen viser av korningene til mer enn 90$ er omdannet fra den monokline til den kubiske modifikasjon. These grains are sufficiently firm to produce shaped parts from them. The X-ray examination shows that more than 90$ of the grains have been converted from the monoclinic to the cubic modification.

Av korningene presses under anvendelse av 5$ voks prøve-legemer av 10 x 10 mm tverrsnitt og 50 mm lengde. Disse prøvelegemer oppvarmes i et dilatometer til 1200°C. Måleverdiene-viser, slik det fremgår av følgende tabell, en fullstendig jevn varmeutvidelse som etter prøvelegemets avkjøling igjen går tilbake til verdien 0. The grains are pressed using 5$ wax test bodies of 10 x 10 mm cross section and 50 mm length. These specimens are heated in a dilatometer to 1200°C. The measured values show, as can be seen from the following table, a completely uniform thermal expansion which, after the test object has cooled, returns to the value 0.

Den kjemiske analyse av forsøksproduktet viser ved siden av ZrOp følgende verdier: The chemical analysis of the test product shows the following values in addition to ZrOp:

Eksempel 2. Example 2.

Pr. 5 kg monoklint renset zirkonoksyd av 0-70/U korn- Per 5 kg of monoclinic purified zirconium oxide of 0-70/U grain

størrelse blandes tørt tilsvarende eksempel 1 med fint kalkstøv. size is mixed dry corresponding to example 1 with fine lime dust.

Blandingen innfylles i et rørstykke av 120 mm diameter og oppvarmes The mixture is filled into a pipe of 120 mm diameter and heated

i en gassoppvarmet ovn. Brenntemperatur, brennvarighet og mengder av kubisk zirkonoksyd viser følgende angivelser. 1. 1500°C in a gas-heated oven. Burning temperature, burning time and amounts of cubic zirconium oxide show the following information. 1. 1500°C

4 timer 4 hours

61$ kubisk materiale. 61$ cubic material.

2. i4oo°c : 2. i4oo°c :

'24 timer '24 hours

92$ kubisk materiale. 92$ cubic material.

De på alle prøver gjennomførte dilatometer-målinger They carried out dilatometer measurements on all samples

viser den ventede utvidelseskurve. shows the expected expansion curve.

Prøve 1 lar på tross av den høye mengde av kubisk zir- Sample 1 allows despite the high amount of cubic zir-

konoksyd ennå tydelig erkjenne innvirkning av den monokline modifika- conoxide yet clearly recognize the impact of the monoclinic modifica-

sjon, dvs. den viser i temperaturområdet på 1000-1100°C i avhengighet av mengden av monoklint zirkonoksyd dessuten faseomdannelsen i den tetragonale struktur med en tilsvarende volumkontraksjon. tion, i.e. in the temperature range of 1000-1100°C, depending on the amount of monoclinic zirconium oxide, it also shows the phase transformation in the tetragonal structure with a corresponding volume contraction.

Prøve 2 har en jevnere praktisk talt lineær utvidelse. Sample 2 has a smoother practically linear expansion.

Produktet er etter glødebehandlingen bare sammensintret After the annealing treatment, the product is only concentrated

svakt. Etter lett trykning foreligger det igjen en finhet på ca. weakly. After light printing, there is again a fineness of approx.

0-70/u.' , 0-70/u.' ,

Claims (1)

Fremgangsmåte til fremstilling av overveiende eller fullstendig kubisk krystallisert zirkonoksyd fra monoklint zirkonoksyd med et restinnhold på ca. 0,65$ Si02, slik det fåes ved adskillelse av en på forhånd elektrotermisk oppsluttet ZrC^-SiC^-blanding ved hjelp av fIotasjon, karakterisert vedProcess for producing predominantly or completely cubic crystallized zirconium oxide from monoclinic zirconium oxide with a residual content of approx. 0.65$ SiO2, as obtained by separating a previously electrothermally entangled ZrC^-SiC^ mixture by means of flotation, characterized by a) at det ennå fuktige gods, som har en midlere kornstørrelse på ca. 40 mikron, behandles 1 til 3 timer med 5 til 10$-ig kald flussyre til et restinnhold på ca. 0,2$ Si02, hvoretter flussyren fjernes, b) at det vaskede og tørkede material deretter blandes med 3 til 6 vekt$ finkornet kalsiumoksyd. eller ekvimolare mengder av finkornede, bare kubisk krystalliserte ok syder av flerverdige metaller, hvis ioneradius ligger i zirkonionets størrelsesorden, idet istedenfor nevnte metalloksyder kan anvendes metallforbindelser som ved spaltning under prosessen gir disse metalloksyder, og c) at blandingen omdannes i den kubiske krystallform i en fastlegemereaksjon ved oppvarmning til temperaturer . mellom 1000 og 2000°C, fortrinnsvis 1400 til 1900°C for oppnåelse av den ønskede omdannelsesgrad.a) that the still moist goods, which have an average grain size of approx. 40 microns, treated for 1 to 3 hours with 5 to 10% cold hydrofluoric acid to a residual content of approx. 0.2% SiO2, after which the hydrofluoric acid is removed, b) that the washed and dried material is then mixed with 3 to 6% by weight of fine-grained calcium oxide. or equimolar quantities of fine-grained, only cubically crystallized ok of multivalent metals, whose ionic radius is in the order of magnitude of the zirconium ion, since instead of the aforementioned metal oxides can be used metal compounds such as wood cleavage during the process gives these metal oxides, and c) that the mixture is converted into the cubic crystal form in a solid-state reaction by heating to temperatures . between 1000 and 2000°C, preferably 1400 to 1900°C to achieve the desired degree of conversion.
NO78270A 1969-03-06 1970-03-05 NO127572B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19691911386 DE1911386B2 (en) 1969-03-06 1969-03-06 PROCESS FOR THE MANUFACTURING OF PRIMERALLY OR FULLY CUBIC CRYSTALIZED ZIRCONIA

Publications (1)

Publication Number Publication Date
NO127572B true NO127572B (en) 1973-07-16

Family

ID=5727312

Family Applications (1)

Application Number Title Priority Date Filing Date
NO78270A NO127572B (en) 1969-03-06 1970-03-05

Country Status (12)

Country Link
AT (1) AT302970B (en)
BE (1) BE746895A (en)
CH (1) CH543452A (en)
CS (1) CS151011B2 (en)
DE (1) DE1911386B2 (en)
DK (1) DK135342B (en)
FR (1) FR2034692B1 (en)
GB (1) GB1293454A (en)
NL (1) NL7003167A (en)
NO (1) NO127572B (en)
SE (1) SE359799B (en)
SU (1) SU392616A3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2307654C3 (en) * 1973-02-16 1981-11-05 Feldmühle AG, 4000 Düsseldorf Cutting insert for metal-cutting machining, as well as process for their production
DE4106535A1 (en) * 1991-03-01 1992-09-03 Degussa MONOCLIN'S ZIRCONOXIDE, PROCESS FOR ITS PRODUCTION AND USE
DE4116732A1 (en) * 1991-05-23 1992-11-26 Abb Patent Gmbh METHOD FOR PRODUCING POROESIC CERAMIC PARTS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR719823A (en) * 1930-10-13 1932-02-10 Fichet Soc Process for the industrial preparation of pure zirconium oxide
US2076080A (en) * 1932-12-23 1937-04-06 Saint Gobain Process for recovering zirconium oxide
US2535526A (en) * 1949-04-21 1950-12-26 Norton Co Stabilized zirconia and method for producing same
US2910371A (en) * 1953-09-29 1959-10-27 Eugene I Ryschkewitsch Stabilization of zirconia
US3301646A (en) * 1963-06-12 1967-01-31 Harbison Walker Refractories Method of making partially stabilized zirconia

Also Published As

Publication number Publication date
NL7003167A (en) 1970-09-08
BE746895A (en) 1970-08-17
DE1911386A1 (en) 1970-09-24
FR2034692A1 (en) 1970-12-11
DE1911386B2 (en) 1976-11-11
GB1293454A (en) 1972-10-18
AT302970B (en) 1972-11-10
SU392616A3 (en) 1973-07-27
DK135342C (en) 1977-09-26
CS151011B2 (en) 1973-09-17
DK135342B (en) 1977-04-12
FR2034692B1 (en) 1974-05-03
CH543452A (en) 1973-10-31
SE359799B (en) 1973-09-10

Similar Documents

Publication Publication Date Title
US2535526A (en) Stabilized zirconia and method for producing same
NO311021B1 (en) Spherical metal oxide powder particles, their preparation and use
US6296817B1 (en) Process for recycling waste aluminum dross
US2696425A (en) Process for extracting zirconia from zircon ores
US4746497A (en) Process for the production of high purity zirconia
NO127572B (en)
US4053320A (en) Production of refractory articles
AU586467B2 (en) Process for the production of high purity zirconia
JPS6140821A (en) Extraction of zirconia from dissociated zirconia
RU2168484C2 (en) Method of preparing modifying additive
US1618286A (en) Zirconium compound and method of making same
KR20140074571A (en) Method for manufacturing refractory material using waste fire brick
US3849532A (en) Method of preparing a zirconium oxide that is crystallized mostly or completely in cubic form
US2036221A (en) Method of purifying zirconium silicates
KR100202731B1 (en) Method for preparing waste alumium dros
CA1100284A (en) Method for obtaining aluminium oxide
US3076716A (en) Production of granular zirconia products
JP7328566B2 (en) Manufacturing method of recycled refractory raw material
US20070231237A1 (en) Process for the preparation of silicon carbide from spent pot liners generated from aluminum smelter plants
NO325237B1 (en) Process for removing contaminants from fluorinated secondary alumina fine dust or other sodium-aluminum-fluorine-containing materials associated with aluminum production
NO138608B (en) SUBMISSIBLE BAG PUMP.
JPS6044262B2 (en) magnesia clinker
RU2272854C1 (en) Method of production of mullite out of the quartz-topaz raw materials
KR880000156B1 (en) The method of making slag solidify flux
RU2094374C1 (en) Method of extraction of scandium from silicon-containing materials