NO127049B - - Google Patents

Download PDF

Info

Publication number
NO127049B
NO127049B NO683796A NO379668A NO127049B NO 127049 B NO127049 B NO 127049B NO 683796 A NO683796 A NO 683796A NO 379668 A NO379668 A NO 379668A NO 127049 B NO127049 B NO 127049B
Authority
NO
Norway
Prior art keywords
tetracycline
solution
deoxytetracycline
hydrogen
added
Prior art date
Application number
NO683796A
Other languages
Norwegian (no)
Inventor
Hubert Fuchs
Original Assignee
Hubert Fuchs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT875267A external-priority patent/AT276262B/en
Priority claimed from AT644268A external-priority patent/AT286890B/en
Application filed by Hubert Fuchs filed Critical Hubert Fuchs
Publication of NO127049B publication Critical patent/NO127049B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/205Moving, e.g. rotary, diffusers; Stationary diffusers with moving, e.g. rotary, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23312Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a conduit surrounding the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23363Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced above the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23364Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced between the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • B01F23/431Mixing liquids with liquids; Emulsifying using driven stirrers the liquids being introduced from the outside through or along the axis of a rotating stirrer, e.g. the stirrer rotating due to the reaction of the introduced liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte for fremstilling av 6-deoksytetracycliner. Process for the production of 6-deoxytetracyclines.

Oppfinnelsen vedrører fremstillingen av nye forbindelser av tetracyclinserien. The invention relates to the preparation of new compounds of the tetracycline series.

Disse nye forbindelser i henhold til These new connections according to

oppfinnelsen omfatter 6-deoksytetracycliner med den generelle formel: the invention includes 6-deoxytetracyclines with the general formula:

hvor Ri er hydrogen eller hydroksy og 4-epimerene av nevnte 6-deoksytetracycliner. Oppfinnelsen omfatter også fremstillingen av de terapeutisk aktive sure og basiske salter og kompleksforbindelser av nevnte 6-deoksytetracycliner og 4-epimerene av where Ri is hydrogen or hydroxy and the 4-epimers of said 6-deoxytetracyclines. The invention also encompasses the production of the therapeutically active acidic and basic salts and complex compounds of said 6-deoxytetracyclines and the 4-epimers of

nevnte 6-deoksytetracycliner, f. eks. mine-ralsyresaltene, alkalimetallsaltene og jord-alkalimetallsaltene, såvel som forskjellige kompleksforbindelser, f. eks. slike som dannes med salter av aluminium, magnesium og kalsium. said 6-deoxytetracyclines, e.g. the mineral acid salts, the alkali metal salts and the alkaline earth metal salts, as well as various complex compounds, e.g. such as are formed with salts of aluminium, magnesium and calcium.

De nye forbindelser i henhold til oppfinnelsen er beslektet med de velkjente og i stor utstrekning anvendte bred-spektrede antibiotika, tetracyclin og oksytetracyclin. 6-deoksytetracyclinene som beskrives her, atskiller seg essensielt fra de foran nevnte antibiotika ved at hydroksygruppen i 6-stilling i naftacenringen er blitt erstattet med et hydrogenatom. Denne forandring medfører en betydelig forskjell med hensyn til aktiviteten av de resulterende forbindelser, idet de synes å være effektive like overfor visse tetracyclin resistente stammer av bakterier. Det er meget overraskende at 6-deoksytetracyclinene i henhold til oppfinnelsen, særlig selve 6-deoksytetracyclinet, bibeholder den typiske bred-spektrede antibakterielle aktivitet av tetracyclinene, særlig når man tar i betraktning at an-hydrotetracyclinet som også mangler en hydroksygruppe i 6-stilling i naftacenringen, oppviser en betydelig lavere antibak-teriell aktivitet enn moderforbindelsen. The new compounds according to the invention are related to the well-known and widely used broad-spectrum antibiotics, tetracycline and oxytetracycline. The 6-deoxytetracyclines described here differ essentially from the aforementioned antibiotics in that the hydroxy group in the 6-position of the naphthacene ring has been replaced by a hydrogen atom. This change brings about a significant difference with respect to the activity of the resulting compounds, as they appear to be equally effective against certain tetracycline-resistant strains of bacteria. It is very surprising that the 6-deoxytetracyclines according to the invention, especially the 6-deoxytetracycline itself, retain the typical broad-spectrum antibacterial activity of the tetracyclines, especially when you take into account that the anhydrotetracycline, which also lacks a hydroxy group in the 6-position in the naphthacene ring, exhibits a significantly lower antibacterial activity than the parent compound.

Et hensiktsmessig kjemisk navn for tetracyclinet, fremstilles ifølge foreliggende oppfinnelse, er i henhold til den nomen-klatur som brukes av Chemical Abstracts 4-dimetylamino-l,4,4a,5a,6,ll,12a-okta-hydro-3,10,12,12a-tetrahydroksy-6-metyl-l,ll-diokso-2-naftacen-karboksamid. Oksy-tetracyclinet som er analogt hermed, har en hydroksygruppe i 5-stilling i ringen og betegnes på lignende måte. Et passende alminnelig navn på disse nye forbindelser er 6-deoksytetracyclin, resp. 6-deoksyoksytetracyclin som her skal brukes. An appropriate chemical name for the tetracycline, prepared according to the present invention, is according to the nomenclature used by Chemical Abstracts 4-dimethylamino-1,4,4a,5a,6,11,12a-octa-hydro-3,10 ,12,12α-tetrahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide. The oxy-tetracycline which is analogous to this has a hydroxy group in the 5-position of the ring and is designated in a similar manner. An appropriate common name for these new compounds is 6-deoxytetracycline, resp. 6-deoxyoxytetracycline which will be used here.

En av de mer viktige fordeler som de nye forbindelser framstilt i henhold til foreliggende oppfinnelse er i besittelse av, like overfor de tidligere beskrevne tetracycliner, er deres økte stabilitet i syrer og alkali. Syre-ustabiliteten av tetracyclin og alkali-ustabiliteten av klortetracyclin er alminnelig kjent. Klortetracyclin vil i en vandig oppløsning med en natriumkarbo-natpuffer ved pH 9,85 tape 50 pst. av sin aktivitet i løpet av 29.2 min. ved 23° C. I motsetning hertil taper 6-deoksytetracyclin ikke mer enn 1 % av aktiviteten i løpet av 24 timer under de samme forhold. Tetracyclin har en halv levetid av mindre enn 1 min. i 3 normal saltsyre ved 100° C. C-deoksytetracyclin har på den annen side en halv levetid av 27 timer under de samme forhold. 6-deoksytetracyclin har under de samme forhold en halv levetid av 45 timer. Tetracyclin har en halv levetid av ca. 6 min. i 0,1 normal natrium hydroksyd-oppløsning ved 100° C. I motsetning hertil har 6-deoksytetracyclin en halv levetid av 9y2 time under de samme forhold og 6-deoksyoksytetracyclin har en halv levetid av loi/g time under de samme forhold. Disse uventede egenskaper er meget verdifulle forsåvidt som syre-ustabiliteten av tetracyclin og alkali-ustabiliteten av klortetracyclin har begrenset eller fullstendig ute-lukket bruken av disse antibiotika for mange øyemed. Som følge av en meget bed-re stabilitet av de nye 6-deoksytetracycliner er det mulig å fremstille mange farma-søytiske produkter som ikke kunne fremstilles på en tilfredsstillende måte ved de tidligere kjente tetracycliner. Den økte stabilitet gjør det også mulig å forbedre utvinnings- og rensningsprosessene da det kan anvendes mer drastiske pH-og tempe-raturforhold uten at de nye forbindelser ødelegges. Som nevnt ovenfor, er den anti-bakterielle aktivitet av 6-deoksytetracyclinene i mange henseender ganske lik den antibakterielle aktivitet av de tidligere kjente tetracycliner og således kan de nye forbindelser administreres av legen på samme måte og i omtrent de samme do-seringsmengder som med tetracyclinene som nå for tiden er i bruk. De nye 6-deoksytetracycliner kan videre, da de oppviser den typiske bred-spektrede antibiotiske aktivitet ved de tidligere kjente tetracycliner, anvendes ved behandling av forskjellige infeksjoner som frembringes av både Gram-positive og Gram-negative bakterier, hvor behandlingen av slike infeksjoner med tetracyclin eller oksytetracyclin er ønskelig. One of the more important advantages that the new compounds produced according to the present invention possess, just over the previously described tetracyclines, is their increased stability in acids and alkali. The acid instability of tetracycline and the alkali instability of chlortetracycline are well known. Chlortetracycline in an aqueous solution with a sodium carbonate buffer at pH 9.85 will lose 50 per cent of its activity within 29.2 min. at 23° C. In contrast, 6-deoxytetracycline does not lose more than 1% of its activity during 24 hours under the same conditions. Tetracycline has a half-life of less than 1 min. in 3 normal hydrochloric acid at 100° C. C-deoxytetracycline, on the other hand, has a half-life of 27 hours under the same conditions. Under the same conditions, 6-deoxytetracycline has a half-life of 45 hours. Tetracycline has a half-life of approx. 6 min. in 0.1 normal sodium hydroxide solution at 100° C. In contrast, 6-deoxytetracycline has a half-life of 9y2 hours under the same conditions and 6-deoxyoxytetracycline has a half-life of loi/g hours under the same conditions. These unexpected properties are very valuable inasmuch as the acid instability of tetracycline and the alkali instability of chlortetracycline have limited or completely precluded the use of these antibiotics for many purposes. As a result of a much better stability of the new 6-deoxytetracyclines, it is possible to produce many pharmaceutical products that could not be produced satisfactorily with the previously known tetracyclines. The increased stability also makes it possible to improve the extraction and purification processes as more drastic pH and temperature conditions can be used without the new compounds being destroyed. As mentioned above, the anti-bacterial activity of the 6-deoxytetracyclines is in many respects quite similar to the anti-bacterial activity of the previously known tetracyclines and thus the new compounds can be administered by the physician in the same way and in approximately the same dosage amounts as with the tetracyclines which is currently in use. The new 6-deoxytetracyclines can furthermore, as they exhibit the typical broad-spectrum antibiotic activity of the previously known tetracyclines, be used in the treatment of various infections caused by both Gram-positive and Gram-negative bacteria, where the treatment of such infections with tetracycline or oxytetracycline is desirable.

Det antibakterielle spektrum av de nye forbindelser som representerer den mengde som kreves for å hemme veksten av forskjellige typiske bakterier, ble bestemt på vanlig måte ved den teknikk hvor det brukes en agar fortynningsutstrykning som vanligvis anvendes ved prøvning av nye antibiotika. Minimumskonsentrasj onene som bevirker hemning, uttrykt i gamma pr. milliliter av 6-deoksytetracyclin og 6-deoksyoksytetracyclin like overfor forskjellige prøveorganismer er anført i den følgende tabell. For sammenlignings skyld er også anført den anti-bakterielle aktivitet av tetracyclin like overfor de samme organis-mer: The antibacterial spectrum of the new compounds representing the amount required to inhibit the growth of various typical bacteria was determined in a conventional manner by the agar dilution smear technique commonly used in testing new antibiotics. The minimum concentrations that cause inhibition, expressed in gamma per milliliters of 6-deoxytetracycline and 6-deoxyoxytetracycline equally against different test organisms are listed in the following table. For the sake of comparison, the anti-bacterial activity of tetracycline against the same organisms is also listed:

Av det foran anførte vil det sees at i mange henseender er det antibakterielle spektrum av de nye forbindelser fremstilt i henhold til oppfinnelsen meget nær paral-lelt med det antibakterielle spektrum for tetracyclin, men i tilslutning hertil er 6-deoksy-tetracyclin effektivt mot visse tetracyclin-resistente stammer av bakterier, som Streptococcus hemolyticus gamma hemolytic, Staphylococcus albus, og Streptococcus hemolyticus, gruppe D. Videre er begge de nye forbindelser meget mer effektive mot streptococcus hemolyticus, beta hemolytic enn tetracyclin. From the foregoing, it will be seen that in many respects the antibacterial spectrum of the new compounds produced according to the invention is very close in parallel with the antibacterial spectrum for tetracycline, but in connection with this, 6-deoxy-tetracycline is effective against certain tetracyclines -resistant strains of bacteria, such as Streptococcus hemolyticus gamma hemolytic, Staphylococcus albus, and Streptococcus hemolyticus, group D. Furthermore, both new compounds are much more effective against streptococcus hemolyticus, beta hemolytic than tetracycline.

6-deoksytetracyclinene fremstilles i henhold til oppfinnelsen ved en temmelig ene-stående katalytisk reduksjon av det tilsvarende tetracyclin, i en oppløsningsmid-deloppløsning i nærvær av en substans som er i stand til å danne en chelatring med et peri-dioksygenert hydronaftalin, dvs. 6-deoksytetracyclin dannes ved den katalytiske reduksjon av tetracyclin, klortetracyclin eller bromtetracyclin og 6-deoksyoksytetracyclin dannes ved den katalytiske reduksjon av oksytetracyclin. The 6-deoxytetracyclines are prepared according to the invention by a rather unique catalytic reduction of the corresponding tetracycline, in a solvent solution in the presence of a substance capable of forming a chelate ring with a peri-dioxygenated hydronaphthalene, i.e. 6 -deoxytetracycline is formed by the catalytic reduction of tetracycline, chlortetracycline or bromotetracycline and 6-deoxytetracycline is formed by the catalytic reduction of oxytetracycline.

Reduksjonsprosessen kan utføres ved å bringe en oppløsningsmiddeloppløsning av det tilsvarende tetracyclin i kontakt med hydrogen i nærvær av en passende katalysator, som f. eks. findelt metallisk palladium eller et annet metall av platina-familien og benkull eller palladium hydr-oksyd på benkull. The reduction process can be carried out by contacting a solvent solution of the corresponding tetracycline with hydrogen in the presence of a suitable catalyst, such as e.g. finely divided metallic palladium or another metal of the platinum family and bone charcoal or palladium hydroxide on bone charcoal.

Enn videre tilveiebringes i henhold til oppfinnelsen en fremgangsmåte for å fjerne hydroksygruppen fra 6-stillingen av en forbindelse av tetracyclinserien bestå-ende i at en slik forbindelse reduseres katalytisk i en oppløsningsmiddeloppløsning i nærvær av en substans som er i stand til å danne en chelatring med et peri-dioksygenert hydronaftalin. Furthermore, according to the invention, a method is provided for removing the hydroxy group from the 6-position of a compound of the tetracycline series, consisting in such a compound being catalytically reduced in a solvent solution in the presence of a substance capable of forming a chelate ring with a peri-dioxygenated hydronaphthalene.

Skikkede forbindelser som er i besittelse av denne egenskap å danne en chelatring og som kan anvendes med godt re-sultat ved denne reduksjonsprosess, er borsyre, bortrihalogenider som bortrifluorid, aluminium og magnesiumsalter, som aluminiumklorid og magnesiumacetat. Borsyre eller bortrihalogenider synes å være de mest nyttige forbindelser med hensyn til oppnåelse av gode utbytter av de ønskete produkter. Vanligvis er borsyre eller bortrihalogenid til stede i i det minste mol for mol mengder. Reduksjonen kan utføres ved temperatur varierende fra 0 til 100° C og fortrinnsvis fra ca. romtemperatur til ca. 50° C og ved hydrogentrykk av fra ca. til ca. 100 atmosfærer. Suitable compounds which possess this property of forming a chelate ring and which can be used with good results in this reduction process are boric acid, boron trihalides such as boron trifluoride, aluminum and magnesium salts, such as aluminum chloride and magnesium acetate. Boric acid or boron trihalides appear to be the most useful compounds with regard to obtaining good yields of the desired products. Typically, boric acid or boron trihalide is present in at least mole for mole amounts. The reduction can be carried out at a temperature varying from 0 to 100° C and preferably from approx. room temperature to approx. 50° C and at hydrogen pressure from approx. to approx. 100 atmospheres.

Passende inerte oppløsningsmidler som kan anvendes i reaksjonen, er forskjellige polare oppløsningsmidler som vann, diok-san, iseddik, 2-etoksyetanol og etylacetat, Et et-til-et forhold av vann og dimetylformamid har vist seg å være et særlig godt oppløsningsmiddel for denne reaksjon. En liten mengde perklorsyre tilsettes vanligvis tii oppløsningen. En konsentrasjon av katalysatoren av i det minste 5 vektsprosent av det tilsvarende tetracyclin er nødvendig og der kan anvendes opp til ca. 100 vektsprosent. Hydrogeneringen utføres vanligvis inntil 1 mol hydrogen er blitt absorbert når tetracyclin er utgangsmaterialet, og ved dette tidspunktet har absorbsjonshastig-heten en tendens til å avta. Når klortetracyclin anvendes, kreves naturligvis 2 mol hydrogen. Der må utøves noen forsiktig-het for at ikke hydrogeneringen skal fort-sette i for lang tid da videre og uønskete reaksjoner derved kan finne sted under dannelse av mindre ønskete produkter. Suitable inert solvents that can be used in the reaction are various polar solvents such as water, dioxane, glacial acetic acid, 2-ethoxyethanol and ethyl acetate. An one-to-one ratio of water and dimethylformamide has proven to be a particularly good solvent for this reaction. A small amount of perchloric acid is usually added to the solution. A concentration of the catalyst of at least 5% by weight of the corresponding tetracycline is necessary and up to approx. 100 percent by weight. The hydrogenation is usually carried out until 1 mole of hydrogen has been absorbed when tetracycline is the starting material, at which point the rate of absorption tends to decrease. When chlortetracycline is used, 2 moles of hydrogen are naturally required. Some caution must be exercised so that the hydrogenation does not continue for too long, as further and unwanted reactions may thereby take place with the formation of less desirable products.

De substanser som er i stand til å danne en chelatring, som beskrevet ovenfor, som anvendes i den beskrevne reduksjonsprosess, er meget viktige reagenser da de tyde-ligvis virker som kompleksdannende substanser og tjener til å hindre reduksjonen av oksygenfunksjonene ved 11- og 12-stil-lingene i naftalenringen. Disse reagenser er meget viktige ved reduksjonen da ved fravær av slike midler reduseres 12-stillingen før 6-stillingen, og den resulterende forbindelse oppviser ingen biologisk aktivitet. Ved den beskrevne reduksjonsprosess tjener imidlertid chelatiseringen til å binde disse to oksygengrupper og hindrer deres reduksjon slik at den antibakterielle aktivitet av forbindelsen bibeholdes. The substances capable of forming a chelate ring, as described above, which are used in the described reduction process, are very important reagents as they apparently act as complex-forming substances and serve to prevent the reduction of the oxygen functions at 11- and 12- the positions in the naphthalene ring. These reagents are very important in the reduction as in the absence of such agents the 12-position is reduced before the 6-position, and the resulting compound exhibits no biological activity. In the described reduction process, however, the chelation serves to bind these two oxygen groups and prevents their reduction so that the antibacterial activity of the compound is maintained.

Etterat hydrogeneringen er fullstendig, utvinnes 6-deoksytetracyclinet eller 6-de-oksyoksytetracyclinet ved hjelp av kjente midler, f. eks. ved å fjerne katalysatoren og konsentrere oppløsningen. Produktet inndampes til tørrhet, renses ved fraksjonert utfelling i metanol og kan renses ytter-ligere ved omkrystallisering i alkohol på vanlig måte. Det nøytrale produkt som dannes på denne måte, kan omdannes til et mineralsyresalt, f. eks. hydrokloridet ved behandling med syrer, som saltsyre, ved en pH av lavere enn ca. 4. Andre sure salter, som f. eks. svovelsyresaltet. fosfor-syresaltet, trikloreddiksyresaltet osv. kan dannes på lignende måte. Fortrinnsvis sus-penderes 6- deoksytetracyclinene i et passende oppløsningsmiddel under ansyringen. Alkalimetall og jordalkalimetallsaltet kan ganske enkelt dannes ved behandling av de amfotære forbindelser med omtrentlig en ekvivalent av den valgte base, f. eks. natriumhydroksyd, kaliumhydroksyd, kalsi-umhydroksyd, bariumhydroksyd osv. Me-tallsaltene kan fremstilles i vandig oppløs-ning eller i et passende oppløsningsmiddel. Fortrinnsvis fremstilles de basiske salter ved en pH av 6 eller høyere. Den frie base kan fåes ved en pH innenfor området av ca. 4—6. De komplekse forbindelser, som f. eks. 6-deoksytetracyclin amminiumgm-konatkomplekset, kan f. eks. dannes ved enkel innblanding av hydrokloridsaltet av de nye forbindelser og aluminiumglukonat i en vandig oppløsning. After the hydrogenation is complete, the 6-deoxytetracycline or 6-deoxytetracycline is recovered by known means, e.g. by removing the catalyst and concentrating the solution. The product is evaporated to dryness, purified by fractional precipitation in methanol and can be further purified by recrystallization in alcohol in the usual way. The neutral product formed in this way can be converted into a mineral acid salt, e.g. the hydrochloride by treatment with acids, such as hydrochloric acid, at a pH of lower than approx. 4. Other acidic salts, such as the sulfuric acid salt. the phosphoric acid salt, the trichloroacetic acid salt, etc., may be formed in a similar manner. Preferably, the 6-deoxytetracyclines are suspended in a suitable solvent during the acidification. The alkali metal and alkaline earth metal salt can be simply formed by treating the amphoteric compounds with approximately one equivalent of the chosen base, e.g. sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, etc. The metal salts can be prepared in aqueous solution or in a suitable solvent. Preferably, the basic salts are prepared at a pH of 6 or higher. The free base can be obtained at a pH within the range of approx. 4-6. The complex compounds, such as The 6-deoxytetracycline ammonium gm-conate complex, can e.g. is formed by simple mixing of the hydrochloride salt of the new compounds and aluminum gluconate in an aqueous solution.

4-epimerene av 6-deoksytetracyclinene, dvs. som har en epimerisk form ved kull-stoffatomet ved stillingen fire, den samme som er beskrevet i forbindelse med andre tetracyclinforbindelser, kan også dannes ved enkel regulering av hydrogenionekon-sentrasjon av en konsentrert oppløsning av antibiotikumet innenfor et område av pH 3,0 til 5,0, hvoretter man lar oppløs-ningen henstå inntil isomeriseringen er kommet til likevekt. The 4-epimers of the 6-deoxytetracyclines, i.e. which have an epimeric form at the carbon atom at position four, the same as described in connection with other tetracycline compounds, can also be formed by simple regulation of the hydrogen ion concentration of a concentrated solution of the antibiotic within a range of pH 3.0 to 5.0, after which the solution is allowed to stand until the isomerization has reached equilibrium.

Isomeriseringen utføres mest hensiktsmessig ved romtemperatur, skjønt der fin-ner sted en større omdannelseshastighet ved høyere temperatur. pH skal være innenfor området av ca. 3,0 til 5,0, fortrinnsvis mellom 3,5 og 4,5. En del epimerisering vil finne sted ved hydrogenionekonsentrasjo-ner utenfor disse områder, og endog i des-tillert vann, men hastigheten er meget langsom. Konsentrasjonen av antibiotikumet i den vandige oppløsning skal være så høy som mulig for å oppnå de største epi-meriseringshastigheter. En fullstendig likevekt kan kreve en tidsperiode av ca. 24 timer ved 25° C, men tilfredsstillende likevekt kan kreve en betydelig kortere tid under spesielle forhold. I alminnelighet opp-nås imidlertid de beste resultater ved å la oppløsningene henstå i tidsperioder av en uke eller mer. En likevekt synes å bli nådd i de fleste tilfeller ved ca. 50 pst., dvs. omtrent halvparten av antibiotikumet er om-dannet til epimere ved likevekt. The isomerization is most conveniently carried out at room temperature, although a greater rate of conversion takes place at a higher temperature. The pH must be within the range of approx. 3.0 to 5.0, preferably between 3.5 and 4.5. Some epimerization will take place at hydrogen ion concentrations outside these ranges, and even in distilled water, but the rate is very slow. The concentration of the antibiotic in the aqueous solution must be as high as possible to achieve the greatest epimerization rates. A complete equilibrium may require a time period of approx. 24 hours at 25° C, but satisfactory equilibrium may require a significantly shorter time under special conditions. In general, however, the best results are achieved by allowing the solutions to stand for periods of a week or more. An equilibrium seems to be reached in most cases at approx. 50 per cent, i.e. approximately half of the antibiotic is converted to epimers at equilibrium.

Da konsentrasjonen er en viktig faktor for å oppnå høye utbytter i løpet av korte tidsperioder, velges et oppløsningsmiddel-system som gir den høyeste konsentrasjon av antibiotikumet. Disse oppløsningsmid-delsystemer kan behandles med puffersubstanser for å få en pH innenfor det fore-trukne området. Forskjellige oppløsnings-midler omfatter metanol, etanol, butanol, aceton, 2-etoksy-etanol, 2-metoksy-propa-nol, iseddik, tetrahydrofuran, dimetylformamid og blandinger av disse oppløsnings-midler. Andre oppløsningsmidler kan også anvendes. Et foretrukket middel som puf-fersubstans er natrium-dihydrogenfosfat skjønt andre puffersubstanser og puffer-substanspar kan anvendes som vil holde hydrogen-ionekonsentrasjonen innenfor det ønskete område. As the concentration is an important factor in achieving high yields in short periods of time, a solvent system is chosen which gives the highest concentration of the antibiotic. These solvent systems can be treated with buffer substances to obtain a pH within the preferred range. Various solvents include methanol, ethanol, butanol, acetone, 2-ethoxy-ethanol, 2-methoxy-propanol, glacial acetic acid, tetrahydrofuran, dimethylformamide and mixtures of these solvents. Other solvents can also be used. A preferred agent as a buffer substance is sodium dihydrogen phosphate, although other buffer substances and buffer substance pairs can be used which will keep the hydrogen ion concentration within the desired range.

Oppfinnelsen skal i det følgende beskrives mer detaljert i forbindelse med de anførte eksempler. In the following, the invention will be described in more detail in connection with the listed examples.

Eksempel 1. Example 1.

12 gram tetracyclin-hydroklorid sus-penderes i 10 volumdeler av en 1 til 1 blanding av vann og dimetylformamid. Til blandingen tilsettes 1,48 gr borsyre, 12 gr uredusert 5 pst. palladium på kullstoff og 0,5 ml perklorsyre. Hydrogeneringen utfø-res ved reaksjon med hydrogen ved ca. 2,8 kg/cm- på en Parr ryster i ca. 2i/2 time. Hydrogeneringen er tilendebrakt etterat ca. 1 mol er blitt absorbert. Oppløsningen filtreres og katalysatoren vaskes med 10 ml dimetylformamid og derpå utføres en annen vasking med 10 ml vann. 12 grams of tetracycline hydrochloride are suspended in 10 parts by volume of a 1 to 1 mixture of water and dimethylformamide. 1.48 g of boric acid, 12 g of unreduced 5% palladium on charcoal and 0.5 ml of perchloric acid are added to the mixture. The hydrogenation is carried out by reaction with hydrogen at approx. 2.8 kg/cm- on a Parr shaker for approx. 2½ hours. The hydrogenation is completed after approx. 1 mole has been absorbed. The solution is filtered and the catalyst is washed with 10 ml of dimethylformamide and then another washing is carried out with 10 ml of water.

Eksempel 2. Example 2.

Filtratet som fåes ved fremgangsmåten som er beskrevet i eksempel 1, reguleres til pH 3,0 med konsentrert ammoniumhydroksyd og inndampes til tørrhet i vakuum. The filtrate obtained by the method described in example 1 is adjusted to pH 3.0 with concentrated ammonium hydroxide and evaporated to dryness in a vacuum.

50 ml vann-mettet butanol tilsettes, og 50 ml of water-saturated butanol is added, and

blandingen omrøres og filtreres. Aktiviteten konsentreres i vann, og pH reguleres til 3,0, og der filtreres. Filtratet reguleres til pH 1,5 og tilbakeekstraheres med 100 ml butanol. Butanolekstraktet konsentreres til ca. 5—10 ml i en atmosfære av nitrogen. Oppløsningen smittes og henstår i 18 timer ved romtemperatur. Krystallene filtreres, vaskes med aceton og derpå med eter og tørkes i vakuum ved 40° C i 20 timer så at man får 179 mg 6-deoksytetracyclin. the mixture is stirred and filtered. The activity is concentrated in water, and the pH is adjusted to 3.0, and then filtered. The filtrate is adjusted to pH 1.5 and back-extracted with 100 ml of butanol. The butanol extract is concentrated to approx. 5-10 ml in an atmosphere of nitrogen. The solution is infected and left for 18 hours at room temperature. The crystals are filtered, washed with acetone and then with ether and dried in vacuum at 40° C. for 20 hours so that 179 mg of 6-deoxytetracycline is obtained.

Eksempel 3. Example 3.

To tredjedeler av et gram av 6-deoksytetracyclin oppslemmes i 13,5 ml etyl-alkohol, 0,5 ml av konsentrert saltsyre tilsettes for å regulere pH til 0,8 til 1,0. Opp-løsningen henstår i 3y2 time. 6-deoksytetracyclin hydroklorid-krystallene som dannes, tørkes i vakuum ved 100° C i 20 timer. Two-thirds of a gram of 6-deoxytetracycline is suspended in 13.5 ml of ethyl alcohol, 0.5 ml of concentrated hydrochloric acid is added to adjust the pH to 0.8 to 1.0. The solution remains for 3y2 hours. The 6-deoxytetracycline hydrochloride crystals that form are dried in vacuum at 100° C. for 20 hours.

Analyse: Beregnet for C^H-rJS^ClO-, Analysis: Calculated for C^H-rJS^ClO-,

: C, 56,7; H, 5,38; N, 6,02; Cl, : C, 56.7; H, 5.38; N, 6.02; Cl,

7,69; 0, 24,1; 7.69; 0, 24.1;

Funnet: C, 56,52; H, 5,46; N, 5,94; Cl, 7,71; Found: C, 56.52; H, 5.46; N, 5.94; Cl, 7.71;

0, 23,89. 0, 23.89.

Produktet har en optisk dreining av [a] ^ = —292° i o.lN H^SCm. The product has an optical rotation of [a] ^ = -292° in o.lN H^SCm.

Det ultraviolette absorbsjonsspektrum bestemmes av en prøve av forbindelsen i 0,1 N H2SO4 ved en konsentrasjon av 30,65 gamma pr. milliliter. The ultraviolet absorption spectrum is determined from a sample of the compound in 0.1 N H2SO4 at a concentration of 30.65 gamma per milliliters.

Det infrarøde absorbsjonsspektrum bestemmes fra en prøve av forbindelsen, blandet med krystaller av KB r og presset til en skive. The infrared absorption spectrum is determined from a sample of the compound, mixed with crystals of KB r and pressed into a disk.

Eksmepel 4. Example 4.

Fremgangsmåten etter eksempel 1 gjentas med den eneste unntagelse at der anvendes 12 gr oksytetracyclin som ut-gangsmaterial istedenfor tetracyclinhydro-kloridet. The procedure according to example 1 is repeated with the only exception that 12 g of oxytetracycline is used as starting material instead of the tetracycline hydrochloride.

Eksempel 5. Example 5.

Til reduksjonsoppløsningen som fåes i eksempel 4, tilsettes 5 gr av diatomejord (Hyflo) og blandingen filtreres. Filter-kaken vaskes med 50 ml av en 50—50 blanding av dimetylformamid og vann. Filtratet og vaskevæskene forenes, så at man får et volum av 163 ml. pH i de forente vaske- og filtratvæsker reguleres til 3,0 med konsentrert ammoniumhydroksyd, og oppløsningen inndampes til tørrhet i vakuum ved 40—60° C. De faste stoffer ekstraheres med 75 ml vann i en time under omrøring. Slammet filtreres. Oppløs-ningens pH reguleres til 1,0 med saltsyre. Den aktive substans ekstraheres to ganger i butanol. Butanolekstraktene forenes og inndampes til tørrhet. Der tilsettes 7 ml aceton til det tørkete butanolekstrakt, og der tilsettes saltsyre for å regulere pH til 1,0. De faste stoffer fjernes ved sentrifu-gering. Den ovenstående væske smittes, og krystallene som dannes, henstår i 6 timer, filtreres og vaskes med aceton og derpå i eter. Krystallene tørkes i vakuum ved 40° C i 12 timer. Utbyttet 84,7 mg av 6-deoksyoksytetracyclin. To the reduction solution obtained in example 4, 5 g of diatomaceous earth (Hyflo) is added and the mixture is filtered. The filter cake is washed with 50 ml of a 50-50 mixture of dimethylformamide and water. The filtrate and washing liquids are combined, so that a volume of 163 ml is obtained. The pH of the combined washing and filtrate liquids is adjusted to 3.0 with concentrated ammonium hydroxide, and the solution is evaporated to dryness in a vacuum at 40-60° C. The solids are extracted with 75 ml of water for one hour while stirring. The sludge is filtered. The pH of the solution is adjusted to 1.0 with hydrochloric acid. The active substance is extracted twice in butanol. The butanol extracts are combined and evaporated to dryness. 7 ml of acetone is added to the dried butanol extract, and hydrochloric acid is added to adjust the pH to 1.0. The solids are removed by centrifugation. The supernatant liquid is strained, and the crystals that form are allowed to stand for 6 hours, filtered and washed with acetone and then in ether. The crystals are dried in a vacuum at 40° C. for 12 hours. Yield 84.7 mg of 6-deoxyoxytetracycline.

Analyse: Beregnet for C-HwN-ClOs, Analysis: Calculated for C-HwN-ClOs,

C, 54,90; H, 5,20; N, 5,83; Cl, 7,38; C, 54.90; H, 5.20; N, 5.83; Cl, 7.38;

O, 26,70; O, 26.70;

Funnet: C, 54,48, H, 4,81; N, 5,50; Cl, 7,74; Found: C, 54.48, H, 4.81; N, 5.50; Cl, 7.74;

O, 26,55; O, 26.55;

Produktet har en optisk dreining av [a] £ = —251° i 0,1 N HjSO-i. The product has an optical rotation of [a] £ = —251° in 0.1 N HjSO-i.

Det ultraviolette absorbsjonsspektrum bestemmes fra en prøve av forbindelsen i 0,1 N H2SO4 ved en konsentrasjon av 40,76 gamma pr. mililiter. The ultraviolet absorption spectrum is determined from a sample of the compound in 0.1 N H2SO4 at a concentration of 40.76 gamma per milliliters.

Det infrarøde absorbsjonsspektrum bestemmes av en prøve av forbindelsen blandet med krystaller av KBr og presset til en skive. The infrared absorption spectrum is determined from a sample of the compound mixed with crystals of KBr and pressed into a disk.

Eksempel 6. Example 6.

Til 1,0 gr av tetracyclin-hydroklorid tilsettes 25 ml av en en-til-en blanding av dimetylformamid og vann. 3 ml (10 mol ekvivalenter) av 45 pst. bortrifluorid-eter tilsettes, og pH reguleres til 1,3 med 2 ml trietylamin. 1,0 gr 5 pst. palladium på kullstoff tilsettes, og blandingen anbringes på en Parr ryster, og man lar den reagere med hydrogen i 100 min. (hydrogenopp-tagelse er et mol). Blandingen filtreres, og det uoppløselige vaskes med 10 ml vann. Der dannes 6-deoksytetracyclin. To 1.0 g of tetracycline hydrochloride is added 25 ml of a one-to-one mixture of dimethylformamide and water. 3 ml (10 mol equivalents) of 45% boron trifluoride ether are added, and the pH is adjusted to 1.3 with 2 ml of triethylamine. 1.0 g 5% palladium on carbon is added, and the mixture is placed on a Parr shaker, and allowed to react with hydrogen for 100 min. (hydrogen absorption is one mole). The mixture is filtered, and the insoluble matter is washed with 10 ml of water. There, 6-deoxytetracycline is formed.

Eksempel 7. Example 7.

Til 2,5 gr tetracyclin-hydroklorid tilsettes 25 ml av en 1 til 5 blanding av dimetylformamid og vann. Der tilsettes 1,1 gr av magnesiumacetat (Mg(C2H:(02)2.4H20). pH reguleres til 1,8 med saltsyre. Der tilsettes 2,5 gr av 5 pst. palladium på kullstoff og 2 dråper perklorsyre, og blandingen anbringes på en Parr ryster, og man lar den henstå til reaksjon med hyrogen i 71 min. (Hydrogen-opptak er 1 mol). Den reduserte oppløsning filtreres, og det uoppløselige vaskes med 0,1 N saltsyre. 6-deoksytetracyclin dannes. 25 ml of a 1 to 5 mixture of dimethylformamide and water is added to 2.5 g of tetracycline hydrochloride. 1.1 g of magnesium acetate (Mg(C2H:(02)2.4H20) is added. The pH is adjusted to 1.8 with hydrochloric acid. 2.5 g of 5% palladium on charcoal and 2 drops of perchloric acid are added, and the mixture is placed on a Parr shaker, and allowed to react with hydrogen for 71 min. (Hydrogen uptake is 1 mol). The reduced solution is filtered, and the insoluble is washed with 0.1 N hydrochloric acid. 6-deoxytetracycline is formed.

Eksempel 8. Example 8.

Til 2,5 gr tetracyclin-hydroklorid tilsettes 25 ml av en 1 til 1 blanding av dimetylformamid og vann. pH reguleres til 1,8 med saltsyre, og der tilsettes 0,55 gr kalsiumklorid, 2 dråper perklorsyre, og 2,5 gr 5 pst. palladium på kullstoff. Blandingen anbringes på en Parr ryster, og man lar den reagere med hydrogen i 97 min. (opptak av 1 mol Hj). Blandingen filtreres og vaskes med 5 ml N saltsyre. Der dannes 6-deoksytetracyclin. 25 ml of a 1 to 1 mixture of dimethylformamide and water is added to 2.5 g of tetracycline hydrochloride. The pH is adjusted to 1.8 with hydrochloric acid, and 0.55 g of calcium chloride, 2 drops of perchloric acid and 2.5 g of 5% palladium on carbon are added. The mixture is placed on a Parr shaker and allowed to react with hydrogen for 97 min. (absorption of 1 mol Hj). The mixture is filtered and washed with 5 ml N hydrochloric acid. There, 6-deoxytetracycline is formed.

Eksempel 9. Example 9.

Til 1 gr tetracyclin-hydroklorid tilsettes 25 ml av en 1 til 1 blanding av dimetylformamid og vann, som inneholder 0,27 gr aluminiumklorid. pH reguleres til 1,5 med perklorsyre. Der tilsettes 1,0 gr av 5 pst. palladium på kullstoff og blandingen anbringes på en Parr-ryster i 150 min. To 1 g of tetracycline hydrochloride is added 25 ml of a 1 to 1 mixture of dimethylformamide and water, which contains 0.27 g of aluminum chloride. The pH is adjusted to 1.5 with perchloric acid. 1.0 g of 5% palladium on carbon is added and the mixture is placed on a Parr shaker for 150 min.

(Opptak av 1 mol H2). Blandingen filtreres. Der dannes 6-deoksytetracyclin. (Absorption of 1 mol H2). The mixture is filtered. There, 6-deoxytetracycline is formed.

Eksempel 10. Example 10.

Til 5 mg 6-deoksytetracyclin tilsettes 1 ml iseddik. Blandingen rystes, og man lar den få danne likevekt ved romtemperatur i 18 timer og filtreres derpå. Papir-strimmelkromatografi viser tilstedeværelsen av 6-deoksy-4-epitetracyclin. 1 ml of glacial acetic acid is added to 5 mg of 6-deoxytetracycline. The mixture is shaken and allowed to equilibrate at room temperature for 18 hours and then filtered. Paper strip chromatography shows the presence of 6-deoxy-4-epitetracycline.

Eksempel 11. Example 11.

Til 5 mg 6-deoksyoksytetracyclin tilsettes 1 ml iseddik. Blandingen rystes, og man lar den henstå til likevekt ved romtemperatur i 18 timer og derpå filtreres. Papir - strimmelkromatografi viser tilstedeværelsen av 6-deoksy-4-epioksytetracyclin. 1 ml of glacial acetic acid is added to 5 mg of 6-deoxyoxytetracycline. The mixture is shaken and left to equilibrate at room temperature for 18 hours and then filtered. Paper - strip chromatography shows the presence of 6-deoxy-4-epioxytetracycline.

Eksempel 12. Example 12.

Til 1,0 gr tetracyclin-hydroklorid tilsettes 0,13 gr borsyre oppløst i 28 ml av en 1 til 1 blanding av dimetylformamidvann. pH reguleres til 2,1 med saltsyre. Til 13 ml av denne oppløsning tilsettes 0,75 gr av 5 pst. palladium på kullstoff. Blandingen anbringes i en rustfri stålbombe og man lar den reagere med hydrogen ved et trykk av 134 kg/cm- i 80 min. Blandingen filtreres og det uoppløselige vaskes med vann. Spektrofotometriske undersøkelser av reduk-sjonsfiltratet viser tilstedeværelsen av 6-d eoksytetracyclin. To 1.0 g of tetracycline hydrochloride is added 0.13 g of boric acid dissolved in 28 ml of a 1 to 1 mixture of dimethylformamide water. The pH is adjusted to 2.1 with hydrochloric acid. To 13 ml of this solution is added 0.75 g of 5% palladium on charcoal. The mixture is placed in a stainless steel bomb and allowed to react with hydrogen at a pressure of 134 kg/cm- for 80 min. The mixture is filtered and the insoluble matter is washed with water. Spectrophotometric examinations of the reduction filtrate show the presence of 6-deoxytetracycline.

Eksempel 13. Example 13.

Fremgangsmåten etter eksempel 1 anvendes med unntagelse av at der anvendes klortetracyclin-hydroklorid som utgangs-material istedenfor tetracyclinhydroklor-idet. Klortetracyclin-hydrokloridet tilsettes til 15 ml av en 50 : 50 blanding av dimetylformamid og vann og hydrogeneringen utføres som i eksempel 1 inntil der er blitt absorbert 2 mol hydrogen. Kromato-grafisk undersøkelse av produktet viser tilstedeværelsen av 6-deoksytetracyclin. The procedure according to example 1 is used with the exception that chlortetracycline hydrochloride is used as starting material instead of the tetracycline hydrochloride. The chlortetracycline hydrochloride is added to 15 ml of a 50:50 mixture of dimethylformamide and water and the hydrogenation is carried out as in example 1 until 2 moles of hydrogen have been absorbed. Chromatographic examination of the product shows the presence of 6-deoxytetracycline.

Eksempel 14. Example 14.

Til 4 ml av en oppløsningsmiddelopp-løsning, fremstilt ved å blande 25 ml av dimetylformamid, 25 ml vann, 32,5 mg borsyre og en dråpe perklorsyre tilsettes 5,67 mg av 4-epioksytetracyclin nøytral (J.A.C.S. 79, 2849 (1957)). 7 mg av 5 pst. palladium på kullstoff tilsettes, og blandingen bringes i kontakt med hydrogen ved et trykk av 2,1 kg/cm- i 6 timer. Papirkromato-grafiske og spektrofotometriske analyser viser tilstedeværelsen av 6-deoksy-4-epioksytetracyclin. To 4 ml of a solvent solution prepared by mixing 25 ml of dimethylformamide, 25 ml of water, 32.5 mg of boric acid and one drop of perchloric acid is added 5.67 mg of 4-epioxytetracycline neutral (J.A.C.S. 79, 2849 (1957)) . 7 mg of 5% palladium on carbon is added, and the mixture is brought into contact with hydrogen at a pressure of 2.1 kg/cm- for 6 hours. Paper chromatographic and spectrophotometric analyzes show the presence of 6-deoxy-4-epioxytetracycline.

Eksempel 15. Example 15.

Til 4 ml av en oppløsningsmiddelopp-løsning, fremstilt ved å blande 25 ml dimetylformamid, 25 ml vann, 32,5 mg borsyre og en dråpe perklorsyre, tilsettes 5,0 mg av 4-epibromtetracyclin ammonium salt (J.A. C.S 79, 2849 (1957)). 7 mg av 5 pst. palladium på kullstoff tilsettes, og blandingen bringes i kontakt med hydrogen ved et trykk av 2,1 kg/cm- i 6 timer. Papirkro-matografiske og spektrofotometriske analyser viser tilstedeværelsen av 6-deoksy-4-epitetracyclin. To 4 ml of a solvent solution, prepared by mixing 25 ml of dimethylformamide, 25 ml of water, 32.5 mg of boric acid and one drop of perchloric acid, is added 5.0 mg of 4-epibromotetracycline ammonium salt (J.A. C.S 79, 2849 (1957) ). 7 mg of 5% palladium on carbon is added, and the mixture is brought into contact with hydrogen at a pressure of 2.1 kg/cm- for 6 hours. Paper chromatography and spectrophotometric analyzes show the presence of 6-deoxy-4-epitetracycline.

Eksempel 16. Example 16.

Til 4 ml av en oppløsningsmiddelopp-løsning fremstilt ved å blande 25 ml dimetylformamid, 25 ml vann, 32,5 mg borsyre og en dråpe perklorsyre, tilsettes 5,0 mg av 4-epiklortetracyclin hydroklorid (J. A.C.S. 79, 2849 (1957)). 7 mg av 5 pst. palladium på kullstoff tilsettes, og blandingen bringes i kontakt med hydrogen ved et trykk på 2,1 kg/cm- i 7 timer. Papirkro-matografiske og spektrofotometriske analyser viser tilstedeværelsen av 6-deoksy-4-epitetracyclin. To 4 ml of a solvent solution prepared by mixing 25 ml of dimethylformamide, 25 ml of water, 32.5 mg of boric acid and one drop of perchloric acid, is added 5.0 mg of 4-epichlorotetracycline hydrochloride (J. A.C.S. 79, 2849 (1957)). 7 mg of 5% palladium on carbon is added, and the mixture is brought into contact with hydrogen at a pressure of 2.1 kg/cm - for 7 hours. Paper chromatography and spectrophotometric analyzes show the presence of 6-deoxy-4-epitetracycline.

Eksempel 17. Example 17.

Til 4 ml av en oppløsning, fremstilt ved å blande 25 ml dimetylformamid, 25 ml vann, 32,5 mg borsyre og en dråpe perklorsyre, tilsettes 6,0 mg bromtetracyclin. 7 mg av 5 pst. palladium på kullstoff tilsettes, og blandingen bringes i kontakt med hydrogen ved 2,1 kg/cm- i 6 timer. Papir-kromatografisk og spektrofotometrisk analyse viser tilstedeværelsen av 6-deoksytetracyclin. To 4 ml of a solution prepared by mixing 25 ml of dimethylformamide, 25 ml of water, 32.5 mg of boric acid and one drop of perchloric acid, 6.0 mg of bromotetracycline is added. 7 mg of 5% palladium on carbon is added, and the mixture is brought into contact with hydrogen at 2.1 kg/cm - for 6 hours. Paper chromatographic and spectrophotometric analysis shows the presence of 6-deoxytetracycline.

Eksempel 18. Example 18.

Til 4 ml av en oppløsning, fremstilt ved å blande 25 ml dimetylformamid, 25 ml vann, 32,5 mg borsyre og en dråpe perklorsyre, tilsettes 5,0 mg av 4-epitetracyclin (J.A.C.S. 79, 2849, (1957)). 7 mg av 5 pst. palladium på kullstoff tilsettes, og blandingen bringes i kontakt med hydrogen To 4 ml of a solution, prepared by mixing 25 ml of dimethylformamide, 25 ml of water, 32.5 mg of boric acid and one drop of perchloric acid, is added 5.0 mg of 4-epitetracycline (J.A.C.S. 79, 2849, (1957)). 7 mg of 5% palladium on carbon is added, and the mixture is brought into contact with hydrogen

ved 2,1 kg/cm<2> i 4 timer. Papirkromato-grafisk og spektrofotometrisk analyse viser at 2.1 kg/cm<2> for 4 hours. Paper chromatographic and spectrophotometric analysis shows

tilstedeværelen av 6-deoksy-4-epi-tetracyclin. the presence of 6-deoxy-4-epi-tetracycline.

Claims (5)

Fremgangsmåte for å fremstille 6-de-Dksytetracycliner med formelen:Procedure for preparing 6-de-Doxytetracyclines of the formula: hvor Rl er hydrogen eller hydroksy og saltes og kompleksforbindelser herav, karakterisert ved at en oppløsning av tetracyclin, klortetracyclin, bromtetracyclin eller oksytetracyclin eller 4-epimeret av en slik forbindelse i et polart inert oppløsnings-middel hydreres katalytisk, fortrinnsvis ved hjelp av en katalysator av platina-gruppen på benkull, i nærvær av en substans som er i stand til å danne en chelatring med et peri-dioksygenert hydronaftalin, om ønskes bringes det erholdte 6-deoksytetracyclin i oppløsning til å reagere med en syre eller base eller med en kompleksdannende forbindelse. where Rl is hydrogen or hydroxy and salts and complex compounds thereof, characterized in that a solution of tetracycline, chlortetracycline, bromotetracycline or oxytetracycline or the 4-epimer of such a compound in a polar inert solvent is catalytically hydrogenated, preferably with the aid of a catalyst of the platinum group on bone charcoal, in the presence of a substance capable of forming a chelate ring with a peri-dioxygenated hydronaphthalene, if desired the resulting 6-deoxytetracycline is brought into solution to react with an acid or base or with a complexing compound . 2. Fremgangsmåte som angitt i påstand 1, karakterisert ved at katalysator-konsentrasjonen er 1 det minste 5 vektsprosent av det anvendte tetracyclin. 2. Method as stated in claim 1, characterized in that the catalyst concentration is 1 at least 5% by weight of the tetracycline used. 3. Fremgangsmåte som angitt i påstandene 1—2, karakterisert ved at reduk- sjonen fortsettes inntil omtrent 1 mol hydrogen er blitt absorbert for hvert mol tetracyclin eller oksytetracyclin eller omtrent 2 mol for hvert mol klortetracyclin eller bromtetracyclin. 3. Method as stated in claims 1-2, characterized in that the reduction is continued until approximately 1 mol hydrogen has been absorbed for each mole of tetracycline or oxytetracycline or about 2 moles for each mole of chlortetracycline or bromotetracycline. 4. Fremgangsmåte som angitt i hvil-ken som helst av påstandene 1 til 3, karakterisert ved at nevnte substans som er i stand til å danne en chelatring, er borsyre eller et bortrihalogenid. 4. Method as stated in any one of claims 1 to 3, characterized in that said substance capable of forming a chelate ring is boric acid or a boron trihalide. 5. Modifikasjon av fremgangsmåten i henhold til påstand 1 for fremstilling av 4-epimere av 6-deoksytetracycliner med den generelle formel I, karakterisert ved at man regulerer en konsentrert oppløsning av nevnte 6-deoksytetracyclin til et pH av omkring 3,0 til 5,0, fortrinnsvis 3,5—4,5, og lar oppløsningen henstå inntil isomer-isingen har nådd likevekt.5. Modification of the method according to claim 1 for the production of 4-epimers of 6-deoxytetracyclines with the general formula I, characterized in that a concentrated solution of said 6-deoxytetracycline is adjusted to a pH of about 3.0 to 5, 0, preferably 3.5-4.5, and allow the solution to stand until the isomer ice has reached equilibrium.
NO683796A 1967-09-26 1968-09-26 NO127049B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT875267A AT276262B (en) 1967-09-26 1967-09-26 Mixing unit for introducing any additional substances as secondary components into liquids or stationary waters, in particular for the biological purification of water
AT644268A AT286890B (en) 1968-07-04 1968-07-04 Mixing unit for the introduction of any additional substances as secondary components in liquids or in stationary waters, in particular for the biological purification of water

Publications (1)

Publication Number Publication Date
NO127049B true NO127049B (en) 1973-04-30

Family

ID=25603088

Family Applications (1)

Application Number Title Priority Date Filing Date
NO683796A NO127049B (en) 1967-09-26 1968-09-26

Country Status (4)

Country Link
BE (1) BE721313A (en)
DK (1) DK131235B (en)
NO (1) NO127049B (en)
SE (1) SE351198B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979000864A1 (en) * 1978-03-31 1979-11-01 Sala International Ab An arrangement in apparatus for mixing gases with and dissolving gases in liquids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1060786B1 (en) * 1999-06-15 2004-04-14 Pfaudler Werke GmbH Charging assembly for mixing vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979000864A1 (en) * 1978-03-31 1979-11-01 Sala International Ab An arrangement in apparatus for mixing gases with and dissolving gases in liquids

Also Published As

Publication number Publication date
SE351198B (en) 1972-11-20
BE721313A (en) 1969-03-03
DK131235C (en) 1975-11-17
DK131235B (en) 1975-06-16

Similar Documents

Publication Publication Date Title
US2699054A (en) Tetracycline
US3338963A (en) Tetracycline compounds
US3019260A (en) Process for the catalytic reduction of 6-hydroxy hydronaphthacenes
US2498574A (en) Dihydrostreptomycin and acid addition salts
US2984686A (en) 6-deoxy-6-demethyl-6-methylene-5-oxytetracyclines
CH397657A (en) Process for the preparation of tetracycline compounds
US3975372A (en) Preparation of 12,13-desepoxy-12,13-dehydrorosamicin
NO127049B (en)
US3250809A (en) 6-deoxy-6-demethyl-6-halomethylene tetracyclines and their 11a-chloro and fluoro derivatives
Green et al. Chemistry of the tetracycline antibiotics. III. 12a-Deoxytetracycline
AT206434B (en) Process for the preparation of the new 6-desmethyl-6-deoxytetracycline or its 4-epimers, as well as their salts and complex compounds
US3160661A (en) 6-deoxytetracyclines
US2786077A (en) Desdimethylaminotetracyclines and process
US3047617A (en) Alkanoic acid esters of 5-hydroxytetracycline and process for preparation
EP0634995B1 (en) Process and intermediate for the purification of oxytetracycline
DE2816052A1 (en) DEGRADATION PRODUCTS OF THE ANTIBIOTICS RUBRADIRIN AND RUBRADIRIN B AND THE PROCESS FOR THEIR PRODUCTION
SU574144A3 (en) Method of preparing w-isonitrosoacetophenone de rivatives
US3047626A (en) 4-desdimethylamino-6-deoxy-tetracycline derivatives
US2871264A (en) Tetracycline extractions
NO127048B (en)
US3936526A (en) Alkyl esters of polyene antibiotics
DE953974C (en) Process for the preparation of acidic dicarboxylic acid esters of erythromycin
US3146265A (en) 6-deoxy-6-hydroperoxy dehydrotetracyclines and process utilizing the same
US2841596A (en) Cyclic ketones
US3111523A (en) Glutarimide compounds and methods for their production