NO126862B - - Google Patents

Download PDF

Info

Publication number
NO126862B
NO126862B NO00166327A NO16632767A NO126862B NO 126862 B NO126862 B NO 126862B NO 00166327 A NO00166327 A NO 00166327A NO 16632767 A NO16632767 A NO 16632767A NO 126862 B NO126862 B NO 126862B
Authority
NO
Norway
Prior art keywords
edge
hub
towards
thickness
blade
Prior art date
Application number
NO00166327A
Other languages
Norwegian (no)
Inventor
Hisao Yamamoto
Masaru Nakao
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of NO126862B publication Critical patent/NO126862B/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/26Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an acyl radical attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/061Tipping system, e.g. by rotation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Hydraulic Turbines (AREA)

Description

Fremgangsmåte til fremstilling av løpehjul for francisturbiner, Process for manufacturing impellers for francis turbines,

samt løpehjul fremstilt etter fremgangsmåten. as well as impellers manufactured according to the method.

Det er tidligere kjent å fremstille løpe-hjul for francisturbiner på den måte at skovlene fremstilles for seg og bearbeides ferdig i rett tilstand samt deretter bøyes til sin endelige form og gjøres fast til nav og krans. Ved disse såkalte fabrikerte løpehjul fremstilles skovlene vanligvis av valset plate, som enten er jevntykke eller skrått-valset, i det siste tilfelle med avtagende tykkelse fra nav mot krans. På den annen side er det også allerede foreslått å fremstille hver skovl som et separat, rett støpe-stykke med strømlinjeformet eller såkalt fiskeformet profil. Ved anvendelse av pla-ter har man fordelen av plane flater, som lett lar seg bearbeide, og ved en støpt skovl har man fordelen av en riktig formgivning som gir god hydraulisk virkningsgrad og lite materialspill ved bearbeidelsen, men også ulempen ved at de krumme flater er vanskelige å bearbeide maskinelt. Den fore-liggende oppfinnelse går ut på en mellom-form, hvorved man søker såvidt mulig å kombinere fordelene ved begge de kjente metoder uten at deres ulemper samtidig gjør seg merkbart gjeldende. Dette oppnås ved anvendelse av fremgangsmåten ifølge oppfinnelsen, som vesentlig karakteriseres ved at skovlene støpes med flatsider, som på mindre kantpartier nær er helt plane, og som danner en liten vinkel med hverandre, idet skovlens tykkelse avtar lineært såvel i retningen fra den kant som skal danne innløpskant i det ferdige løpehjul, som i retningen fra den kant som skal gjø-res fast i navet, mot den kant som skal gjø-res fast til kransen. Ved denne fremstil-lingsmåte blir bearbeidelsen av flatene i høy grad lettet på grunn av de store plane flater, samtidig som det bare behøves å skjære bort meget lite gods og skovlen får en form som oppfyller kravene med hensyn til hydraulisk virkningsgrad og fasthet i forskjellige punkter, og som bare inne-bærer en ubetydelig avvikelse fra den teo-retisk fullkomne form. It is previously known to manufacture impellers for Francis turbines in such a way that the blades are manufactured separately and finished in the correct condition and then bent to their final shape and fixed to the hub and rim. In the case of these so-called fabricated impellers, the vanes are usually made of rolled plate, which is either of uniform thickness or slant-rolled, in the latter case with decreasing thickness from hub to rim. On the other hand, it has also already been proposed to produce each blade as a separate, straight casting with a streamlined or so-called fish-shaped profile. When using plates, you have the advantage of flat surfaces, which can be easily machined, and with a cast shovel, you have the advantage of a correct design that gives good hydraulic efficiency and little material loss during processing, but also the disadvantage that the curved surfaces are difficult to machine. The present invention is based on an intermediate form, whereby one seeks as far as possible to combine the advantages of both known methods without their disadvantages at the same time making themselves noticeable. This is achieved by using the method according to the invention, which is essentially characterized by the fact that the blades are cast with flat sides, which on smaller edge parts are almost completely flat, and which form a small angle with each other, as the thickness of the blade decreases linearly both in the direction from the edge to be form an inlet edge in the finished impeller, as in the direction from the edge to be fixed in the hub, towards the edge to be fixed to the rim. With this manufacturing method, the processing of the surfaces is greatly facilitated due to the large flat surfaces, at the same time that only very little material needs to be cut away and the shovel is given a shape that meets the requirements with regard to hydraulic efficiency and firmness at various points , and which only involves an insignificant deviation from the theoretically perfect form.

Oppfinnelsen går også ut på et løpe-hjul for en francisturbin, fremstilt etter den ovenfor angitte fremgangsmåte. Dette løpehjul er karakterisert ved at skovlene har en tykkelse som over praktisk talt hele skovlen avtar lineært såvel i retningen fra innløpskanten mot avløpskanten som i retningen fra navet mot kransen. The invention also relates to an impeller for a Francis turbine, produced according to the above-mentioned method. This impeller is characterized by the blades having a thickness that decreases linearly over practically the entire blade both in the direction from the inlet edge towards the outlet edge and in the direction from the hub towards the rim.

Oppfinnelsen skal i det følgende be-skrives nærmere under henvisning til teg-ningen som viser forskjellige stadier av fremstillingen av et løpehjul ifølge oppfinnelsen. Fig. 1—4 viser formen av den støpte skovl innen den bøyes, idet fig. 1 er et grunnriss, fig. 2 et kantriss sett etter linjen II— II på fig. 1, fig. 3 et kantriss etter linjen III— III på fig. 1, og fig. 4 et perspektivriss. Fig. 5 er et perspektivriss som viser formen av skovlene etter bøyning, og hvor-ledes de innsettes mellom løpehjulets nav og krans. In the following, the invention will be described in more detail with reference to the drawing which shows various stages of the production of an impeller according to the invention. Fig. 1-4 show the shape of the molded blade before it is bent, as fig. 1 is a ground plan, fig. 2 a border view seen along the line II—II in fig. 1, fig. 3 a border view along the line III—III in fig. 1, and fig. 4 a perspective drawing. Fig. 5 is a perspective view showing the shape of the vanes after bending, and how they are inserted between the hub and rim of the impeller.

Francisløpehjulet ifølge oppfinnelsen settes sammen av et nav 11, en krans 13 og et antall separat fremstilte skovler 15. Hver skovl fremstilles av et særskilt støpe-stykke, som umiddelbart etter støpningen har den form som er vist på fig. 1—4. Det begrenses således av to store flate sider 17, The Francis impeller according to the invention is assembled from a hub 11, a rim 13 and a number of separately produced vanes 15. Each vane is produced from a separate casting piece, which immediately after casting has the shape shown in fig. 1—4. It is thus limited by two large flat sides 17,

19 og fire smale kantflater 21, 23, 25 og 27. Kantflaten 21 som skal danne skovlens inn- 19 and four narrow edge surfaces 21, 23, 25 and 27. The edge surface 21 which will form the blade's in-

løpskant og kantflaten 23 dens avløpskant. running edge and the edge surface 23 its trailing edge.

Ved kantflaten 25 skal skovlen forbindes At the edge surface 25, the blade must be connected

med navet 11, og ved kantflaten 27 med kransen 13. Kantflaten 21 er rett i sin lengderetning, men er omtrent halvelliptisk krummet i tverr-retningen, slik at den går glatt over i de flate sider 17 og 19, mens de andre kantflater er omtrent plane i sin bredderetning og danner skarpe hjørner med flatsidene. Når man unntar visse kant- with the hub 11, and at the edge surface 27 with the rim 13. The edge surface 21 is straight in its longitudinal direction, but is approximately semi-elliptical curved in the transverse direction, so that it smoothly transitions into the flat sides 17 and 19, while the other edge surfaces are approximately plane in its width direction and form sharp corners with the flat sides. When excluding certain edge-

partier, spesielt langs kantene 21 og 23, er de flate sider 17, 19 helt plane, men har naturligvis den ved støpegods vanlige grove overflatestruktur. Hver flatside ligger med stor nøyaktighet i ett og samme plan på parts, especially along the edges 21 and 23, the flat sides 17, 19 are completely flat, but naturally have the usual rough surface structure of castings. Each flat side lies with great accuracy in one and the same plane

minst 80 å 90 pst. og ofte opp til 95 pst. at least 80 to 90 per cent and often up to 95 per cent.

av sitt areal. Flatsidene danner en liten vinkel med hverandre, og skovlens tykkelse er derfor ikke konstant, men varierer line- of its area. The flat sides form a small angle with each other, and the thickness of the blade is therefore not constant, but varies linearly.

ært langs en vilkårlig rett linje i fla- ered along an arbitrary straight line in the flat

ten. Tykkelsen av skovlen avtar såvel fra kanten 21 i retning mot kanten 23 som. fra kanten 25 i retning mot kanten 27. Den førstnevnte minskning av tykkelsen henger sammen med at man av hensyn til risikoen for hvirvler ved vannets strømning langs skovlflatene i den arbeidende turbin vil la skovltykkelsen avta svakt mot avløpskan- ten. The thickness of the blade decreases both from the edge 21 in the direction towards the edge 23 and. from the edge 25 in the direction of the edge 27. The first-mentioned reduction in thickness is connected with the fact that, due to the risk of eddies when the water flows along the blade surfaces in the working turbine, the blade thickness will decrease slightly towards the outlet

ten, og den sistnevnte minskning av tyk- ten, and the latter reduction in thickness

kelsen er betinget av fasthetshensyn, idet de deler av skovlen som befinner seg nær- the movement is conditioned by considerations of firmness, as the parts of the blade that are close to

mest kransen, er mindre påkjent enn de deler som befinner seg nærmere navet, som jo skal overføre drivmomentet til akselen. mostly the rim, is less stressed than the parts that are closer to the hub, which must transmit the driving torque to the axle.

Den nevnte variasjon av tykkelsen fremgår The aforementioned variation in thickness is evident

spesielt tydelig av fig. 4, hvor skovlen med strekprikkede linjer er vist innskrevet i et dobbelt-kileformet legeme begrenset av seks plan. Skovlens midtplan 25 og dens skjæringslinjer med kantflåtene er også particularly evident from fig. 4, where the vane is shown with dotted lines inscribed in a double-wedge-shaped body bounded by six planes. The midplane 25 of the blade and its lines of intersection with the edge fins are also

antydet på denne figur, og man ser at skov- hinted at in this figure, and one can see that forest

len er symmetrisk om midtplanet. len is symmetrical about the midplane.

Støpningen av et skovlemne av den The casting of a shovel blank of it

beskrevne rette form blir betydelig forenk- described correct form is significantly simplified

let sammenlignet med støpningen av en krum skovl. På grunn av de store plane flater er modellen lett å fremstille, og vi- easy compared to the casting of a curved shovel. Due to the large flat surfaces, the model is easy to manufacture, and we

dere medfører den valgte formgivning at volumet av såvel støpekasser som form- the chosen design means that the volume of both the mold boxes and the

masse minskes til et minimum. mass is reduced to a minimum.

Etter at den ferdigstøpte skovl er ren- After the cast bucket is clean-

set og varmebehandlet, blir dens overflate bearbeidet. Den overveiende del av dette arbeide utføres maskinelt, og man kan her- set and heat treated, its surface is machined. The predominant part of this work is carried out mechanically, and one can here-

til anvende maskiner som i høy grad ar- to use machines that are highly

beider automatisk, men allikevel har enkel konstruksjon. F. eks. kan skovlen spennes fast og på et bord som er bevegelig i to på works automatically, but still has a simple construction. For example the bucket can be clamped and on a table that can be moved in two on

hverandre loddrette retninger, og som fremmates slik at et stillestående verktøy, mutually perpendicular directions, and which are advanced so that a stationary tool,

f. eks. et høvelstål, et freseverktøy og frem- e.g. a planing steel, a milling tool and pro-

for alt en roterende slipetrinse, suksessivt bearbeider alle de deler av den oppadven- for everything a rotating grinding wheel, successively processes all the parts of the upward

dende skovlside som tilhører det plane parti. De relativt begrensende kantsoner av skovlens flatsider samt dens kantsider bearbeides med håndverktøy. De skarpe hjørner mellom kantflaten 23 og flatsidene freses bort, slik at kanten blir avrundet el- dende vane side belonging to the flat part. The relatively limiting edge zones of the blade's flat sides as well as its edge sides are machined with hand tools. The sharp corners between the edge surface 23 and the flat sides are milled away, so that the edge is rounded off

ler tilspisset, og kanten slipes sluttelig ved anvendelse av en håndslipemaskin. Kant- sharpened to a point, and the edge is finally ground using a hand sander. Edge-

flåtene 25, 27 jevnes av og hjørnene av- the rafts 25, 27 are leveled off and the corners off-

fases for å levne plass til senere anbragte sveisefuger. phased to leave room for later placed welding joints.

Den således ferdig bearbeidede skovl The thus fully processed shovel

plaseres deretter mellom formblokker i en kraftig hydraulisk presse og bøyes til den endelige form som den skal ha i det ferdige løpehjul. Den skarpeste krumning skjer herunder på de linjer av flaten som lig- is then placed between mold blocks in a powerful hydraulic press and bent to the final shape that it will have in the finished impeller. The sharpest curvature occurs below on the lines of the surface that

ger parallelt med kanten 21, mens linjer i rett vinkel til denne kant forblir praktisk talt rette eller har meget svak krumning. Formpressingen skjer således uten noen parallel to the edge 21, while lines at right angles to this edge remain practically straight or have very slight curvature. The compression molding thus takes place without anyone

egentlig strekning i materialet. actual stretch in the material.

Når skovlformen er kontrollert og When the blade shape is controlled and

eventuelt justert, innsettes skovlen mellom navet og kransen på den måte som er vist på fig. 5, og festes til disse deler ved sveis- possibly adjusted, insert the vane between the hub and the rim in the manner shown in fig. 5, and is attached to these parts by welding

ning. De på forhånd tilveiebragte avfas- nothing. The previously provided off-

ninger ved kantene 25 og 27 blir herunder utfylt med sveisefuger. Når alle skovlene er sveiset fast, er løpehjulet ferdig. Sveise- nings at the edges 25 and 27 are then filled with welding joints. When all the vanes are welded in place, the impeller is complete. welding

fugene kan komme til å måtte avj evnes men dette er også den eneste slipning som behøver å foretas på det sammensatte løpe- the joints may have to be sanded, but this is also the only sanding that needs to be done on the composite running

hjul. wheel.

Som det fremgår av den ovenstående beskrivelse, medfører den valgte skovlform med lineært foranderlig godstykkelse over praktisk talt hele skovlflaten en enkel og billig fremstilling. As can be seen from the above description, the selected blade shape with linearly variable material thickness over practically the entire blade surface results in a simple and inexpensive manufacture.

Claims (2)

1. Fremgangsmåte til fremstilling av løpehjul for francisturbiner, hvor skovlene fremstilles for seg og bearbeides ferdig i rett tilstand, samt deretter bøyes og gjøres fast til nav og krans, karakterisert ved at skovlene støpes med flatsider (17, 19) som er helt plane så nær som på mindre kant-1. Method for the production of impellers for Francis turbines, where the blades are produced separately and finished in the correct condition, and then bent and fixed to the hub and rim, characterized by the blades being cast with flat sides (17, 19) which are completely flat so near as on smaller edge- partier, og som danner en liten vinkel med hverandre, og det slik at skovlens tykkelseparts, and which form a small angle with each other, and so that the thickness of the blade avtar lineært såvel i retning fra den kant (21) som skal danne innløpskant i det ferdige løpehjul, mot den kant (23) som skal danne avløpskant, som i retning fra den kant (25) som skal gjøres fast til navet, mot den kant (27) som skal gjøres fast til kransen.decreases linearly both in the direction from the edge (21) which is to form the inlet edge in the finished impeller, towards the edge (23) which is to form the outlet edge, and in the direction from the edge (25) which is to be fixed to the hub, towards that edge (27) which must be fixed to the wreath. 2. Løpehjul for francisturbin, fremstilt ifølge fremgangsmåten som angitt i på-2. Impeller for francis turbine, produced according to the procedure as stated in stand 1, karakterisert ved at skovlene har en tykkelse som over praktisk talt hele skovlen avtar lineært såvel i retning fra innløpskanten (21) mot avløpskanten (23) som i retning fra navet (11) mot kransen (13).condition 1, characterized in that the vanes have a thickness which over practically the entire vane decreases linearly both in the direction from the inlet edge (21) towards the outlet edge (23) and in the direction from the hub (11) towards the rim (13).
NO00166327A 1966-01-12 1967-01-10 NO126862B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP199966 1966-01-12
JP2730066 1966-04-28
JP2730166 1966-04-28
JP2812566 1966-05-02
JP2840066 1966-05-04
JP4059166 1966-06-21
JP4472466 1966-07-08
JP4472366 1966-07-08
JP5467566 1966-08-19
JP5467466 1966-08-19

Publications (1)

Publication Number Publication Date
NO126862B true NO126862B (en) 1973-04-02

Family

ID=27579471

Family Applications (3)

Application Number Title Priority Date Filing Date
NO00166327A NO126862B (en) 1966-01-12 1967-01-10
NO00595/71A NO126865B (en) 1966-01-12 1971-02-18
NO00594/71A NO126864B (en) 1966-01-12 1971-02-18

Family Applications After (2)

Application Number Title Priority Date Filing Date
NO00595/71A NO126865B (en) 1966-01-12 1971-02-18
NO00594/71A NO126864B (en) 1966-01-12 1971-02-18

Country Status (13)

Country Link
AT (4) AT283349B (en)
BE (1) BE692456A (en)
BR (1) BR6786134D0 (en)
CS (3) CS155157B2 (en)
DE (2) DE1620441C3 (en)
DK (1) DK134715B (en)
FI (1) FI49162C (en)
FR (1) FR7844M (en)
IL (1) IL27173A (en)
NL (1) NL146804B (en)
NO (3) NO126862B (en)
SE (2) SE314985B (en)
SU (1) SU375847A3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU162374B (en) * 1969-04-03 1973-02-28
CZ300116B6 (en) * 2006-12-05 2009-02-11 Zentiva, A. S. Purification process of (S)-N-methyl-3-(1-naphtyloxy)-3-(2-thienyl) propylamine hydrochloride

Also Published As

Publication number Publication date
NL6700300A (en) 1967-07-13
CS155157B2 (en) 1974-05-30
DE1620441B2 (en) 1974-09-19
SE314985B (en) 1969-09-22
BR6786134D0 (en) 1973-12-26
DE1618933A1 (en) 1972-03-16
NL146804B (en) 1975-08-15
FI49162C (en) 1975-04-10
SU375847A3 (en) 1973-03-23
CS155158B2 (en) 1974-05-30
DK134715B (en) 1977-01-03
DE1620441A1 (en) 1970-08-27
BE692456A (en) 1967-06-16
DE1643506B2 (en) 1973-01-04
AT283349B (en) 1970-08-10
NO126865B (en) 1973-04-02
DE1620441C3 (en) 1975-05-22
FR7844M (en) 1970-06-01
CS155156B2 (en) 1974-05-30
AT277995B (en) 1970-01-12
IL27173A (en) 1972-08-30
DK134715C (en) 1977-05-31
NO126864B (en) 1973-04-02
DE1643506A1 (en) 1972-03-30
AT277996B (en) 1970-01-12
SE307795B (en) 1969-01-20
AT280991B (en) 1970-05-11

Similar Documents

Publication Publication Date Title
CN101774039B (en) Five-shaft high-speed processing method of large aluminum alloy propeller blades
CN105269277B (en) A kind of aero-engine compressor circle-arc tooth tenon blade machining process
CN103706817B (en) A kind of Novel integral multistage hub rotor unit deep cavity process tool and method thereof
CN109352048B (en) Spatial dead axle milling method for integral titanium alloy air compressing impeller
CN110653579A (en) Method for manufacturing closed impeller with narrow flow passage
NO126862B (en)
CN104439468A (en) Milling cutter suitable for layered milling forming process of integral leaf disk structural profile
CN109277584B (en) High-efficiency turning method for high-temperature alloy integral impeller
CN108098278A (en) A kind of processing method with robotic milling marine propeller blade
CN103723260A (en) Marine propeller
CN116944395A (en) Non-tangential transfer fillet precision forging blade and manufacturing method
CN106312095A (en) Front side finish machining and reversing turning deburring process invention for cast aluminum alloy hub
CN105057778B (en) Chamfering built-up broach inside and outside a kind of whole hard alloy
CN109623291B (en) Numerical control programming method for rough machining of gas inlet and outlet edges of blade
CN207494644U (en) A kind of automotive upholstery processes special left-hand screw single blade milling cutter
CN104669077B (en) A kind of method of processing broaching tool side edge relief angle
CN206997867U (en) Type face processes cydariform alloy milling cutter
US2087243A (en) Propeller
CN107243668A (en) The method of cydariform alloy milling cutter and processing with different incline direction type faces
CN113909814A (en) Method for machining impeller disc of high-head water pump turbine
CN107253025A (en) A kind of impeller manufacture method
US1965622A (en) Method of making propeller blades
CN206104990U (en) Brake cylinder processes combination cutting tool
CN111037242A (en) Finish machining method for ternary impeller
CN206840326U (en) Tool changing formula planing tool modelled after an antique