NO126132B - - Google Patents

Download PDF

Info

Publication number
NO126132B
NO126132B NO0471/68A NO47168A NO126132B NO 126132 B NO126132 B NO 126132B NO 0471/68 A NO0471/68 A NO 0471/68A NO 47168 A NO47168 A NO 47168A NO 126132 B NO126132 B NO 126132B
Authority
NO
Norway
Prior art keywords
reaction
water
amalgam
quaternary ammonium
acrylonitrile
Prior art date
Application number
NO0471/68A
Other languages
Norwegian (no)
Inventor
Y Arad
M Levy
D Vofsi
Original Assignee
Ucb Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ucb Sa filed Critical Ucb Sa
Publication of NO126132B publication Critical patent/NO126132B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/03Mononitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/04Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton containing two cyano groups bound to the carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte ved hydrodimerisering av acrylsyrederivater. Procedure for hydrodimerization of acrylic acid derivatives.

Foreliggende oppfinnelse angår hydrodimerisering av acrylsyrederivater, hvilken betegnelse i denne forbindelse omfatter acrylnitril, lavere-alkyl-acrylnitriler og lavere-alkyl-estere og amider av acryl- The present invention relates to the hydrodimerization of acrylic acid derivatives, which term in this connection includes acrylonitrile, lower alkyl acrylonitriles and lower alkyl esters and amides of acryl

syre, for dannelse av de tilsvarende funksjonelle derivater av adipin- acid, for the formation of the corresponding functional derivatives of adipine-

syre. acid.

Dimeriseringen kan være en hvor to molekyler av samme acryl-syrederivat kombineres til et symmetrisk adipinsyrederivat ("homodi-merisering") eller en hvor to forskjellige acrylsyrederivater kombi- The dimerization can be one in which two molecules of the same acrylic acid derivative combine to form a symmetrical adipic acid derivative ("homodimerization") or one in which two different acrylic acid derivatives combine

neres til asymmetriske adipinsyrederivater med forskjellige funksjo- are formed into asymmetric adipic acid derivatives with different func-

nelle grupper i de to kjedeender ("hetero-dimerisering"). nel groups at the two chain ends ("hetero-dimerization").

Adipinsyrederivatene som kan fremstilles ved fremgangsmåten The adipic acid derivatives which can be produced by the method

ifolge oppfinnelsen, egner seg som reaktanter ved fremstilling av polyamider av hvilke der vanligvis kan fremstilles syntetiske fibre according to the invention, are suitable as reactants in the production of polyamides from which synthetic fibers can usually be produced

og plaster. and plasters.

Hydrodimerisering av acrylsyrederivater er kjent. De frem-gangsmåter som hittil har vært anvendt, eller som har vært foreslått anvendt, kan inndeles i to grupper, nemlig: Hydrodimerization of acrylic acid derivatives is known. The methods that have been used so far, or that have been proposed to be used, can be divided into two groups, namely:

a) elektrolytisk hydrogenering a) electrolytic hydrogenation

b) reduksjon med alkalimetallamalgan. b) reduction with alkali metal amalgam.

De elektrolytiske prosesser krever spesielle elektrolyseceller, The electrolytic processes require special electrolysis cells,

og reguleringen av driften er teknisk sett komplisert. and the regulation of operations is technically complicated.

Amalgamprosessene er derimot lettere å utfore, og de medforer under visse betingelser betydelige tekniske fordeler sammenlignet med elektrolytisk hydrogenering. The amalgam processes, on the other hand, are easier to carry out, and under certain conditions they bring significant technical advantages compared to electrolytic hydrogenation.

I begge tilfeller blir utbyttet, beregnet på vekten av acrylsyrederivatet som anvendes som utgangsmateriale, påvirket ved at der dannes biprodukter, hvilke i de aller fleste tilfeller er uonskede. Dette skjer på den ene side ved reduksjon av acrylsyrederivatene uten dimerisering, hvorved der dannes propionsyrederivater, og på den annen side ved dannelse av polymerisater. In both cases, the yield, calculated on the weight of the acrylic acid derivative used as starting material, is affected by the formation of by-products, which in the vast majority of cases are unwanted. This occurs on the one hand by reduction of the acrylic acid derivatives without dimerisation, whereby propionic acid derivatives are formed, and on the other hand by the formation of polymers.

Denne oppfinnelse har som formål en forbedring av amalgam-hydrodimeriseringsprosessene med det for oye å oppnå gode utbytter av dimere, og dette på en meget enklere måte enn amalgamprosessene hittil har kunnet utfores. The purpose of this invention is an improvement of the amalgam hydrodimerization processes with the aim of achieving good yields of dimers, and this in a much simpler way than the amalgam processes have hitherto been able to carry out.

For å gjore hydrodimeriseringen av acrylnitril ved hjelp av alkalimetallamalgam mer effektiv har det vært foreslått å tilsette reaksjonsblandingen visse salter, bl.a. kvartære ammoniumsalter. In order to make the hydrodimerization of acrylonitrile by means of alkali metal amalgam more effective, it has been proposed to add certain salts to the reaction mixture, e.g. quaternary ammonium salts.

Som beskrevet i litteraturen utfores denne spesielle prosess under fortløpende regulering av reaksjonsblandingens pH-verdi innen området 7 - 10. Reguleringen av pH-verdien oppnåes ved langsom tilsetting av en syre, ved gjennombobling av CC^-gass eller ved tilsetting av et stort overskudd av puffer som forbrukes av det under reaksjonen frigjorte alkali.. Det er angitt i tidligere publikasjoner at der ved hoye pH-verdier dannes uonskede biprodukter som oxydipropionitril, og derfor foretrekkes det å arbeide i noytralt miljo. Denne kjente fremgangsmåte er beheftet med den dobbelte ulempe at den krever hoy konsentrasjon av de relativt kostbare kvartære ammoniumsalter, nemlig av størrelsesordenen 10 - k0% av reaksjonsblandingen, hvilke salter må gjenvinnes fra den brukte reaksjonsblanding for resirkulering, og at alkalimetallhydroxydet som frigjores fra amalgamet under reaksjonen, går tapt i form av et praktisk talt verdilost salt som der-til danner et uonsket bunnfall på faseskillet mellom kvikksølvet og reaksjonsvæsken og må fjernes derfra. As described in the literature, this special process is carried out with continuous regulation of the reaction mixture's pH value within the range 7 - 10. The regulation of the pH value is achieved by slowly adding an acid, by bubbling through CC^ gas or by adding a large excess of puffs that are consumed by the alkali released during the reaction. It has been stated in previous publications that at high pH values unwanted by-products such as oxydipropionitrile are formed, and therefore it is preferred to work in a neutral environment. This known method has the double disadvantage that it requires a high concentration of the relatively expensive quaternary ammonium salts, namely of the order of 10 - k0% of the reaction mixture, which salts must be recovered from the used reaction mixture for recycling, and that the alkali metal hydroxide that is released from the amalgam during the reaction, is lost in the form of a practically valueless salt which forms an unwanted precipitate on the phase separation between the mercury and the reaction liquid and must be removed from there.

Foreliggende oppfinnelse angår en fremgangsmåte ved hydrodimerisering av acrylnitril, acrylnitriler substituert med lavere alkylradikaler, lavere alkylestere og amider av acrylsyre ved om- The present invention relates to a method for the hydrodimerization of acrylonitrile, acrylonitriles substituted with lower alkyl radicals, lower alkyl esters and amides of acrylic acid by re-

setning av disse med et alkalimetallamalgam i nærvær av en kvartær ammoniumforbindelse og vann, hvilken fremgangsmåte utmerker seg ved at reaksjonen utfores i et reaksjonsmiljo omfattende en ether eller , tertiær alkohol med 1-6 carbonatomer, og som er meget lite polart og i det minste delvis er blandbar med vann, og som inneholder en fri kvartær ammoniumbase, og hvor reaksjonen utfores ved den grad 'av alkalinitet som oppstår under reaksjonen. setting these with an alkali metal amalgam in the presence of a quaternary ammonium compound and water, which method is characterized by the fact that the reaction is carried out in a reaction medium comprising an ether or, tertiary alcohol with 1-6 carbon atoms, and which is very slightly polar and at least partially is miscible with water, and which contains a free quaternary ammonium base, and where the reaction is carried out at the degree of alkalinity that occurs during the reaction.

Ingen spesielle betingelser utenom tilsetningen av en kvar-ternær ammoniumbase er nodvendig. Basen akselererer dimeriserings-reaksjonen men ikke bireaksjoner som f.eks. cyanoethylering. På denne måte spiller bireaksjonene en neglisjerbar rolle. Når reduksjonen av acrylnitril ved hjelp av natriumamalgam ble utfort i en ether som f.eks. tetrahydrofuran, dioxan eller diglym i nærvær av vann som protondonor var hovedproduktet propionitril, og bare en mindre mengde adiponitril ble dannet. Når imidlertid en base som f.eks. tetra-ethylammoniumhydroxyd eller trimethylbenzylammoniumhydroxyd ble tilsatt til losningen ble bare hydrodimerisering observert, med liten eller ingen dannelse av propionitril. Mengdene av nodvendig base var katalytiske, og så lite som 0, 1% var nok til å påvirke reaksjonsveien. Dette er en indikasjon på at i et organisk medium (vann er bare til No special conditions apart from the addition of a quaternary ammonium base are necessary. The base accelerates the dimerization reaction but not side reactions such as e.g. cyanoethylation. In this way, the side reactions play a negligible role. When the reduction of acrylonitrile using sodium amalgam was carried out in an ether such as e.g. tetrahydrofuran, dioxane or diglyme in the presence of water as proton donor, the main product was propionitrile, and only a minor amount of adiponitrile was formed. However, when a base such as tetraethylammonium hydroxide or trimethylbenzylammonium hydroxide was added to the solution, only hydrodimerization was observed, with little or no formation of propionitrile. The amounts of base required were catalytic, and as little as 0.1% was enough to affect the reaction pathway. This is an indication that in an organic medium (water only exists

stede opp til ?>0%) adsorberes den kvarternære ammoniumbase sterkt på amalgamoverflaten og kan derfor være virksom i meget lave konsentra- present up to ?>0%), the quaternary ammonium base is strongly adsorbed on the amalgam surface and can therefore be effective in very low concentrations

sjoner. Det er også funnet at den frie base kan benyttes. Når reaksjonen utfores uten noen form for pH-regulering og NaOH dannes ved spaltning av amalgamet, arbeider man i virkeligheten alltid i et sterkt alkalisk miljo (en konsentrert natriumhydroxydlbsning med pH>l<l>+). tions. It has also been found that the free base can be used. When the reaction is carried out without any form of pH regulation and NaOH is formed by splitting the amalgam, in reality you are always working in a strongly alkaline environment (a concentrated sodium hydroxide solution with pH>l<l>+).

Grunnen til at pH-regulering ikke er nodvendig ved fremgangs- The reason why pH regulation is not necessary in progress

måten i henhold til den foreliggende oppfinnelse er at ved de beskrevne betingelser er reaksjonen meget rask og er praktisk talt fullstendig på mindre enn 1 minutt. Bireaksjonene som finner sted ved meget alkalisk pH-verdi er. meget langsommere ved disse beting- the way according to the present invention is that under the described conditions the reaction is very fast and is practically complete in less than 1 minute. The side reactions that take place at very alkaline pH values are. much slower under these conditions

elser og derfor oppnår man hoye utbytter av det onskede produkt. els and therefore high yields of the desired product are achieved.

Opplosningsmidler som egner seg for anvendelse ved fremgangsmåten, Solvents suitable for use in the method,

er f.eks. ethere, fortrinnsvis tetrahydrofuran, dioxan, dimethoxyethan, is e.g. ethers, preferably tetrahydrofuran, dioxane, dimethoxyethane,

diglyme ( diethylenglycoldimethylether) eller alkoholer, fortrinnsvis t.butanol, alltid på betingelse av at de i det minste er delvis bland-baæ med vann, mens andre opplosningsmidler, f.eks. ethere som praktisk talt ikke lar seg blande med vann, såsom diethylether, er uegnede. Blant alkoholene anvendes tertiære alkoholer med ikke mer enn 6 carbonatomer, mens anvendelse av primære og sekundære alkoholer har tendens til å fremme dannelsen av uonskede biprodukter. diglyme (diethyleneglycoldimethylether) or alcohols, preferably t.butanol, always on the condition that they are at least partially miscible with water, while other solvents, e.g. ethers which are practically immiscible with water, such as diethyl ether, are unsuitable. Among the alcohols, tertiary alcohols with no more than 6 carbon atoms are used, while the use of primary and secondary alcohols tends to promote the formation of unwanted by-products.

Kvartære ammoniumbaser som egner seg for anvendelse ved fremgangsmåten ifolge oppfinnelsen, er de av formelen: Quaternary ammonium bases which are suitable for use in the method according to the invention are those of the formula:

hvor R1, R2, R^ og R^ er like eller forskjellige og betegner alkyl-, cycloalkyl-, aryl- eller aralkylradikaler. Antallet carbonatomer i disse radikaler kan velges innen vide grenser, men de mindre plass-krevende grupper foretrekkes, fordi et stort antall carbonatomer i disse grupper bare minsker hyppigheten av de kvartære basers aktive steder. Også den dikvartære ammoniumbase N,N"-dimethyl-triethylen-diammoniumdihydroxyd kan anvendes. where R1, R2, R^ and R^ are the same or different and denote alkyl, cycloalkyl, aryl or aralkyl radicals. The number of carbon atoms in these radicals can be chosen within wide limits, but the less space-demanding groups are preferred, because a large number of carbon atoms in these groups only reduces the frequency of the active sites of the quaternary bases. The diquaternary ammonium base N,N"-dimethyl-triethylene-diammonium dihydroxide can also be used.

Den kvartære ammoniumbase anvendes i en konsentrasjon av 0,001 - 5%, fortrinnsvis 0,01 - 0,2$, beregnet på vekten av reaksjonsblandingen (når unntatt alkalimetallamalgamet). The quaternary ammonium base is used in a concentration of 0.001 - 5%, preferably 0.01 - 0.2%, calculated on the weight of the reaction mixture (when excluding the alkali metal amalgam).

Ennskjont forklaringen av reaksjonsmekanismen ikke utgjor noen del av oppfinnelsen antas det at vannets rolle i mediet er å tilveie-bringe de protoner som er nodvendige for hydrogeneringen som finner sted under dimeriseringsprosessen. Den optimale konsentrasjon av den protonavgivende komponent i reaksjonsmediet er mellom 5 og 20 vektprosent, mens konsentrasjonen av acrylsyrederivatet som anvendes som utgangsmateriale, fortrinnsvis er mellom 5 °g 20 vektprosent. Anvendelse av hoyere konsentrasjoner av f.eks. acrylnitril kan forårsake dannelse av uonskede biprodukter, såsom oligomere eller polymerisater. Although the explanation of the reaction mechanism does not form any part of the invention, it is assumed that the role of the water in the medium is to provide the protons necessary for the hydrogenation that takes place during the dimerization process. The optimum concentration of the proton-releasing component in the reaction medium is between 5 and 20 percent by weight, while the concentration of the acrylic acid derivative used as starting material is preferably between 5 and 20 percent by weight. Application of higher concentrations of e.g. acrylonitrile can cause the formation of unwanted by-products, such as oligomers or polymers.

Skjont ethvert alkalimetallamalgam kan anvendes i fremgangsmåten ifolge oppfinnelsen, synes natriumamalgam å gi de beste resultater. Alkalimetallamalgamet er lett å anskaffe, idet det fåes som mellomprodukt ved elektrolytisk fremstilling av klor og alkali. Although any alkali metal amalgam can be used in the process according to the invention, sodium amalgam seems to give the best results. The alkali metal amalgam is easy to acquire, as it is obtained as an intermediate product in the electrolytic production of chlorine and alkali.

Fremgangsmåten ifolge oppfinnelsen kan utfores innenfor et The method according to the invention can be carried out within a

bredt temperaturområde fra -10°C til 30°C. Gode resultater oppnåes wide temperature range from -10°C to 30°C. Good results are achieved

ved temperaturer rundt 0°C. Det er tilrådelig å omrore reaksjonsblandingen kraftig under hydrodimeriseringen. at temperatures around 0°C. It is advisable to stir the reaction mixture vigorously during the hydrodimerization.

Det er en fordel ved fremgangsmåten ifolge oppfinnelsen at intet syre forbrukes, og at alkalimetallhydroxydet som dannes, derefter kan gjenvinnes fra reaksjonsmediet som biprodukt. Fremgangsmåten ifolge oppfinnelsen forer således til dannelse både av adipinsyrederivater og alkalimetallhydroxyd. Dessuten er de mengder kvartær base som kreves ved fremgangsmåten, så små at det ikke er nodvendig å gjenvinne basen, ennskjont gjenvinning er mulig. It is an advantage of the method according to the invention that no acid is consumed, and that the alkali metal hydroxide that is formed can then be recovered from the reaction medium as a by-product. The method according to the invention thus leads to the formation of both adipic acid derivatives and alkali metal hydroxide. Moreover, the amounts of quaternary base required in the process are so small that it is not necessary to recover the base, although recovery is possible.

De nedenstående eksempler vil illustrere oppfinnelsen. The following examples will illustrate the invention.

Eksempel 1 Example 1

10 g acrylnitril, 2h g vann og 0,5 g av en ^0 vektprosents vandig opplosning av benzyltrimethylammoniumhydroxyd ble opplost i 65 ml diglyme (diethylenglycoldimethylether). Opplosningen ble tilsatt til 2.000 g natriumamalgam (natriumkonsentrasjon på 0,3 vektprosent). Blandingen ble omrort kraftig i 5 minutter i et isbad. 10 g of acrylonitrile, 2 g of water and 0.5 g of a 30% by weight aqueous solution of benzyltrimethylammonium hydroxide were dissolved in 65 ml of diglyme (diethylene glycol dimethyl ether). The solution was added to 2,000 g of sodium amalgam (sodium concentration of 0.3% by weight). The mixture was stirred vigorously for 5 minutes in an ice bath.

Det utarmede amalgam ble skilt fra reaksjonsblandingen, som derefter besto av to faser. Bunnfasen var en konsentrert vandig natriumhydro-xydopplosning som inneholdt 5,5 g NaOH. Toppfasen ble fortynnet med vann og ekstrahert med methylen-klorid. Reaksjonsproduktet ble analysert ved gasskromatografering og-viste seg å inneholde 8,2 g av adiponitril, 0,6 g propionitril og 0,5 g uomsatt acrylnitril. Utbyttet av adiponitril var således 86$ og utbyttet av propionitril 6,3$, beregnet på den omsatte mengde av acrylnitril. Utnyttelses-graden av metallet var 90%. The depleted amalgam was separated from the reaction mixture, which then consisted of two phases. The bottom phase was a concentrated aqueous sodium hydroxide solution containing 5.5 g of NaOH. The top phase was diluted with water and extracted with methylene chloride. The reaction product was analyzed by gas chromatography and was found to contain 8.2 g of adiponitrile, 0.6 g of propionitrile and 0.5 g of unreacted acrylonitrile. The yield of adiponitrile was thus 86$ and the yield of propionitrile 6.3$, calculated on the converted amount of acrylonitrile. The utilization rate of the metal was 90%.

Produktene ble skilt fra ekstrakten ved destillasjon av de laverekokende fraksjoner ved atmosfæretrykk og av adiponitrilet ved et forminsket trykk på 20 mm Hg (k.pkt. 180 - 182°C). The products were separated from the extract by distillation of the lower-boiling fractions at atmospheric pressure and of the adiponitrile at a reduced pressure of 20 mm Hg (bp. 180 - 182°C).

Eksempel 2 Example 2

10 g acrylnitril, 10 g vann og 0,05 g av en ^fO vektprosents vandig opplosning av benzyltrimethylammoniumhydroxyd ble opplost i 80 ml diglyme. Opplosningen ble omsatt med natriumamalgam på den i eksempel 1 beskrevne måte. Produktet inneholdt 6,5 g adiponitril, 0, h g propionitril og 1,8 g uomsatt acrylnitril, hvilket tilsvarer et utbytte av adiponitril på 79% og et utbytte av propionitril på 10 g of acrylonitrile, 10 g of water and 0.05 g of a 50% by weight aqueous solution of benzyltrimethylammonium hydroxide were dissolved in 80 ml of diglyme. The solution was reacted with sodium amalgam in the manner described in example 1. The product contained 6.5 g of adiponitrile, 0.0 g of propionitrile and 1.8 g of unreacted acrylonitrile, which corresponds to a yield of adiponitrile of 79% and a yield of propionitrile of

*+,9$. Metallomd anne Isen var 86$. *+.9$. Metal room Anne Isen was 86$.

Eksempel Example

5 g acrylnitril, 10 g vann og 0,U- g av en U- 0% vandig opplosning av benzyltrimethylammoniumhydroxyd ble opplost r 80 ml tetrahydrofuran. Opplosningen ble behandlet som beskrevet i eksempel 1. Reaksjonsproduktet inneholdt 90$ adiponitril og 5$ propionitril. Metallomdannelsen var 90$. 5 g of acrylonitrile, 10 g of water and 0.00 g of a 0% aqueous solution of benzyltrimethylammonium hydroxide were dissolved in 80 ml of tetrahydrofuran. The solution was treated as described in example 1. The reaction product contained 90% adiponitrile and 5% propionitrile. The metal conversion was 90$.

Eksempel h Example h

10 g acrylnitril, 20 g vann og 0,5 g av en ho vektprosents vandig opplosning av benzyltrimethylammoniumhydroxyd ble opplost i 70 ml t.butanol. Opplosningen ble behandlet som beskrevet i eksempel 1. Produktet inneholdt 70$ adiponitril og 20$ propionitril. Metallomdannelsen var 85$. 10 g of acrylonitrile, 20 g of water and 0.5 g of a high weight percent aqueous solution of benzyltrimethylammonium hydroxide were dissolved in 70 ml of t-butanol. The solution was treated as described in example 1. The product contained 70% adiponitrile and 20% propionitrile. The metal conversion was 85$.

Eksempel 5 Example 5

10 g acrylnitril, 10 g vann og 0,>+ g av en ^0 vektprosents vandig opplosning av tetrabutylammoniumhydroxyd ble opplost i 80 ml dioxan. Opplosningen ble omsatt med natriumamalgam som beskrevet i eksempel 1. Produktet inneholdt 50$ adiponitril og 19$ propionitril. Metallomdannelsen var 85$. 10 g of acrylonitrile, 10 g of water and 0.5 g of a 10% by weight aqueous solution of tetrabutylammonium hydroxide were dissolved in 80 ml of dioxane. The solution was reacted with sodium amalgam as described in example 1. The product contained 50% adiponitrile and 19% propionitrile. The metal conversion was 85$.

Eksempel 6 Example 6

10 g acrylnitril, 10 g vann og 0,5 g av en ^-0 vektprosents vandig opplosning av trimethylfenylammoniumhydroxyd opplost i 80 ml dioxan. Opplosningen ble omsatt med natriumamalgam som beskrevet i eksempel 1. Produktet inneholdt 91$ adiponitril. Metallomdannelsen var 92$. 10 g of acrylonitrile, 10 g of water and 0.5 g of a ^-0 weight percent aqueous solution of trimethylphenylammonium hydroxide dissolved in 80 ml of dioxane. The solution was reacted with sodium amalgam as described in example 1. The product contained 91% adiponitrile. The metal conversion was 92$.

Eksempel 7 Example 7

10 g acrylnitril, 10 g vann og 0,5 g av en hO vektprosents vandig opplosning av trimethylcetylammoniumhydroxyd ble opplost i 80 ml dioxan. Opplosningen ble behandlet med natriumamalgam som beskrevet i eksempel 1. Produktet inneholdt 75$ adiponitril og 355 propionitril. Metallomdannelsen var 88$. 10 g of acrylonitrile, 10 g of water and 0.5 g of a 10% by weight aqueous solution of trimethylcetylammonium hydroxide were dissolved in 80 ml of dioxane. The solution was treated with sodium amalgam as described in Example 1. The product contained 75% adiponitrile and 355% propionitrile. The metal conversion was 88$.

Eksempel 8 Example 8

10 g acrylnitril, 20 g vann og 1,0 g av en 75 vektprosents vandig opplosning av "dikokos"-dimethylammoniumhydroxyd ble opplost i 70 ml diglyme. Opplosningen ble omsatt med natriumamalgam på den i eksempel 1 beskrevne måte. Produktet inneholdt 76$ adiponitril og h% propionitril. Metallomdannelsen var 90$. Den i dette eksempel anvendte kvartære base ble fremstilt ut fra et produkt kjent som "dikokos"-dimethylammoniumklorid (fremstilt av Armor Industrial Chemical Company, Chicago). 10 g of acrylonitrile, 20 g of water and 1.0 g of a 75% by weight aqueous solution of dicoco dimethylammonium hydroxide were dissolved in 70 ml of diglyme. The solution was reacted with sodium amalgam in the manner described in example 1. The product contained 76% adiponitrile and 10% propionitrile. The metal conversion was 90$. The quaternary base used in this example was prepared from a product known as "dicoco" dimethylammonium chloride (manufactured by Armor Industrial Chemical Company, Chicago).

"Dikokos"-dimethylammoniumhydroxydet som anvendes ifolge dette eksempel er et kommersielt produkt, "ARQUAD 2C-75". I henhold til opplysninger gitt av nevnte firma er "ARQUAD 2C-75" en vandig losning av "dikokos"-dimethylammoniumklorid. The "dicoco"-dimethylammonium hydroxide used according to this example is a commercial product, "ARQUAD 2C-75". According to information provided by the said company, "ARQUAD 2C-75" is an aqueous solution of "dicokos"-dimethylammonium chloride.

Når kokosolje underkastes katalytisk hydrogenering overfores blandingen av glyceridene av fettsyrene tilstede i oljen til en blanding av de tilsvarende fettalkoholer samt glycerol. Andelen av individuelle alifatiske alkoholer som oppnås ved denne reaksjon er lik fettsyrene som befinner seg i kokosoljen. Den videre behandling av disse alkoholer gir de tilsvarende klorider som benyttes som de er, for dannelse av de kvartære ammoniumforbindelser, på i og for seg kjent måte. Det er innlysende at man også derved oppnår en blanding av dialkvl dimethyl ammonium på hvilke alkylradikalet for hver individuelle forbindelse har samme antall carbonatomer som den tilsvarende fettsyre i kokosoljen, og som sammenlignet med de andre alkylradikaler for de individuelle forbindelser er i en mengde tilsvarende fettsyrene i kokosoljen. Av denne grunn benytter man betegnelsen "kokos", som betegner en blanding av alkylene fra CgH-^ til 0^8^,-,, hvor de innbyrdes forhold er de samme som for de tilsvarende fett-syrer i kokosolje. When coconut oil is subjected to catalytic hydrogenation, the mixture of the glycerides of the fatty acids present in the oil is transferred to a mixture of the corresponding fatty alcohols and glycerol. The proportion of individual aliphatic alcohols obtained by this reaction is equal to the fatty acids found in the coconut oil. The further treatment of these alcohols gives the corresponding chlorides which are used as they are, for the formation of the quaternary ammonium compounds, in a manner known per se. It is obvious that this also results in a mixture of dialkyl dimethyl ammonium in which the alkyl radical for each individual compound has the same number of carbon atoms as the corresponding fatty acid in the coconut oil, and which compared to the other alkyl radicals for the individual compounds is in an amount corresponding to the fatty acids in the coconut oil. For this reason, the term "coconut" is used, which denotes a mixture of the alkylenes from CgH-^ to O^8^,-, where the mutual ratios are the same as for the corresponding fatty acids in coconut oil.

Eksempel 9 Example 9

10 g acrylnitril, 10 g vann og 0,^ av en 50 vektprosents vandig opplosning av N,N'-dimethyl-triethylen-diammoniumdihydroxyd (1,^-dimethyl-l,^-diazonia-bicyclo-(2,2,2)-octan-dihydroxyd) ble opplost i 80 ml tetrahydrofuran. Reaksjonen ble utfort som beskrevet i eksempel 1. Produktene inneholdt 90$ adiponitril og 2,5 propionitril. Metallomdannelsen var 9h%. 10 g of acrylonitrile, 10 g of water and 0.3 of a 50% by weight aqueous solution of N,N'-dimethyl-triethylene-diammonium dihydroxyd (1,^-dimethyl-1,^-diazonia-bicyclo-(2,2,2) -octane-dihydroxyd) was dissolved in 80 ml of tetrahydrofuran. The reaction was carried out as described in example 1. The products contained 90% adiponitrile and 2.5% propionitrile. The metal conversion was 9h%.

Eksempel 10 Example 10

10 g 1-methyl-acrylnitril, 10 g vann og 0,5 av en ^0 vektprosents vandig opplosning av benzyltrimethylammoniumhydroxyd ble opplost i'80 ml diglyme. Opplosningen ble omsatt med natriumamalgam som beskrevet i eksempel 1. Reaksjonen ble stoppet etter at 50$ av mono-meren hadde reagert. Produktet inneholdt 62$ 2,5-dimethyladiponitril og 20$ isobutyronitril. Metallomdannelsen var 85$. 10 g of 1-methyl-acrylonitrile, 10 g of water and 0.5 of a 10% by weight aqueous solution of benzyltrimethylammonium hydroxide were dissolved in 80 ml of diglyme. The solution was reacted with sodium amalgam as described in Example 1. The reaction was stopped after 50% of the monomer had reacted. The product contained 62% 2,5-dimethyladiponitrile and 20% isobutyronitrile. The metal conversion was 85$.

Eksempel 11 Example 11

10 g acrylamid, 10 g vann og 0,5 g av en <*>f0 vekt$ vandig losning av benzyltrimethylammoniumhydroxyd ble lost i 80 ml diglym.1L Losningen ble omsatt med natriumamalgam som beskrevet i eksempel 1. Reaksjonsproduktene inneholdt 5,5 g adipamid og 1,2 g ureagert acrylamid. Omkrystallisert fra vann hadde adipamidet et smeltepunkt på 228°C. Utbyttet beregnet på mengden reagert acrylamid var 60$. 10 g of acrylamide, 10 g of water and 0.5 g of a <*>f0 weight$ aqueous solution of benzyltrimethylammonium hydroxide were dissolved in 80 ml of diglyme.1L The solution was reacted with sodium amalgam as described in example 1. The reaction products contained 5.5 g of adipamide and 1.2 g of unreacted acrylamide. Recrystallized from water, the adipamide had a melting point of 228°C. The yield calculated on the amount of reacted acrylamide was $60.

Eksempel 12 Example 12

10 g ethylacrylat og 10 g vann ble lost i 80 ml dioxan. 0,5 g av en <*>+0 vekt$ vandig losning av benzyltrimethylammoniumhydroxyd ble tilsatt og blandingen ble umiddelbart kraftig omrort med natriumamalgam i 1 minutt. De benyttede amalgam ble fraskilt og den organiske losning ble surgjort med overskudd saltsyre. Adipinsyrediethylesteren ble gjenvunnet fra reaksjonsblandingen ved hjelp av losningsmiddel-ekstraksjon etterfulgt av fraksjonert destillasjon. Utbyttet var ^5$. 10 g of ethyl acrylate and 10 g of water were dissolved in 80 ml of dioxane. 0.5 g of an <*>+0 wt% aqueous solution of benzyltrimethylammonium hydroxide was added and the mixture was immediately stirred vigorously with sodium amalgam for 1 minute. The amalgams used were separated and the organic solution was acidified with excess hydrochloric acid. The adipic acid diethyl ester was recovered from the reaction mixture by solvent extraction followed by fractional distillation. The dividend was ^5$.

Eksempel 1^ Example 1^

Benyttelse av dimethoxyethan som løsningsmiddel og trimethylcyclohexylammoniumhydroxyd som kvartær base. 10 g acrylnitril, 22 g vann og 0,1 g av en <*>+0 vekt$ vandig losning av trimethylcyclohexylammoniumhydroxyd ble lost i 60 ml 1,2-dimethoxyethan. Den således oppnådde losning ble forhåndskjolt i et isbad og ble deretter tilsatt 2 kg av en på samme måte på forhånd kjblt natriumamalgam (natriumkonsentrasjon 0,3 vekt$) og blandingen ble omrort kraftig i 5 minutter i et isbad. Den brukte amalgam ble fraskilt fra reaksjonsblandingen som deretter bestod av to faser. Bunnfasen var en vandig losning av natriumhydroxyd inneholdende 5,3 g NaOH. Den ovre fase ble fortynnet med vann og ekstrahert i methylen-klorid. Reaksjonsproduktet ble analysert ved hjelp av gasskromatografi og det inneholdt 8,3 g adiponitril, 0,5 g propionitril og 1,1 g ureagert acrylnitril. Utbyttet av adiponitril beregnet på grunnlag av reagert acry]mitril var således 9^$, og utbyttet av propionitril var 5,6$. Metalloverforingsutbyttet var 91$. Use of dimethoxyethane as solvent and trimethylcyclohexylammonium hydroxide as quaternary base. 10 g of acrylonitrile, 22 g of water and 0.1 g of a <*>+0 wt% aqueous solution of trimethylcyclohexylammonium hydroxide were dissolved in 60 ml of 1,2-dimethoxyethane. The solution thus obtained was pre-cooled in an ice bath and then 2 kg of a similarly pre-cooled sodium amalgam (sodium concentration 0.3 wt) was added and the mixture was vigorously stirred for 5 minutes in an ice bath. The spent amalgam was separated from the reaction mixture which then consisted of two phases. The bottom phase was an aqueous solution of sodium hydroxide containing 5.3 g of NaOH. The upper phase was diluted with water and extracted into methylene chloride. The reaction product was analyzed by means of gas chromatography and it contained 8.3 g of adiponitrile, 0.5 g of propionitrile and 1.1 g of unreacted acrylonitrile. The yield of adiponitrile calculated on the basis of reacted acrylonitrile was thus 9^$, and the yield of propionitrile was 5.6$. The metal transfer yield was 91$.

Claims (3)

1. Fremgangsmåte ved hydrodimerisering av acrylnitril, acrylnitriler substituert med lavere alkylradikaler, lavere alkylestere og amider av acrylsyre, ved omsetning av disse med et alkalimetallamalgam i nærvær av en kvartær ammoniumforbindelse og vann, karakterisert ved at reaksjonen utfores i et reaksjonsmiljo omfattende en ether eller en tertiær alkohol méd 1-6 carbonatomer, og som er meget lite polart og i det minste delvis er blandbart med vann, hvilket reaksjonsmiljo inneholder vann og N,N'-dimethyl-triethylen-diammoniumdihydroxyd eller en fri kvartær ammoniumbase av den generelle formel: hvor R-p R2, R^°§ R^ er like eller forskjellige og betegner et alkyl-, cycloalkyl-, aryl- eller aralkylradikal i en mengde av 0,001 til 5 vekt$ beregnet på grunnlag av reaksjonsblandingen med unntagelse av amalgamet, hvor reaksjonen utfores ved den grad av alkalinitet som oppstår under reaksjonen.1. Process for the hydrodimerization of acrylonitrile, acrylonitriles substituted with lower alkyl radicals, lower alkyl esters and amides of acrylic acid, by reacting these with an alkali metal amalgam in the presence of a quaternary ammonium compound and water, characterized in that the reaction is carried out in a reaction environment comprising an ether or a tertiary alcohol with 1-6 carbon atoms, and which is very slightly polar and at least partially miscible with water, which reaction medium contains water and N,N'-dimethyl-triethylene-diammonium dihydroxide or a free quaternary ammonium base of the general formula: where R-p R2, R^°§ R^ are the same or different and denote a alkyl, cycloalkyl, aryl or aralkyl radical in an amount of 0.001 to 5% by weight calculated on the basis of the reaction mixture with the exception of the amalgam, where the reaction is carried out at the degree of alkalinity that occurs during the reaction. 2. Fremgangsmåte ifolge krav 1, karakterisert ved at det som meget lite polart, med vann blandbart løsnings-middel anvendes en ether valgt blant tetrahydrofuran, dioxan, dimethoxyethan og diethylenglycoldimethylether.2. Method according to claim 1, characterized in that an ether selected from tetrahydrofuran, dioxane, dimethoxyethane and diethylene glycol dimethyl ether is used as a very slightly polar, water-miscible solvent. 3. Fremgangsmåte ifolge krav 1, karakterisert ved at det som meget lite polart, med vann blandbart løsnings-middel anvendes tertiær butanol. h. Fremgangsmåte ifolge krav 1,karakterisert ved at den kvartære ammoniumbase anvendes i en mengde av 0,01 - 0,2 vekt$ av reaksjonsblandingen, når amalgamet unntas.3. Method according to claim 1, characterized in that tertiary butanol is used as a very slightly polar, water-miscible solvent. h. Method according to claim 1, characterized in that the quaternary ammonium base is used in an amount of 0.01 - 0.2 weight$ of the reaction mixture, when the amalgam is excluded.
NO0471/68A 1967-02-08 1968-02-07 NO126132B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IL27411A IL27411A (en) 1967-02-08 1967-02-08 Process for the hydrodimerization of acrylic acid derivatives

Publications (1)

Publication Number Publication Date
NO126132B true NO126132B (en) 1972-12-27

Family

ID=11044113

Family Applications (1)

Application Number Title Priority Date Filing Date
NO0471/68A NO126132B (en) 1967-02-08 1968-02-07

Country Status (14)

Country Link
US (1) US3686269A (en)
AT (1) AT274772B (en)
BE (1) BE710363A (en)
CH (1) CH484027A (en)
CS (1) CS149415B2 (en)
DE (1) DE1668807A1 (en)
ES (1) ES350125A1 (en)
FR (1) FR1553196A (en)
GB (1) GB1153115A (en)
IL (1) IL27411A (en)
LU (1) LU55420A1 (en)
NL (1) NL6801473A (en)
NO (1) NO126132B (en)
SE (1) SE351843B (en)

Also Published As

Publication number Publication date
AT274772B (en) 1969-09-25
SE351843B (en) 1972-12-11
ES350125A1 (en) 1969-05-01
NL6801473A (en) 1968-08-09
LU55420A1 (en) 1968-10-09
CS149415B2 (en) 1973-07-05
CH484027A (en) 1970-01-15
IL27411A (en) 1970-06-17
DE1668807A1 (en) 1971-01-28
US3686269A (en) 1972-08-22
BE710363A (en) 1968-08-06
FR1553196A (en) 1969-01-10
GB1153115A (en) 1969-05-21

Similar Documents

Publication Publication Date Title
US6444846B1 (en) Process for preparing tetrafluoroborate salt and intermediates thereof
NO126132B (en)
US10106495B2 (en) Method for making N-(fluorosulfonyl) dimethylamine
US4118412A (en) Preparation cyano substituted cyclopropane
US5463103A (en) Process for producing 1,4-dicyano-2-butene
Shono et al. The Hofmann rearrangement induced by electroogranic method.
US2520400A (en) Production of sulfenamides
US3462478A (en) Amalgam reduction process for the production of adiponitrile
KR850008477A (en) Method for preparing anhydrous potassium tert-butoxide
US2252081A (en) Preparation of sulphonium compounds
US2727057A (en) Preparation of ethylene sulfonates
US3489789A (en) Process for the reductive dimerization of alpha,beta-olefinicallyunsaturated nitriles or esters
US5565615A (en) Method of preparing dimethylamine-borane
US3068269A (en) Process for producing trialkyl phosphites
OHMORI et al. Thioalkoxytributyl-and thioalkoxytriphenylphosphonium salts: preparation and application to the synthesis of thiolesters and unsymmetrical sulfides
NO124030B (en)
US2999105A (en) Process for preparation of esters of thiosulfinic acids
DK171067B1 (en) Process for preparing 3-alkyl-or -fluoroalkyl-3-(4- pyridyl)piperidine-2,6-diones
US2065113A (en) Process of producing lower aliphatic amino alcohols
US3732312A (en) Process for preparing aliphatic amines
US3385893A (en) Process for making long chain unbranched alkyl tertiary amines
EP0031645B1 (en) Process for the production of azo compounds
US2916513A (en) Production of acrylic acid and its esters
CA2448839C (en) Process for preparing solutions of alkali metal salts of functionalized alcohols
RU2629024C1 (en) Atom-economic waste-free method of producing 2-(4-fluorphenyl)-but-3-in-2-ola