NO126034B - - Google Patents

Download PDF

Info

Publication number
NO126034B
NO126034B NO4662/70A NO466270A NO126034B NO 126034 B NO126034 B NO 126034B NO 4662/70 A NO4662/70 A NO 4662/70A NO 466270 A NO466270 A NO 466270A NO 126034 B NO126034 B NO 126034B
Authority
NO
Norway
Prior art keywords
anode
aluminum
oxide
electrolysis
oxygen
Prior art date
Application number
NO4662/70A
Other languages
Norwegian (no)
Inventor
H Klein
Original Assignee
Alusuisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse filed Critical Alusuisse
Publication of NO126034B publication Critical patent/NO126034B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

Anode for elektrolyse av aluminium i Anode for electrolysis of aluminum i

fluoridsmelte. fluoride melt.

Ved smelteelektrolyse av oksyder anvendes i mange tilfeller kullanoder hvor surstoffet utskilles mens oksydets metall frigjores ved katoden. In melting electrolysis of oxides, carbon anodes are used in many cases where the oxygen is separated while the metal of the oxide is released at the cathode.

Når det gjelder fremstilling av aluminium blir en alkalialumini-umfluorid-smelte som inneholder A1_0 elektrolysert ved hjelp av kullanoder ved temperaturer mellom -ca. 9-4\ -0 og 1.000 oC. Ved disse skiller oksygen seg ut mens aluminium samler seg på kullbunnen som danner katoden i cellen. Oksygenet som fremkommer ved spalt-ingen av Al^O^, reagerer fullstendig med kullet under dannelse av C02 og CO. Kullanoden forbrukes og må fra tid til annen innstilles i samme hoyde over smeiten og skiftes ut etter langvarig bruk. For å fremstille 1 kg aluminium forbrukes i praksis ca. ^50 g anodekull. When it comes to the production of aluminium, an alkali aluminum fluoride melt containing Al_0 is electrolysed using carbon anodes at temperatures between -approx. 9-4\ -0 and 1,000 oC. With these, oxygen is released while aluminum accumulates on the carbon base which forms the cathode in the cell. The oxygen produced by the splitting of Al^O^ reacts completely with the coal to form C02 and CO. The carbon anode is consumed and must from time to time be set at the same height above the smelting and replaced after prolonged use. To produce 1 kg of aluminum, approx. ^50 g anode carbon.

Foreliggende oppfinnelse angår en anode som ved smelteelektrolyse av aluminiumoksyd ikke reagerer med oksygenet og folgelig ikke forbrukes. The present invention relates to an anode which, during melting electrolysis of aluminum oxide, does not react with the oxygen and is therefore not consumed.

Anoden i henhold til oppfinnelsen utmerker seg ved at den består av 80% - 99% Sn02 som elektronledende oksydkeramisk material (oksydiske halvledere) som er meget kjemisk motstandsdyktige overfor de smelteelektrolytter hvor aluminiumoksydet er lost, samt ytterligere metalloksyder, som Fe^O^, ZnO, Cr20^, Bi2<0>^ og/eller ^^ >^ i hvorved sintringsegenskapen ved brenningen og/eller den elektriske ledningsevne forbedres. The anode according to the invention is distinguished by the fact that it consists of 80% - 99% Sn02 as electron-conducting oxide ceramic material (oxidic semiconductors) which are very chemically resistant to the molten electrolytes where the aluminum oxide has been lost, as well as further metal oxides, such as Fe^O^, ZnO , Cr20^, Bi2<0>^ and/or ^^ >^ in which the sintering property during firing and/or the electrical conductivity are improved.

For å forbedre den elektriske ledningsevne kan det eksempelvis anvendes Ta20^, Nb20^ og/eller WO^. To improve the electrical conductivity, Ta 2 O 3 , Nb 2 O 3 and/or WO 3 can be used, for example.

Sb20^ er et hjelpestoff som ikke bare forbedrer sintrings-egenskapene, men også den elektriske ledningsevne til SnC^. Ved stoffblandinger med en sammensetning på fra 9<*>+ til 93 vektprosent Sn02, 2 til 6 Fe20^, 3 til 7 ZnO og 1 til h Ta20^ ble det ved 1.000°C funnet en ledningsevne på mellom 0,1 og 10 ohm<-1> cm"''. Sb20^ is an auxiliary substance which not only improves the sintering properties, but also the electrical conductivity of SnC^. For mixtures with a composition of from 9<*>+ to 93% by weight Sn02, 2 to 6 Fe20^, 3 to 7 ZnO and 1 to h Ta20^, a conductivity of between 0.1 and 10 ohms was found at 1,000°C <-1> cm"''.

Både med hensyn til elektrisk ledningsevne som til motstandsevne mot alkalialuminiumfluoridsmelten, er for eksempel folgende sammensetning funnet fordelaktig: Both with regard to electrical conductivity and resistance to the alkali aluminum fluoride melt, for example the following composition has been found advantageous:

Den homogeniserte oksydblanding blir fortrinnsvis for-brent, The homogenized oxide mixture is preferably combusted,

f.eks. mellom 700 og l.?00°C. Etter bearbeidelse og formgiving blir oksydlegemene sintret ved ca. 800 til 1600°C. e.g. between 700 and l.?00°C. After processing and shaping, the oxide bodies are sintered at approx. 800 to 1600°C.

Ved enkelte formgivingsmetoder, f.eks. varmpressing, kan forbren-ningen utelates. With certain shaping methods, e.g. hot pressing, the combustion can be omitted.

Fremstillingen av anoden kan skje i henhold til en fremgangsmåte The production of the anode can take place according to a method

som er vanlig ved fremstilling av keramikk. which is common in the manufacture of ceramics.

Anoden i ehnhold til oppfinnelsen må på den ene side stå i kon- The anode according to the invention must, on the one hand, be in con-

takt med den smeltede masse og på den annen side med en stromtil-forselsanordning. Utladning av ionene finner sted på grenseflaten mellom smelte og keramikk. Den utviklede anodegass unnviker gjennom smeiten. Ladningstransporten fra grenseflaten smelte/ keramikk til stromtilforselsanordningen skjer ved hjelp av elek-troner. tact with the molten mass and on the other hand with a stromtil feeding device. Discharge of the ions takes place at the interface between melt and ceramic. The developed anode gas escapes through the smelter. Charge transport from the melt/ceramic interface to the current supply device takes place with the help of electrons.

Forbindelsen mellom det keramiske stoff og anodestromtilforselen The connection between the ceramic material and the anode current supply

kan utfores på forskjellige måter. can be carried out in different ways.

Det er tidligere kjent en innretning for fremstilling av metaller, særlig aluminium ved smelteelektrolyse av de tilsvarende oksyder, hvor den del av en elektronledende og overfor oksygen bestandig anode som dykker ned i smeiten som skal elektrolyseres er dekket med et skikt av et ved elektrolysetemperaturen oksygenionledende og overfor smeiten bestandig materialet, slik at elektrolyttens oksygenioner ved elektrofysen vandrer gjennom dette oksygenionledende skikt også under avgivelse av elektronene og dannelse av oksygengass utlades ved anoden, men det dreier seg der om en innretning hvor selve anoden ikke kommer i beroring med elektrolyten, men er sMLte fra denne ved hjelp av et lag av oksygenjonledende material. A device for the production of metals, in particular aluminum by melting electrolysis of the corresponding oxides, is previously known, where the part of an electron-conducting and oxygen-resistant anode that dips into the melt to be electrolysed is covered with a layer of an oxygen ion-conducting at the electrolysis temperature and the material is resistant to the smelting, so that the electrolyte's oxygen ions during the electrophysiology move through this oxygen ion-conducting layer also during the release of the electrons and the formation of oxygen gas is discharged at the anode, but it is a device where the anode itself does not come into contact with the electrolyte, but is melted from this by means of a layer of oxygen ion-conducting material.

En del utfdrelsesformer for anoder av elektronledende oksydker-amiske stoffer (av oksydiske halvledere) er vist i figurene 1-3 Some forms of production for anodes of electron-conducting oxide ceramic substances (of oxide semiconductors) are shown in figures 1-3

hvor de er anbragt i smelteelektrolyseceller for utvinning av aluminium. Fig. 1 viser en skjematisk utforelsesform for anoden i henhold til oppfinnelsen. where they are placed in melting electrolysis cells for the extraction of aluminium. Fig. 1 shows a schematic embodiment of the anode according to the invention.

Fig. 2 viser en annen utforelsesform, og Fig. 2 shows another embodiment, and

fig. 3 viser en tredje utforelsesform. fig. 3 shows a third embodiment.

Alle tre utforelsesformer er vist i loddrett snitt. All three designs are shown in vertical section.

Utformingen av elektrolysecellen med unntagelse av de anodiske deler kan være den samme som for celler som anses å være vel kjent for fagmannen. I alle tre figurene er det rent skjematisk vist en aluminiumelektrolysecelle 1 av vanlig utforelse, men ikke i riktig målestokk, og hvor de deler er utelatt som ikke er nod-vendige for å forstå oppfinnelsen. Elektrolysecellen består av et utvendig varmeisolert kar 2 av kull omgitt av en stålkappe som ved hjelp av jernskinner 3 er tilkoblet den katodiske strom-tilfdrsel, samt av en eller flere anoder, h er alkalialuminium-fluorid-smelteelektrolytten med det loste aluminiumoksyd. Under påvirkning av likestrom utskilles flytende aluminium 5 på ovnsbun-nen. 6 betegner en slaggskorpe som består av storknet elektrolytt og ikke lost aluminiumoksyd. 7 er et aluminiumoksyddekke. The design of the electrolysis cell, with the exception of the anodic parts, can be the same as for cells which are considered to be well known to those skilled in the art. In all three figures, an aluminum electrolysis cell 1 of the usual design is shown purely schematically, but not to the correct scale, and where the parts which are not necessary for understanding the invention have been omitted. The electrolysis cell consists of an external heat-insulated vessel 2 of coal surrounded by a steel jacket which is connected to the cathodic current supply by means of iron rails 3, as well as of one or more anodes, which is the alkali aluminum fluoride molten electrolyte with the dissolved aluminum oxide. Under the influence of direct current, liquid aluminum 5 is separated on the bottom of the furnace. 6 denotes a slag crust consisting of solidified electrolyte and undissolved aluminum oxide. 7 is an aluminum oxide cover.

Den anodiske strom tilfores gjennom anoder av oksydiske halvledere neddykket i den flytende elektrolytt •+ og som ved hjelp av strbm-ledere 11 er tilkoblet strbmkilden. The anodic current is supplied through anodes of oxide semiconductors immersed in the liquid electrolyte •+ and which are connected to the current source by means of current conductors 11.

I den utforelsesform som er vist i fig. 1 består anoden av en dig-el 8 med tilnærmet rettvinklet tverrsnitt og avrundede kanter og hjorner hvor det på bunnen er anordnet flytende solv 9- Den elektriske forbindelse mellom solvet og stromtilforslene 11 skjer ved hjelp av en eller flere staver 10 av titanborid. In the embodiment shown in fig. 1, the anode consists of a dig-el 8 with an approximately right-angled cross-section and rounded edges and corners where liquid solv 9 is arranged on the bottom - The electrical connection between the solv and the power supplies 11 is made with the help of one or more rods 10 of titanium boride.

I fig. 2 er anodene utformet som ror hvis lukkede og avrundede bunn er dykket ned i smeiten k-, In fig. 2, the anodes are designed as rudders whose closed and rounded bottoms are immersed in the forge k-,

I det ror 12 som er vist til venstre befinner det seg smeltet solv 13 hvor en stav lh av titankarbid rager ned for å danne forbindelse mellom de oksydiske halvlederror og stromtilforselen 11. In the rod 12 which is shown on the left, there is molten solder 13 where a rod lh of titanium carbide protrudes down to form a connection between the oxide semiconductor rods and the power supply 11.

I det indre av det mindre ror 12 er det innlagt en hulsylinder A hollow cylinder is inserted into the interior of the smaller rudder 12

15 av nikkellegeringsnetting. Tråder 16, likeledes av nikkel-legering, sorger for den elektriske tilslutning til stromtilf orselen 15 of nickel alloy mesh. Wires 16, also of nickel alloy, ensure the electrical connection to the power supply

II . II.

Bunnen i det hoyre ror 12 er fylt med nikkelpulver 17 hvor staven 18 av zirkoniumdiborid er dykket ned, hvorved nikkelpulveret, og dermed også roret 3 forbindes elektrisk med stromtilforselen 11. The bottom of the right rudder 12 is filled with nickel powder 17 where the rod 18 of zirconium diboride is submerged, whereby the nickel powder, and thus also the rudder 3, is electrically connected to the power supply 11.

I fig. 3 betegner 19 et massivt, i vannrett tverrsnitt tilnærmet rettvinklet legeme, av f.eks. ZrB2? TiB2 eller TiC, hvor det på undersiden er anordnet et flamme- eller plasmapåsproytet lag 20 In fig. 3 designates 19 a massive, in horizontal cross-section approximately right-angled body, of e.g. ZrB2? TiB2 or TiC, where a flame- or plasma-sprayed layer 20 is arranged on the underside

av oksydisk halvleder som er gjort kompakt ved termisk etter-behandling. Den elektriske forbindelse med stromtilforselen 11 tilveiebringes ved hjelp av en metallklokke 21. of oxide semiconductor that has been made compact by thermal post-treatment. The electrical connection with the power supply 11 is provided by means of a metal bell 21.

Bortsett fra de åpenbare fordeler anoden i henhold til oppfinnelsen gir, kan det fremheves at den muliggjor en rasjonell drift av aluminium-flercelleovner som eksempelvis beskrevet i de sveitsiske patenter nr. 352.833, nr. 357.201 og nr. 357- 5^. Apart from the obvious advantages that the anode according to the invention provides, it can be emphasized that it enables a rational operation of aluminum multi-cell furnaces as for example described in the Swiss patents No. 352,833, No. 357,201 and No. 357-5^.

Claims (1)

Anode for elektrolyse av aluminiumoksyd i fluoridsmelte, karakterisert ved at den består av 80 - 99$ Sn02 som et elektronledende oksydkeramisk material, samt ytterligere metalloksyder.Anode for electrolysis of aluminum oxide in fluoride melt, characterized in that it consists of 80 - 99% Sn02 as an electron-conducting oxide ceramic material, as well as additional metal oxides.
NO4662/70A 1969-12-05 1970-12-04 NO126034B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1797569A CH520779A (en) 1969-12-05 1969-12-05 Anode for the fused-salt electrolysis of metal oxides

Publications (1)

Publication Number Publication Date
NO126034B true NO126034B (en) 1972-12-11

Family

ID=4429486

Family Applications (1)

Application Number Title Priority Date Filing Date
NO4662/70A NO126034B (en) 1969-12-05 1970-12-04

Country Status (12)

Country Link
US (1) US3718550A (en)
AT (1) AT301894B (en)
BE (1) BE759874A (en)
CA (1) CA931901A (en)
CH (1) CH520779A (en)
DE (1) DE2059866A1 (en)
FR (1) FR2068784B1 (en)
GB (1) GB1295117A (en)
IS (1) IS875B6 (en)
NL (1) NL7016660A (en)
NO (1) NO126034B (en)
ZA (1) ZA708010B (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH575014A5 (en) * 1973-05-25 1976-04-30 Alusuisse
CH587929A5 (en) * 1973-08-13 1977-05-13 Alusuisse
JPS5536074B2 (en) * 1973-10-05 1980-09-18
US4039401A (en) * 1973-10-05 1977-08-02 Sumitomo Chemical Company, Limited Aluminum production method with electrodes for aluminum reduction cells
CH592163A5 (en) * 1973-10-16 1977-10-14 Alusuisse
CH594064A5 (en) * 1973-12-20 1977-12-30 Alusuisse
US4173518A (en) * 1974-10-23 1979-11-06 Sumitomo Aluminum Smelting Company, Limited Electrodes for aluminum reduction cells
JPS5230790A (en) * 1975-09-04 1977-03-08 Kyocera Corp Anode made of ceramics for electrolysis
US4098669A (en) * 1976-03-31 1978-07-04 Diamond Shamrock Technologies S.A. Novel yttrium oxide electrodes and their uses
DD137365A5 (en) * 1976-03-31 1979-08-29 Diamond Shamrock Techn ELECTRODE
JPS55500123A (en) * 1978-03-28 1980-03-06
DE2929346C2 (en) * 1979-07-20 1985-10-17 C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach Stable high temp. electrodes which can be regenerated - and have very long life when used in mfg. metals by electrolysis of molten salts
EP0022921B1 (en) * 1979-07-20 1983-10-26 C. CONRADTY NÜRNBERG GmbH & Co. KG Regenerable, shape-stable electrode for use at high temperatures
ZA807586B (en) * 1979-12-06 1981-11-25 Diamond Shamrock Corp Ceramic oxide electrodes for molten salt electrolysis
GB2069529A (en) * 1980-01-17 1981-08-26 Diamond Shamrock Corp Cermet anode for electrowinning metals from fused salts
CA1181616A (en) * 1980-11-10 1985-01-29 Aluminum Company Of America Inert electrode compositions
US4478693A (en) * 1980-11-10 1984-10-23 Aluminum Company Of America Inert electrode compositions
US4379033A (en) * 1981-03-09 1983-04-05 Great Lakes Carbon Corporation Method of manufacturing aluminum in a Hall-Heroult cell
US4491510A (en) * 1981-03-09 1985-01-01 Great Lakes Carbon Corporation Monolithic composite electrode for molten salt electrolysis
US4454015A (en) * 1982-09-27 1984-06-12 Aluminum Company Of America Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties
US4468299A (en) * 1982-12-20 1984-08-28 Aluminum Company Of America Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon
US4450061A (en) * 1982-12-20 1984-05-22 Aluminum Company Of America Metal stub and ceramic body electrode assembly
US4457811A (en) * 1982-12-20 1984-07-03 Aluminum Company Of America Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly
EP0111921A3 (en) * 1982-12-20 1985-05-15 Aluminum Company Of America Nonconsumable electrode assembly
US4468298A (en) * 1982-12-20 1984-08-28 Aluminum Company Of America Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon
US4468300A (en) * 1982-12-20 1984-08-28 Aluminum Company Of America Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon
US4504369A (en) * 1984-02-08 1985-03-12 Rudolf Keller Method to improve the performance of non-consumable anodes in the electrolysis of metal
CA2061391C (en) * 1991-02-26 2002-10-29 Oronzio De Nora Ceramic anode for oxygen evolution, method of production and use of the same
US5279715A (en) * 1991-09-17 1994-01-18 Aluminum Company Of America Process and apparatus for low temperature electrolysis of oxides
US5378325A (en) * 1991-09-17 1995-01-03 Aluminum Company Of America Process for low temperature electrolysis of metals in a chloride salt bath
US5569412A (en) * 1994-08-18 1996-10-29 E. I. Du Pont De Nemours And Company Tin oxide based conductive powders and coatings
US6248227B1 (en) * 1998-07-30 2001-06-19 Moltech Invent S.A. Slow consumable non-carbon metal-based anodes for aluminium production cells
US6805777B1 (en) * 2003-04-02 2004-10-19 Alcoa Inc. Mechanical attachment of electrical current conductor to inert anodes
US6878246B2 (en) * 2003-04-02 2005-04-12 Alcoa, Inc. Nickel foam pin connections for inert anodes
US8431049B2 (en) * 2005-05-19 2013-04-30 Saint-Gobain Ceramics & Plastics, Inc. Tin oxide-based electrodes having improved corrosion resistance
RU2452797C2 (en) * 2009-11-30 2012-06-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Method of metal production using ceramic anode
US11668017B2 (en) 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes

Also Published As

Publication number Publication date
NL7016660A (en) 1971-06-08
FR2068784B1 (en) 1974-07-26
AT301894B (en) 1972-09-25
IS875B6 (en) 1974-07-02
BE759874A (en) 1971-05-17
CH520779A (en) 1972-03-31
DE2059866A1 (en) 1971-06-09
CA931901A (en) 1973-08-14
GB1295117A (en) 1972-11-01
US3718550A (en) 1973-02-27
ZA708010B (en) 1971-08-25
IS1963A7 (en) 1971-06-06
FR2068784A1 (en) 1971-09-03

Similar Documents

Publication Publication Date Title
NO126034B (en)
US3028324A (en) Producing or refining aluminum
Pawlek Inert anodes: an update
GB833767A (en) Continuous electrolytic production of titanium
US5254232A (en) Apparatus for the electrolytic production of metals
US3930967A (en) Process for the electrolysis of a molten charge using inconsumable bi-polar electrodes
US3578580A (en) Electrolytic cell apparatus
Padamata et al. Progress of inert anodes in aluminium industry
Barnett et al. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process
JP5562962B2 (en) Oxygen generating metal anode operating at high current density for aluminum reduction cells
GB2103246A (en) Electrolytic production of aluminum
NO840465L (en) PROCEDURE FOR MANUFACTURING CATHODS
US3215615A (en) Current conducting element for aluminum production cells
US3974046A (en) Process for the electrolysis of a molten charge using inconsumable anodes
CN107532317A (en) Produce the method for aluminium-scandium alloy and implement the reactor of this method
NO790412L (en) PROCEDURE FOR THE PREPARATION OF ALUMINUM BY ELECTROLYSIS
US4552637A (en) Cell for the refining of aluminium
Xianxi Inert Anodes for Aluminum Electrolysis
GB1046705A (en) Improvements in or relating to the operation of electrolytic reduction cells for theproduction of aluminium
Krishna Progress of inert anodes in aluminium industry
GB812817A (en) Electrolytic production of titanium
US3503857A (en) Method for producing magnesium ferrosilicon
US6616826B1 (en) Electrolysis apparatus and methods using urania in electrodes, and methods of producing reduced substances from oxidized substances
NO803793L (en) ANODE FOR MELT ELECTROLYCLE CELLS.
Xianxi Aluminum electrolytic inert anode