NO125824B - - Google Patents

Download PDF

Info

Publication number
NO125824B
NO125824B NO516269A NO516269A NO125824B NO 125824 B NO125824 B NO 125824B NO 516269 A NO516269 A NO 516269A NO 516269 A NO516269 A NO 516269A NO 125824 B NO125824 B NO 125824B
Authority
NO
Norway
Prior art keywords
chlorination
sulfur
roasting
leaching
suspended
Prior art date
Application number
NO516269A
Other languages
Norwegian (no)
Inventor
K Goerling
Original Assignee
Boliden Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boliden Ab filed Critical Boliden Ab
Publication of NO125824B publication Critical patent/NO125824B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/08Chloridising roasting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

Fremgangsmåte ved klorering i en hvirvelskiktreaktor av i Procedure for chlorination in a fluidized bed reactor of i

røstgods inneholdte ikke-jernmetaller. scrap metal contained non-ferrous metals.

Oppfinnelsen angår en ny fremgangsmåte ved lavtemperaturklorering av ikke-jernmetaller i et rostgods oppnådd ved rosting av et jernsulfidmateriale, hvorved de inneholdte klorerte ikke-jernmetaller kan utlutes i klorert form og utvinnes. The invention relates to a new method for low-temperature chlorination of non-ferrous metals in a rust product obtained by roasting an iron sulphide material, whereby the contained chlorinated non-ferrous metals can be leached in chlorinated form and recovered.

Lavtemperaturklorering eller klorerende rosting er en lenge kjent fremgangsmåte for utvinning av slike metaller som kobber, gull, solv, sink, kobolt, nikkel og bly. Fremgangsmåten anvendes også Low-temperature chlorination or chlorinating roasting is a long-known method for extracting such metals as copper, gold, silver, zinc, cobalt, nickel and lead. The procedure is also used

for rensing av de angitte metaller fra jernråmaterialer beregnet for stålfremstilling. Jernverkenes kvalitetskrav til utgangsmaterialer for stålfremstilling har stadig oket hva gjelder innholdet av frem-mede stoffer.. Eksempler på slike ikke onskelige fremmedstoffer er for the purification of the specified metals from iron raw materials intended for steelmaking. The ironworks' quality requirements for starting materials for steel production have steadily increased in terms of the content of foreign substances. Examples of such undesirable foreign substances are

kobber, arsen, antimon, svovel, sink, kobolt, nikkel, vismut og tinn. copper, arsenic, antimony, sulphur, zinc, cobalt, nickel, bismuth and tin.

Ved vanlig hvirvelskiktrosting av sulfidholdig materiale vil rostgodset inneholde storste delen av i sulfidmaterialet inneholdt arsen, bly, tinn, vismut og antimon og hele mengden kobber, sink, nikkel og kobolt. Forskjellige fremgangsmåter for å befri slike materialer for ikke onskelige bestanddeler er blitt foreslått. Forskjellige varianter av kloreringsprosesser er bl.a. blitt foreslått og provet. En slik fremgangsmåte er klorerende rosting med etter-følgende utlutning som imidlertid bare kan tillempes dersom rostgodset har lavere innhold av arsen og bly. En annen fremgangsmåte er klorerende forflyktigelse, f.eks. ifolge svensk patentskrift nr. 188. kfk og nr. 319785. Spesielt den sist angitte fremgangsmåte innebærer en fordelaktig løsning av problemet. In normal fluidized bed roasting of sulphide-containing material, the rusted material will contain most of the arsenic, lead, tin, bismuth and antimony contained in the sulphide material and the entire amount of copper, zinc, nickel and cobalt. Various methods for ridding such materials of undesirable constituents have been proposed. Different variants of chlorination processes are, among other things, have been proposed and tested. One such method is chlorinating roasting with subsequent leaching, which, however, can only be applied if the roasted goods have a lower content of arsenic and lead. Another method is chlorinating volatilization, e.g. according to Swedish patent document no. 188. kfk and no. 319785. In particular, the last-mentioned method involves an advantageous solution to the problem.

Til tross for de store fordeler som er forbundet med den ovenfor angitte fremgangsmåte, har det vist' seg ønskelig under visse omstendigheter å klorere ved en så lav temperatur at metallklori-dene ikke fjernes ved forflyktigelse, men i steden kan utvinnes ved utlutning. Despite the great advantages associated with the above-mentioned method, it has proved desirable under certain circumstances to chlorinate at such a low temperature that the metal chlorides are not removed by volatilization, but instead can be recovered by leaching.

Klorerende forflyktigelse anvendes forst og fremst for å fjane mindre ikke onskelige innhold av ikke-jernmetaller i jernråmaterialer. Dersom det forst og fremst er onskelig å utvinne og å ta vare på ikke-jernmetaller, er en vanlig klorerende rosting med etterføl-gende utlutning ofte mer fordelaktig, og spesielt dersom det er onskelig å anvende billige, faste kloreringsmidler er en klorering ved lavere temperatur å foretrekke på grunn av at rester av kloreringsmidlet blir igjen i rostgodset og forurenser jernmaterialet dersom disse ikke kan fjernes ved utlutning. Dersom vanndamp inn-går i gassene, er en lavere temperatur gunstig da risikoen for hyd-rolyse av kloridene derved blir mindre. På grunn av den lavere temperatur er det også mulig i hvirvelskiktreaktorer å behandle materialer som ved den for forflyktigelsen nødvendige hoye temperatur er tilboyelige til å sintre. Ved lavere temperaturer er kravene til konstruksjonsmaterialet for kloreringsapparaturen ennu lavere. Ved den mest anvendte fremgangsmåte for klorerende rosting anvendes na-trimklorid som kloreringsmiddel. Fremgangsmåten utfores i prinsip-pet slik at kisavbranner inneholdende ikke-jernmetaller blandes med ca. 10% natriumklorid og rostes i en etasjeovn ved ca. 550°C. For fra natriumklorid å frigjere klor for kloreringen kreves det under behandlingen i en. etasjeovn en sulfatering av NaCl, i det vesentlige i overensstemmelse med summeringsformelen Chlorinating volatilization is primarily used to remove less undesirable contents of non-ferrous metals in ferrous raw materials. If it is primarily desirable to extract and preserve non-ferrous metals, a normal chlorinating roasting with subsequent leaching is often more advantageous, and especially if it is desirable to use cheap, solid chlorinating agents, chlorination at a lower temperature is to be preferred due to the fact that residues of the chlorinating agent remain in the rusted goods and contaminate the iron material if these cannot be removed by leaching. If water vapor enters the gases, a lower temperature is beneficial as the risk of hydrolysis of the chlorides is thereby reduced. Because of the lower temperature, it is also possible in fluidized bed reactors to process materials which, at the high temperature required for volatilization, are prone to sintering. At lower temperatures, the requirements for the construction material for the chlorination equipment are even lower. In the most used method for chlorinating roasting, sodium chloride is used as chlorinating agent. The procedure is carried out in principle so that silica fumes containing non-ferrous metals are mixed with approx. 10% sodium chloride and roasted in a floor oven at approx. 550°C. In order to release chlorine from sodium chloride for the chlorination, it is required during the treatment in a. floor furnace a sulphation of NaCl, essentially in accordance with the summation formula

I nærvær av vanndamp kan også HC1 dannes. In the presence of water vapor, HC1 can also be formed.

Fremgangsmåten forutsetter således en sulfaterende rosting. Sulfateringen av natriumkloridet begunstiges av en tilstedeværelse av Fe^O^ som virker som katalysator for dannelse av SOy For at klor og hydrogenklorid skal utvikles i tilstrekkelig mengde er det altså nodvendig at det tilforte materiale inneholder en bestemt minstemengde svovel-. Dette svovel kan være restsvovel i rostgodset etter sulfidrbstingen eller skrive seg fra innblandet jernsulfid i det tilforte materiale til etasjeovnen. Varme for prosessen dannes ved forbrenning av restsulfider eller tilfort' sulfidmateriale. The method thus requires a sulphating roasting. The sulphation of the sodium chloride is favored by the presence of Fe^O^ which acts as a catalyst for the formation of SOy In order for chlorine and hydrogen chloride to be developed in sufficient quantity, it is therefore necessary that the added material contains a certain minimum quantity of sulphur. This sulfur can be residual sulfur in the rust after the sulphide blasting or from iron sulphide mixed in the added material to the floor furnace. Heat for the process is generated by burning residual sulphides or added sulphide material.

Det kreves dessuten som regel en tilleggsfyring med gass eller olje, hvorved f.eks; masovnsgass kan anvendes. Da arsen, bly og antimon blir igjen i utlutningsgodset som forurensninger og dessuten gjor utlutningen vanskeligere, kan rostgods med hbyere innhold enn ca. ■ 0,08$ arsen og ca. 0, ho% bly ikke behandles ved den klorerende rosting. Avgassene fra den klorerende rosting vaskes, og i vaskeopp-lbsningen opplost hydrogenklorid og forflyktigede metallklorider tilfores eventuelt til utlutningsopplosningen. Etter utlutningen gjenfinnes det ved kloreringsprosessen dannede natriumsulfat i utlu-ningsvæsken. Natriumsulfatet utvinnes som regel som glaubersalt eller kalsinert natriumsulfat etter vakuuminndampning og krystallise-ringog eventuell kalsinering av natriumsulfatet. En slik utvinning er som regel nodvendig for å verne miljoet. Det er også blitt foreslått å utfore rostingen med klorgass, men natriumklorid er blitt foretrukket av okonomiske grunner. As a rule, additional heating with gas or oil is also required, whereby, for example; blast furnace gas can be used. As arsenic, lead and antimony remain in the leaching material as contaminants and also make leaching more difficult, rusting materials with a higher content than approx. ■ 0.08$ arsenic and approx. 0, ho% lead is not treated by the chlorinating roasting. The exhaust gases from the chlorinating roasting are washed, and dissolved hydrogen chloride and volatilized metal chlorides in the washing solution are optionally added to the leaching solution. After the leaching, the sodium sulphate formed during the chlorination process is found in the leaching liquid. The sodium sulphate is usually extracted as Glauber's salt or calcined sodium sulphate after vacuum evaporation and crystallization and eventual calcination of the sodium sulphate. Such recovery is usually necessary to protect the environment. It has also been proposed to carry out the roasting with chlorine gas, but sodium chloride has been preferred for economic reasons.

Foreliggende oppfinnelse angår en fremgangsmåte som medforer betraktelige fordeler sammenlignet med de tidligere kjente fremgangsmåter. Ved foreliggende fremgangsmåte kloreres et rostgods som er blitt dannet ved rosting av jernsulfid som det er gunstig å utfore i en hvirvelskiktovn. Denne rosting kan utfores som en vanlig oxyderende rosting eller som en magnetittgivende rosting ifolge svensk patentskrift nr. 20^.002 eller kanadisk patentskrift nr. 796672.. Det er spesielt fordelaktig å behandle et materiale rostet i overensstemmelse med disse patentskrifter da arsen, antimon, vismut, tinn og bly som forstyrrer utlutningen og samtidig forurenser utlutningsgodset, derved så godt som fullstendig kan fjernes. Ved en slik rosting unngåes også dannelse av kobber og sinkferitter som er vanskeligere å klorere. Rostgodset kan ifolge oppfinnelsen ved overforingen til kloreringsreaktoren være helt av-rostet, hvorved oppnåes den fordel at det i kloreringsreaktoren kan opprettes nøyaktig regulerbare betingelser. The present invention relates to a method which entails considerable advantages compared to the previously known methods. In the present method, a rust product which has been formed by roasting iron sulphide is chlorinated, which is advantageously carried out in a fluidised bed furnace. This roasting can be carried out as a normal oxidizing roasting or as a magnetite-yielding roasting according to Swedish patent document no. 20^.002 or Canadian patent document no. 796672.. It is particularly advantageous to treat a material roasted in accordance with these patent documents as arsenic, antimony, bismuth, tin and lead which interfere with the leaching and at the same time contaminate the leaching material, thereby almost completely being removed. Such roasting also avoids the formation of copper and zinc ferrites, which are more difficult to chlorinate. According to the invention, the rusted material can be completely de-rusted when transferred to the chlorination reactor, thereby achieving the advantage that precisely adjustable conditions can be created in the chlorination reactor.

Dersom rostgodset er meget finkornet, kan det kornes for kloreringen, hvorved oppnåes bedre utlutningsegenskaper. En slik kor-ning ved sammenpressning kan utfores i overensstemmelse med det sven-ske patentskrift nr. 30^767 samt belgiske patentskrifter nr.69860!+ og nr..7lt-.0320. If the rust material is very fine-grained, it can be granulated for chlorination, whereby better leaching properties are achieved. Such graining by compression can be carried out in accordance with the Swedish patent document no. 30767 as well as the Belgian patent documents no. 69860!+ and no..7lt-.0320.

Som kloreringsmiddel anvendes alkali- og jordalkalimetallklo-rider, fortrinnsvis natriumklorid. Dette betraktes i alminnelighet som det billigste kloreringsmiddel. Ved anvendelsen av natriumklorid for kloreringen må, som angitt ovenfor, natriumkloridet sulfa-teres for å kunne frigjøre klor eller hydrogenklorid i overensstemmelse med en av de folgende summeringsligninger: Alkali and alkaline earth metal chlorides are used as chlorinating agents, preferably sodium chloride. This is generally regarded as the cheapest chlorinating agent. When sodium chloride is used for chlorination, as indicated above, the sodium chloride must be sulphated in order to release chlorine or hydrogen chloride in accordance with one of the following summation equations:

Hvilke av summeringsligningene som kan tillempes, er avhengig Which of the summation equations can be applied depends

av det sulfateringsmiddel som anvendes og en eventuell tilstedeværelse av vann. Summeringsligningene er selvfølgelig bare et uttrykk for en samlet reaksjon og omfatter.en hel rekke tenkbare delreaksjo-ner som er avhengige av de termodynamiske betingelser som i hvert aktuelt tilfelle foreligger. of the sulphating agent used and any presence of water. The summation equations are, of course, only an expression of an overall reaction and include a whole range of conceivable sub-reactions which are dependent on the thermodynamic conditions that exist in each applicable case.

Ifolge alle reaksjonene dannes natriumsulfat som gjenfinnes i As a result of all the reactions, sodium sulphate is formed which is found in

utlutningsopplosningen og kan utvinnes fra denne ved vakuuminndampning, krystallisering og kalsinering. Fjernelsen av natriumsulfatet fra avløpsvannet er som regel, som angitt ovenfor, nodvendig for å verne miljøet. the leaching solution and can be recovered from this by vacuum evaporation, crystallization and calcination. The removal of the sodium sulphate from the waste water is usually, as stated above, necessary to protect the environment.

Det rostede jernsulfid fjernes som rostgods fra rostingen og overfores til en kloreringsreaktor som er utformet som en hvirvelskiktreaktor som med fordel kan være konstruert av stål. Temperaturen holdes ved 300-600°C, fortrinnsvis ca. 550°C. The roasted iron sulphide is removed as rust from the roasting and transferred to a chlorination reactor which is designed as a fluidized bed reactor which can advantageously be constructed of steel. The temperature is kept at 300-600°C, preferably approx. 550°C.

Kloreringsmidlet, fortrinnsvis natriumkbrid, innfores i kloreringsreaktoren i suspendert form i fluidlseringsgassen eller i en adskilt gasstrom som det er gunstig består av luft, avgasser fra svovelsyrefremstillingen eller rostgasser fra en sulfidrosting. Natriumkloridet kan også tilsettes i laget med en slik kornstorrelses-fordeling at det holdes tilbake i laget i tilstrekkelig tid til å kunne reagere med sulfateringsmidlet. En slik kornstorrelsesforde-ling kan oppnåes ved å agglomerere eller sammenpresse finkornig natriumklorid, f.eks. ved sammenpressning mellom glatte valser. The chlorinating agent, preferably sodium chloride, is introduced into the chlorination reactor in suspended form in the fluidizing gas or in a separate gas stream which advantageously consists of air, exhaust gases from sulfuric acid production or rust gases from a sulphide roasting. The sodium chloride can also be added to the layer with such a grain size distribution that it is retained in the layer for a sufficient time to be able to react with the sulphating agent. Such a grain size distribution can be achieved by agglomerating or compressing fine-grained sodium chloride, e.g. by compression between smooth rollers.

Det må til kloreringsreaktoren også tilfores en tilstrekkelig mengde sulfateringsmiddel for å hjelpe til med å frigjore klor eller hydrogenklorid for kloreringsreaksjonen. Som sulfateringsmiddel anvendes i overensstemmelse med ligningene 1-6: svoveldioxyd (ligning 1 og 2), svoveltrioxyd (ligning 3 og h), svovelsyre (ligning 5) og jernsulfat (ligning 6 og 7). Det er gunstig å tilsette svoveldioxyd fortrinnsvis som fluidiseringsgass i form av rostgasser sammen med luft. Det er egnet å tilfore svovelsyre og svoveltrioxyd i fordampet form enten over eller under risten. Jernsulfat kan tilfores i kornform eller suspendert i en gass som også kan være fluidiseringsgass. A sufficient amount of sulphating agent must also be supplied to the chlorination reactor to help release chlorine or hydrogen chloride for the chlorination reaction. The sulphating agent is used in accordance with equations 1-6: sulfur dioxide (equations 1 and 2), sulfur trioxide (equations 3 and h), sulfuric acid (equation 5) and iron sulphate (equations 6 and 7). It is advantageous to add sulfur dioxide, preferably as a fluidizing gas in the form of rust gases together with air. It is suitable to add sulfuric acid and sulfur trioxide in vaporized form either above or below the grate. Iron sulphate can be supplied in granular form or suspended in a gas which can also be a fluidisation gas.

Temperaturen i kloreringsreaktoren reguleres ved tilpassning av temperaturen for inngående rostet materiale og lufttilførselen til kloreringsreaktoren. Inngående materiale som kan taes fra rosteov-nen i varm tilstand, kan avkjoles i en mellomreaktor hvor det også kan forekomme en ytterligere avrosting. Avkjølingen kan derved utfores ved å sproyte inn vann eller å innfore kaldere materiale eller på indirekte måte. Temperaturen i kloreringsreaktoren er foruten av temperaturen for det inngående materiale også avhengig av ekso-terme reaksjoner i reaktoren. -Oxydasjonen av magentitt og mindre rester av sulfider kan således bidra til varmetilforselen som i dette tilfelle gjor at i det nærmeste kaldt materiale kan tilfores til kloreringsreaktoren. Dersom det er nodvendig å tilfore ekstra varme, f.eks. ved tilførsel av større mengder kaldt materiale som skal kloreres og som ikke kan avgi tilstrekkelig oxydas jonsvarme, kan vai> me med fordel tilfores i form av varme rostgasser som samtidig kan anvendes for å tilfore fordampet svovelsyre og kloreringsmiddel. The temperature in the chlorination reactor is regulated by adjusting the temperature for incoming roasted material and the air supply to the chlorination reactor. Incoming material that can be taken from the roasting furnace in a hot state can be cooled in an intermediate reactor where further derusting can also occur. The cooling can therefore be carried out by spraying in water or introducing colder material or in an indirect way. In addition to the temperature of the incoming material, the temperature in the chlorination reactor also depends on exothermic reactions in the reactor. - The oxidation of magentite and smaller residues of sulphides can thus contribute to the heat supply, which in this case means that in the near future cold material can be supplied to the chlorination reactor. If it is necessary to add extra heat, e.g. when supplying large quantities of cold material to be chlorinated and which cannot give off sufficient oxidation heat, vai> can be advantageously supplied in the form of hot rust gases which can simultaneously be used to supply vaporised sulfuric acid and chlorinating agent.

Det anvendes i forste rekke natriumklorid som kloreringsmiddel, men også kaliumklorid eller magnesiumklorid kan anvendes. Kaliumklorid og magnesiumklorid er imidlertid som regel alt for kostbare. Kalsiumklorid kan også anvendes som kloreringsmiddel, men på grunn av gipsdannelse ved utlutningen og forurensning av utlutningsresten■ ved gipsutfelling er dette klorid mindre egnet. Sodium chloride is primarily used as a chlorinating agent, but potassium chloride or magnesium chloride can also be used. However, potassium chloride and magnesium chloride are generally far too expensive. Calcium chloride can also be used as a chlorinating agent, but due to gypsum formation during the leaching and contamination of the leaching residue■ by gypsum precipitation, this chloride is less suitable.

Foreliggende fremgangsmåte vil bli nærmere beskrevet under henvisning til tegningen som viser en utforelsesform av fremgangs- - måten. Materialer som skal rostes tilfores via 3 til en rostereak-tor 1 som via 2 tilfores et oxygenholdig fluidåæringmiddel. Det materiale som skal rostes kan bestå av jernsulfidmateriale som eventuelt er oppblandet med oxydisk materiale som i reaktoren rostes på vanlig måte eller slik at det oppnåes magnetitt. Rostgassene fores bort via k til en syklon 5 hvor meddrevet rostgods fraskilles, hvoretter rostgassen fores bort via 6. Fra sykbnen 5 tilbakeføres eventuelt rostgods via 7. Rostgodset ledes deretter via 8 fra reaktoren 1 og eventuelt syklonen 5 via 9 til en kloreringsreaktor 10. Derved kan rostgodset avkjoles og/eller ytterligere avsvovles og eventuelt sammenpresses i den antydede anordning 11. Også annet materiale som skal kloreres kan tilfores kloreringsreaktoren via 12. Som kloreringsmiddel anvendes ved foreliggende utforelsesform natriumklorid som via 13 ledes til en suspensjonsanordning 1<*>+ og der suspenderes med via 15 tilfort bærergass, hvoretter suspensjonen ledes videre og via 16 sammenfores med eventuell ytterligere fluidiseringsgass via 17 inn i kloreringsreaktoren via l8.og gjennom risten 19. Svovelsyre eller S0^ tilfores via 20 til en fordamper 21 hvor varme tilfores 22, hvoretter den fordampede svovelsyre eller svoveltrioxyd ledes videre via 23 til kloreringsreaktoren. The present method will be described in more detail with reference to the drawing which shows an embodiment of the method. Materials to be roasted are supplied via 3 to a roaster reactor 1 which is supplied via 2 with an oxygen-containing fluid aeration agent. The material to be roasted can consist of iron sulphide material which is optionally mixed with oxidic material which is roasted in the reactor in the usual way or so that magnetite is obtained. The rust gases are fed away via k to a cyclone 5 where entrained rust material is separated, after which the rust gas is fed away via 6. From the sick bed 5, any rust material is returned via 7. The rust material is then led via 8 from the reactor 1 and possibly the cyclone 5 via 9 to a chlorination reactor 10. Thereby the rusted material can be cooled and/or further desulfurized and possibly compressed in the indicated device 11. Other material to be chlorinated can also be fed to the chlorination reactor via 12. The chlorinating agent used in the present embodiment is sodium chloride, which via 13 is led to a suspension device 1<*>+ and where is suspended with carrier gas supplied via 15, after which the suspension is passed on and via 16 combined with any additional fluidizing gas via 17 into the chlorination reactor via l8 and through the grate 19. Sulfuric acid or SO^ is supplied via 20 to an evaporator 21 where heat is supplied 22, after which the vaporized sulfuric acid or sulfur trioxide is passed on via 23 to the chlorination reactor.

Etter kloreringen ledes rostgassene via 2h til en syklon 25 hvor meddrevet rostgods fraskilles.. De fra meddrevet gods befridde rostgasser ledes via 26 videre til et ikke vist anlegg for utvasking av gjenværende kloreringsmiddel og eventuelle meddrevne klorider. Den sure vaskeopplosning kan deretter overfores til utlutningsanlegget. Det fraskilte, meddrevne rostgods kan enten via 27 tilbakeføres til kloreringsreaktoren eller via 28 ledes direkte til utlutningsanlegget. Fra kloreringsreaktoren 10 fores via 29 rostgods direkte After chlorination, the rust gases are routed via 2h to a cyclone 25 where entrained rust material is separated. The rust gases freed from entrained material are routed via 26 to a facility not shown for washing out remaining chlorinating agent and any entrained chlorides. The acidic washing solution can then be transferred to the leaching plant. The separated, entrained rust material can either be returned via 27 to the chlorination reactor or routed directly to the leaching plant via 28. From the chlorination reactor 10, via 29, rusting material is fed directly

til utlutningsanlegget. to the leaching plant.

De ved foreliggende fremgangsmåte oppnådde fordeler kan sammen-fattes som folger: 1. En hvirvelskiktreaktor erpå alle måter overlegen i forhold til en etasjeovn som prosessenhet, og det er derfor blitt etterstrebet å kunne anvende en slik for kloreringsprosessen. Disse anstrengel-ser har imidlertid ikke tidligere hatt noen fremgang. Dersom imidlertid prosessen utfores i overensstemmelse med foreliggende fremgangsmåte har det overraskende vist seg mulig å utfore kloreringen i hvirvelskiktovn. 2. Ved de foretrukne utforelsesformer kreves en vesentlig mindre mengde kloreringsmiddel og sulfateringsmiddel enn ved de tidligere kjente fremgangsmåter hvor en sulfaterende rosting utfores, spesielt dersom denne utfores i en etasjeovn. Den minskede tilforsel av natriumklorid innebærer også at risikoen for vedheftning minsker vesentlig. Prosessen kan dessuten gjennomfores i praksis . med et be-traktelig mindre varmeforbruk som i de fleste tilfeller gjor en til-leggsoppvarmning unodvendig. The advantages achieved by the present method can be summarized as follows: 1. A fluidized bed reactor is in every way superior to a floor furnace as a process unit, and it has therefore been sought to be able to use one for the chlorination process. These efforts, however, have previously had no progress. However, if the process is carried out in accordance with the present method, it has surprisingly proved possible to carry out the chlorination in a fluidized bed furnace. 2. In the preferred embodiments, a significantly smaller amount of chlorinating agent and sulphating agent is required than in the previously known methods where a sulphating roasting is carried out, especially if this is carried out in a floor oven. The reduced supply of sodium chloride also means that the risk of adhesion is significantly reduced. The process can also be carried out in practice. with considerably less heat consumption, which in most cases makes additional heating unnecessary.

Claims (3)

1. Fremgangsmåte ved klorering i en hvirvelskiktreaktor av i rostgods inneholdte ikke-jernmetaller som deretter utlutes og utvinnes på i og for seg kjent måte, karakterisert ved at det i hvirvelskiktreaktoren samtidig med det rostede materiale innfores faste klorider av alkali- eller jordalkalimetaller, fortrinnsvis suspendert i en gasstrbm, samt svovelforbindelser i form av svoveldioxyd, svoveltrioxyd eller sulfater som fortrinnsvis er i gassform eller suspendert i gasstrommen, hvorved gassformig klor og/eller gassformige klorforbindelser, som i og for seg kjent, frigjores ved reaksjon mellom kloridene og svovelforbindelsene og klorerer ikke-jernmetallene.1. Procedure for chlorination in a fluidized bed reactor of non-ferrous metals contained in rusted goods which are then leached and extracted in a manner known per se, characterized in that solid chlorides of alkali or alkaline earth metals, preferably suspended, are introduced into the fluidized bed reactor at the same time as the rusted material in a gas stream, as well as sulfur compounds in the form of sulfur dioxide, sulfur trioxide or sulfates which are preferably in gaseous form or suspended in the gas chamber, whereby gaseous chlorine and/or gaseous chlorine compounds, which are known in and of themselves, are released by reaction between the chlorides and the sulfur compounds and do not chlorinate - the ferrous metals. 2. Fremgangsmåte ifolge krav 1,karakterisert ved at materialet kloreres ved anvendelse av med fluidiseringsluften innfort suspendert natriumklorid og under eller over risten innfort fordampet svovelsyre eller svoveltrioxyd.2. Method according to claim 1, characterized in that the material is chlorinated using suspended sodium chloride introduced with the fluidization air and evaporated sulfuric acid or sulfur trioxide introduced below or above the grate. 3. Fremgangsmåte ifolge krav 2,karakterisert ved at svovelsyre fordampes ved anvendelse av rokgasser.3. Method according to claim 2, characterized in that sulfuric acid is evaporated by the use of flue gases.
NO516269A 1968-12-31 1969-12-30 NO125824B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1806968A SE331365B (en) 1968-12-31 1968-12-31

Publications (1)

Publication Number Publication Date
NO125824B true NO125824B (en) 1972-11-06

Family

ID=20304222

Family Applications (1)

Application Number Title Priority Date Filing Date
NO516269A NO125824B (en) 1968-12-31 1969-12-30

Country Status (11)

Country Link
JP (1) JPS5414042B1 (en)
BE (1) BE743767A (en)
DE (1) DE1961900A1 (en)
ES (1) ES374445A1 (en)
FI (1) FI51109C (en)
FR (1) FR2027463A1 (en)
IE (1) IE33645B1 (en)
NO (1) NO125824B (en)
RO (1) RO61891A (en)
SE (1) SE331365B (en)
YU (2) YU33399B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2451401A2 (en) * 1979-03-12 1980-10-10 Rech Geolog Miniere Chloriding antimony ores - using alkali (ne earth) metal chloride(s), oxygen and sulphur di:oxide
SE452170B (en) * 1983-10-03 1987-11-16 Boliden Ab PROCEDURE FOR THE RECOVERY OF METALWORKS OF COPPER AND / OR PRECIOUS METAL CONTAINING MATERIALS CONTAINING ANTIMON AND VISMUT
DE4309024A1 (en) * 1993-03-20 1994-09-22 Happich Gmbh Gebr Fastening element for equipment parts to be fastened to body parts of motor vehicles
DE19958158B4 (en) * 1999-12-03 2011-09-29 Volkswagen Ag Arrangement for fastening a mounting part to a wall portion of a sheet metal body
AU2001228744A1 (en) * 2000-02-18 2001-08-27 Eco2 Sa Device and method for the precision cleaning of objects
BR112023024667A2 (en) * 2021-05-25 2024-02-15 Cinis Fertilizer Ab PROCESS FOR TREATMENT OF A SODIUM SULFATE CONTAINING WASTE PROCESS STREAM FROM A BATTERY PRODUCTION FACILITY, A BATTERY RECYCLING FACILITY OR A STEEL PRODUCTION PLANT

Also Published As

Publication number Publication date
JPS5414042B1 (en) 1979-06-04
YU33399B (en) 1976-12-31
SE331365B (en) 1970-12-21
IE33645B1 (en) 1974-09-04
BE743767A (en) 1970-05-28
YU314769A (en) 1976-06-30
FI51109C (en) 1976-10-11
FI51109B (en) 1976-06-30
ES374445A1 (en) 1972-01-01
DE1961900A1 (en) 1970-07-16
FR2027463A1 (en) 1970-09-25
RO61891A (en) 1978-01-15
IE33645L (en) 1970-06-30

Similar Documents

Publication Publication Date Title
KR101239026B1 (en) Leaching process in the presence of hydrochloric acid for the recovery of a value metal from an ore
US5123956A (en) Process for treating ore having recoverable gold values and including arsenic-, carbon- and sulfur-containing components by roasting in an oxygen-enriched gaseous atmosphere
US5667553A (en) Methods for recycling electric arc furnace dust
US6482373B1 (en) Process for treating ore having recoverable metal values including arsenic containing components
EP0508542A2 (en) Process for treating ore having recoverable metal values including arsenic containing components
RU2615527C2 (en) Method for concentrating and separating metal chlorides in/from iron(iii) chloride-containing hydrochloric acid solution
AU2004257315B2 (en) A process for recovering platinum group metals from ores and concentrates
AU2021204219B2 (en) Recovery of Metals from Pyrite
CA1085589A (en) Recovery of chlorine values from iron chloride by- produced in chlorination of ilmenite and the like
NO125824B (en)
CA1125031A (en) Process for the roasting and chlorination of finely-divided iron ores and/or concentrates containing non-ferrous metals
SE452169B (en) PROCEDURE FOR EXPLOITING THE METAL WORLD OF IRON-INHALING MATERIAL
US2094277A (en) Method of sulphating the ore metal values of a sulphide ore
CA2514830C (en) A method for increasing the chrome to iron ratio of chromites products
US4642133A (en) Process for chlorinating volatilization of metals which are present in oxidic iron ores or concentrates
US3674462A (en) Process for low temperature chlorination of roasted products from an iron sulphide roasting process prior to leaching out the nonferrous metal present therein
EP1098999A1 (en) Melt and melt coating sulphation process
US1937661A (en) Dry chloridizing of ores
US2681855A (en) Process for chlorinating ores
EP1590494B1 (en) A method for increasing the chrome to iron ratio of chromites products
GB396933A (en) Improvements in or relating to processes of solubilizing metal values in oxidized ores containing iron
EP0063134A1 (en) A method for the chlorinating refinement of iron raw materials
NO130323B (en)
Shpilevaya Extraction of Zn from dust generated during steel production
OA20588A (en) Recovery of metals from pyrite