NO130323B - - Google Patents

Download PDF

Info

Publication number
NO130323B
NO130323B NO00512/72A NO51272A NO130323B NO 130323 B NO130323 B NO 130323B NO 00512/72 A NO00512/72 A NO 00512/72A NO 51272 A NO51272 A NO 51272A NO 130323 B NO130323 B NO 130323B
Authority
NO
Norway
Prior art keywords
zinc
sludge
iron
ferrite
alkali
Prior art date
Application number
NO00512/72A
Other languages
Norwegian (no)
Inventor
H Tanner
E Nyholm
Original Assignee
Outokumpu Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oy filed Critical Outokumpu Oy
Publication of NO130323B publication Critical patent/NO130323B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/24Obtaining zinc otherwise than by distilling with leaching with alkaline solutions, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

Fremgangsmåte for rensing av ved elektrolytisk fremstillings-metode av sink erholdt slam, hvilket inneholder basiske sulfater og hydroksyder av jern samt sinkferritt for å utvinne et råstoff som egner seg for jernfremstillingen og for å gjenvinne sink. Process for purifying sludge obtained by the electrolytic production method of zinc, which contains basic sulphates and hydroxides of iron as well as zinc ferrite to extract a raw material suitable for the production of iron and to recover zinc.

Ved den konvensjonelle elektrolytiske sinkutvinning fås et sinkferrittholdig losningsresiduum, hvis innhold av sink og andre verdifulle metaller (Cu, Cs, Ag, Au, Pb, ...) er ganske betydelig. In the case of conventional electrolytic zinc extraction, a zinc ferrite-containing solution residue is obtained, the content of zinc and other valuable metals (Cu, Cs, Ag, Au, Pb, ...) is quite significant.

For videre-behandling av dette losningsresiduum og for gjenvinning av de deri forekommende verdifulle metallene, har man utviklet såvel pyro- som hydrometallurgiske behandlingsmetoder. Both pyro- and hydrometallurgical treatment methods have been developed for the further treatment of this discharge residue and for the recovery of the valuable metals contained therein.

Ved de hydrometallurgiske behandlings-metodene, hvilke beskrives blant annet i det amerikanske patent nr. 1.834.960, det norske patent nr. 108.04 7, det kanadiske patent nr. 663.664, det spanske patent nr. 304.601 og det belgiske patent nr. 724.214, har det ferrittholdige losningsresiduum blitt opplost i returelektrolytten fra sink-elektrolysen. Det ved denne opplosningen gjenværende faste residuum, som inneholder solvet, gullet og blyet i det opprinnelige losningsresiduum, har vanligvis blitt atskilt fra losningen og tilfort prosesser, In the case of the hydrometallurgical treatment methods, which are described, among other things, in the American patent no. 1,834,960, the Norwegian patent no. 108,047, the Canadian patent no. 663,664, the Spanish patent no. 304,601 and the Belgian patent no. 724,214, the ferrite-containing solution residue has been dissolved in the return electrolyte from the zinc electrolysis. The solid residue left by this dissolution, which contains the solvate, gold and lead in the original dissolution residue, has usually been separated from the solution and added to processes,

i hvilke de ovenfor nevnte metaller har kunnet atskilles og utvinnes. Losningen, hvis jern (III)- og svovelsyre-innhold vanligvis varierer i området 20 -. 35 g/l, har, for de fleste losningers vedkommende, blitt tilfort utfellingstrinnet for jern direkte eller etter for-noytraliseringen. in which the above-mentioned metals have been able to be separated and extracted. The solution, whose iron (III) and sulfuric acid content usually varies in the range 20 -. 35 g/l, for most solutions, has been added to the precipitation step for iron directly or after pre-neutralisation.

Ferrittjernet blir herved utfelt som basisk sulfat og/eller oksyd-hydroksyd. For nøytralisering av den ved utfellingsreaksjonen frigjorte svovelsyren har man vanligvis anvendt rostet sink. Rostingsproduktenes ferrittkomponent opploses ikke ved utfel-lingsfasen, men gjenblir i jernslammet. Ved enkelte fremgangsmåter (norsk patent nr. 108.047, kanadisk patent nr. 304.601) tilsettes det til jernets utfellingsfase dessuten en alkali-eller ammonium-forbindelse, hvorved ferrittjernet utfelles såsom alkali- eller ammonium-j.arositt (A[Fe^ (SO^) ^ (OH) ^] 5 The ferritic iron is thereby precipitated as basic sulphate and/or oxide-hydroxide. Rusted zinc has usually been used to neutralize the sulfuric acid released during the precipitation reaction. The ferrite component of the roasting products does not dissolve during the precipitation phase, but remains in the iron sludge. In some methods (Norwegian patent no. 108,047, Canadian patent no. 304,601), an alkali or ammonium compound is also added to the iron's precipitation phase, whereby the ferrite iron is precipitated as alkali or ammonium jarosite (A[Fe^ (SO^ ) ^ (OH) ^] 5

A = Na, K, NH4). A = Na, K, NH4).

Samtlige nevnte fremgangsmåter gir et hoyt utbytte av sink, kobber og kadmium (solv, gull og bly). Ved alle disse fremgangsmåter gjenblir et sink-ferritt-holdig jernslam, hvis sinkinnhold utgjor 5 - 7%, og som tilsvarer ca. 3 - 4% av sinkinnholdet i hele det ved prosessen anvendte materiale. Selv om de av jernslammet medforte og relativt store sinkmengder kan betraktes som en ulempe ved disse fremgangsmåter, så forårsaker dog den ved prosessen erholdte store mengden av jernslam (ved . sinkproduksjonen 100.000 t ca. 40.000 - 50.000 t jernfelling), All the methods mentioned give a high yield of zinc, copper and cadmium (solvent, gold and lead). With all these methods, a zinc-ferrite-containing iron sludge remains, whose zinc content amounts to 5 - 7%, and which corresponds to approx. 3 - 4% of the zinc content in all the material used in the process. Although the relatively large quantities of zinc carried away by the iron sludge can be considered a disadvantage of these methods, the large amount of iron sludge obtained in the process (with zinc production of 100,000 t approx. 40,000 - 50,000 t iron precipitation) causes

og som i de fleste tilfelle må betraktes som et avfall, den alvorligste ulempen ved disse fremgangsmåter. and which in most cases must be considered a waste, the most serious disadvantage of these methods.

For delvis gjenvinning av den sink som jernslammet inneholder har man utviklet en sur vasking av ferrittholdig jarosittslam (norsk utlegrJ r.gsskrift nr. 123.248), og denne fremgangsmåte beskrives nærmare av G. Steinveit i artikkelen "Die Eisen-fållung als Jarosit und ihre Anwendung in der Nassmetallurgie des Zinks", Erzmetall 23 (1970), s. 532-539). Ved sur vasking kan utfellingens sinkinnhold nedsettes til verdien 2 - 3%, men også herved gjenstår slamproblemet på grunn av den store mengde jernslam, og dessuten er også sinkutbyttet utilfredsstillende. For partial recovery of the zinc that the iron sludge contains, an acid washing of ferrite-containing jarosite sludge has been developed (Norwegian utlegrJ r.gsskrift no. 123.248), and this procedure is described in more detail by G. Steinveit in the article "Die Eisen-fållung als Jarosit und ihre Anwendung in der Nassmetallurgie des Zinks", Erzmetall 23 (1970), pp. 532-539). With acid washing, the zinc content of the precipitate can be reduced to a value of 2 - 3%, but even here the sludge problem remains due to the large amount of iron sludge, and the zinc yield is also unsatisfactory.

Losningsresiduet fra den konvensjonelle prosess og de oven-nevnte ferrittholdige jernslam har også blitt behandlet ved en kombinasjon av klorerende og sulfatiserende rosting (A. Roeder, H. Junghanss, H. Kudelka, Process for Complete Utilization of Zinc Leach Residues, Journal of Metals 21 (1969) s. 31-37). Ved denne behandling fås en jernoksydmalm, hvis ikke-jerninnhold er så lavt at den egner seg direkte som råmateriale for jernfremstilling. Men heller ikke med denne fremgangsmåte kan losningen fra rostgodsets utlutning på grunn av det hoye klorid-innholdet tilfores den elektrolytiske sinkutvinningsprosess, The leach residue from the conventional process and the above-mentioned ferrite-containing iron sludges have also been treated by a combination of chlorinating and sulphating roasting (A. Roeder, H. Junghanss, H. Kudelka, Process for Complete Utilization of Zinc Leach Residues, Journal of Metals 21 (1969) pp. 31-37). This treatment yields an iron oxide ore whose non-iron content is so low that it is directly suitable as raw material for iron production. But even with this method, the solution from the leaching of the rusted goods cannot be fed to the electrolytic zinc extraction process due to the high chloride content,

og anvendelsen av denne fremgangsmåte i direkte kombinasjon med en elektrolytisk sinkutvinningsprosess er ikke mulig. and the application of this method in direct combination with an electrolytic zinc extraction process is not possible.

Man har også anvendt seg av direkte sulfatiserende rosting av det primære losningsresiduum som hovedsakelig består av sink-ferritt, hvorved sulfatiseringen er utfort enten med svovelsyre eller med en sulfatiserende gassatmosfære som er dannet av sulfidholdig materiale, f.eks. pyritt. En prosess, hvor pyritt anvendes som brennstoff og for dannelse av en sulfatiserende atmosfære, er skildret av E. Moriyama og Y. Yamamoto i Akita Electrolytic Zinc Plant and Residue Treatment of Mitsubishi Metal Mining Company Ltd., Proceedings of AIME World Symposium on Mining and Metallurgy of Lead and Zinc (1970) Volume 2. Direct sulphating roasting of the primary solution residue, which mainly consists of zinc ferrite, has also been used, whereby the sulphation is carried out either with sulfuric acid or with a sulphating gas atmosphere which is formed from sulphide-containing material, e.g. pyrite. A process, where pyrite is used as fuel and for the formation of a sulphating atmosphere, is described by E. Moriyama and Y. Yamamoto in Akita Electrolytic Zinc Plant and Residue Treatment of Mitsubishi Metal Mining Company Ltd., Proceedings of AIME World Symposium on Mining and Metallurgy of Lead and Zinc (1970) Volume 2.

Ved denne fremgangsmåten har-man etter utlutningen av det sul-fatiserte rostingsproduktet erholdt et jernoksydslam, hvis sinkinnhold er 2 - 3%. Et slikt jeroksydslam egner seg ikke direkte som råmateriale for jernfremstiIlingen. Dessuten for-svinner ikke ved denne fremgangsmåte det for den elektrolytiske sinkutvinningsprosess typiske sulfatoverskudd uten at man foretar spesielle forholdsregler, hvilket er tilfelle ved den ovenfor beskrevne hydrometallurgiske behandlingsmetode av det primære losningsresiduum. In this method, after the leaching of the sulphated roasting product, an iron oxide sludge has been obtained, the zinc content of which is 2-3%. Such a jeroxide sludge is not directly suitable as a raw material for iron production. Moreover, with this method, the excess sulphate typical for the electrolytic zinc extraction process does not disappear without special precautions being taken, which is the case with the above-described hydrometallurgical treatment method of the primary leaching residue.

Ulempen med samtlige oven beskrevne fremgangsmåter har enten vært mangelfull gjenvinning av sink samt de nærmest et avfall representerende mengder av jernslam, eller dersom disse.pro-blemer kunne loses på tilfredsstillende måte har man hatt den ulempen at behandlingsprosessen av det primære losningsresiduum eller det ferrittholdige jernslam ikke har kunne kombineres direkte med den elektrolytiske sinkutvinningsprosess. The disadvantage of all the methods described above has either been insufficient recovery of zinc and the quantities of iron sludge representing almost a waste, or if these problems could be resolved satisfactorily, one has had the disadvantage that the treatment process of the primary discharge residue or the ferrite-containing iron sludge has not been able to be combined directly with the electrolytic zinc extraction process.

I U.S. patentet nr. 1.834.960 har man behandlet et tilfelle, hvor jernet er utfelt som basisk sulfat. For nøytraliseringen har man herved anvendt rostet sinkprodukt, hvis ferritter, In the U.S. patent no. 1,834,960, a case has been treated where the iron is precipitated as basic sulphate. For the neutralization, a roasted zinc product has been used, whose ferrites,

som beskrevet ovenfor, har blitt igjen i jernslammet. Jernslammet blir deretter rostet i en Wedge-ovn i temperaturområdet 500 - 6dO°C. Ved denne behandling har de basiske sulfatene blitt dekomponert og en del av sinken i sinkferrittan har gått over i vannloselig sulfatform. Etter vannvasking har rostingsproduktenes sinkinnhold vært ca. 5%, hvorav 50 - 60% har forekommet i vannloselig eller ferrittform. as described above, has remained in the iron sludge. The iron sludge is then roasted in a Wedge furnace in the temperature range 500 - 6dO°C. During this treatment, the basic sulphates have been decomposed and part of the zinc in the zinc ferrittan has changed into water-soluble sulphate form. After water washing, the zinc content of the roasting products was approx. 5%, of which 50 - 60% has occurred in water-soluble or ferrite form.

Ved den oven beskrevne rostingen som også ved den beskrevne sulfatiserende rosting av det primære losningsresiduum, har man ikke lykkes å frembringe en tilstrekkelig vidtgående sulfatisering av sinkferritténe. Etter vannvasking av roste-godset har jernoksydslammets sinkinnhold, dvs. den i ferrittform forekommende sinken, i alle tilfeller vært 2 - 3%, så In the above-described roasting, as also in the described sulphating roasting of the primary solution residue, one has not succeeded in producing a sufficiently extensive sulphation of the zinc ferrites. After water washing of the rusted goods, the zinc content of the iron oxide sludge, i.e. the zinc occurring in ferrite form, has in all cases been 2 - 3%, so

at jernoksydslammet ikke direkte kan anvendes for jernfremstilling. that the iron oxide sludge cannot be directly used for iron production.

Oven angitte ulemper har man kunnet unngå med fremgangsmåten ifolge nærværende oppfinnelse, og hvis hovedsakelig karak-teristiske kjennetegn fremgår av patentkrav 1. The disadvantages stated above have been avoided with the method according to the present invention, and whose mainly characteristic features appear from patent claim 1.

Ved denne fremgangsmåten har man utgått fra at jerslammet fra en hydrometallurgisk behandlingsprosess av det primære losningsresiduum i hovedsaken har bestått av (a) alkali jarositt (f.eks. Na Fe., (SO^) 2 (OH) ^) eller sinkferritt; In this method, it has been assumed that the iron sludge from a hydrometallurgical treatment process of the primary leaching residue has mainly consisted of (a) alkali jarosite (e.g. Na Fe., (SO^) 2 (OH) ^) or zinc ferrite;

(b) basiske feriittsulfater (f.eks. hydroniumjarositt (b) basic ferrite sulfates (e.g. hydronium jarosite

H30 <Fe>3(S04)2(OH)6, glokkeritt Fe4 S<0>4 (OH) Q), ferrioksy-hydroksyd (FeOOH) og sinkferritt. H30 <Fe>3(SO4)2(OH)6, glockerite Fe4 S<0>4 (OH) Q), ferric oxy-hydroxide (FeOOH) and zinc ferrite.

I det fbrste tilfellet ble slammet underkastet direkte og i In the first case, the sludge was submitted directly and in

det senere tilfellet sammen med en alkaliforbindelse (f.eks. natriumsulfat) en termisk behandling. i temperaturområdet 200 - 400°C avgir jarosittene, glokkerittene og oksyhydroksydene krystallvann. De finfordelte ferritter i jernslammet står nå i meget intim kontakt, f .ek.?, i tilfelle (a) der natrium-jarositten har avgitt krystallvann, med den gjenværende forbin-delsen NaFe (S04) ^ •Fe2°3 * N^r temPeratureri stiger begynner sinkferritten ZnO.Fe20^ å reagere med NaFe(S04)2« Når temperaturen har steget til 600 C er sinkferrittens sinkoksyd sulfatisert meget fullstendig etter at ferritten har reagert med den i intim kontakt dermed stående NaFe(S04)2- Hvis temperaturen ytterligere bkes, begynner ZnS04 å dekomponeres langsomt, hvorved det dannes sinkoksyd, som videre reagerer med ~ £e. £>^ under dannelse av sinkferritt. Den temperatur, ved hvilken sinkferritt-dannelsen begynner avhenger av SC^-, S03~ °<? °2~ innholdet i gassfasen som omgir kornene. Herved er det viktig at oksygenets og svoveldioksydets partialtrykk og temperatur er slik regulert at man opererer innenfor systemets Zn-Fe-S-0 termiske stabilitets-område ZnS04 + Fe ?0-.. I praksis betyr dette at ved anvendelse av lavt SC^-partialtrykk er en egnet temperatur ca. 600°C, og ved SC^-innhold på 5 - 10%, er en egnet temperatur 670 - 680°C. Det ovenfor nevnte illustreres av figurene 1, 2 og 3. Fig. 1 viser de typiske rontgendiffraksjons-diagrammer for et slam av typen (a) og for de derav i luft ved temperaturene 400, 500, 600 og 700°c i lbpet av 2 timer ved termisk behandling erholdte faste stoffer. Figurene 2 og 3 viser stabilitetsdiagrammene for systemet Zn-Fe-S-0 (R.L. Benner, H. Kenworth<y>, Bureau og Mines, Report of Investigations 6769). the later case together with an alkali compound (e.g. sodium sulfate) a thermal treatment. in the temperature range 200 - 400°C, the jarosites, glockerites and oxyhydroxides emit crystal water. The finely divided ferrites in the iron sludge are now in very intimate contact, e.g.?, in case (a) where the sodium jarosite has given off crystal water, with the remaining compound NaFe (S04) ^ •Fe2°3 * N^r temperature rises, the zinc ferrite ZnO.Fe20^ begins to react with NaFe(S04)2« When the temperature has risen to 600 C, the zinc ferrite's zinc oxide is very completely sulphated after the ferrite has reacted with it in intimate contact thus standing NaFe(S04)2- If the temperature further bkes, ZnS04 begins to decompose slowly, whereby zinc oxide is formed, which further reacts with ~ £e. £>^ during the formation of zinc ferrite. The temperature at which zinc ferrite formation begins depends on SC^-, SO3~ °<? °2~ the content of the gas phase surrounding the grains. Hereby, it is important that the partial pressure and temperature of the oxygen and sulfur dioxide are regulated in such a way that one operates within the system's Zn-Fe-S-0 thermal stability range ZnS04 + Fe ?0-.. In practice, this means that when using low SC^- partial pressure is a suitable temperature approx. 600°C, and with SC^ content of 5 - 10%, a suitable temperature is 670 - 680°C. The above is illustrated by Figures 1, 2 and 3. Figure 1 shows the typical X-ray diffraction diagrams for a sludge of type (a) and for those thereof in air at temperatures of 400, 500, 600 and 700°c over the course of 2 hours. solids obtained by thermal treatment. Figures 2 and 3 show the stability diagrams for the system Zn-Fe-S-0 (R.L. Benner, H. Kenworth<y>, Bureau and Mines, Report of Investigations 6769).

Av diagrammene ifblge figurene 1, 2 og 3 kan man således utlese at: 1) når Pc„^ 10~<5> atm og P_ = 0,05-0,10 atm er det hensikts-messige drirtstemperaturområaet ca. 550-600 c (eksperimentelt kan man bestemme at temperaturområdet hensiktsmessig er 580 - 600°C) og 2) når Pcn^ 0,10 atm og P_ = 0,05-0,10 atm er det hensikts-so2 o2 From the diagrams according to figures 1, 2 and 3, it can thus be read that: 1) when Pc„^ 10~<5> atm and P_ = 0.05-0.10 atm, the suitable dry temperature range is approx. 550-600 c (experimentally one can determine that the appropriate temperature range is 580 - 600°C) and 2) when Pcn^ 0.10 atm and P_ = 0.05-0.10 atm it is appropriate-so2 o2

messige temperaturintervallet 670-750°C. normal temperature range 670-750°C.

Hvis man ved hjelp av termodynamiske data tegnet tilsvarende stabilitetsdiagram for svoveldioksydets partialtrykk P = 10 atm, så skulle man kunne konstatere at det fordelaktige temperaturintervallet var 600-650°C. Man kan siden eksperimentelt innenfor rammen av nevnte temperaturintervall sbke det mest fordelaktige temperaturområdet for hver P„ - og P -verdi (jfr. eksemplene). If, using thermodynamic data, a corresponding stability diagram was drawn for the sulfur dioxide's partial pressure P = 10 atm, then it should be possible to establish that the advantageous temperature interval was 600-650°C. One can then experimentally, within the framework of the mentioned temperature interval, find the most advantageous temperature range for each P„ - and P -value (cf. the examples).

For at sinkinnholdet i det jernoksydslam som fås som slutt-produkt etter vann-vaskingen skal kunne bringes til størrelses-ordenen 0,1 - 0,2%, er en meget vidtgående sulfatisering av sinkferritten nbdvendig, og samtidig må man nbyaktig regulere reaksjonsbetingelsene, så at pånytt-dannelsen av sinkferritt kan forhindres så fullstendig som mulig. Oppnåelsen av disse mål fremmes av: 1. Intim kontakt mellom sinkferrittkornene og den omkring disse nærværende NaFetSO^^ • Fe203-fasen, 2. tilstrekkelig SO^-innhold for sulfatisering av sinkoksydet i fasen som omgir sinkferrittkornene, 3. tilstrekkelig alkali-innhold hos den fasen som-omgir sinkferrittkornene, så at sink-ferrittene reagerer med sin omgivelse, og det omkring ferritt-kornene dannes dobbelt-sulfater av natrium og sink, samt i ett trinn også en natriumpyrosulfat-holdig fase, som smelter allerede ved relativ lav temperatur under hurtig og effektiv sulfati-ser-ing av f errittkornene, 4. utfbrelse av den termiske behandlingen i en hvirvelsjikts-ovn eller fluidiseringsreaktor, hvorved man kan avstedkomme en nbyaktig styring av reaksjonsbetingelsene. In order for the zinc content in the iron oxide sludge obtained as the final product after the water washing to be brought to the order of 0.1 - 0.2%, a very extensive sulphation of the zinc ferrite is necessary, and at the same time the reaction conditions must be closely regulated, so that the re-formation of zinc ferrite can be prevented as completely as possible. The achievement of these goals is promoted by: 1. Intimate contact between the zinc ferrite grains and the NaFetSO^^ • Fe203 phase present around them, 2. sufficient SO^ content for sulphation of the zinc oxide in the phase surrounding the zinc ferrite grains, 3. sufficient alkali content in the phase that surrounds the zinc ferrite grains, so that the zinc ferrites react with their surroundings, and double sulfates of sodium and zinc are formed around the ferrite grains, and in one step also a phase containing sodium pyrosulfate, which melts already at a relatively low temperature during rapid and effective sulphation of the ferrite grains, 4. execution of the thermal treatment in a fluidized bed furnace or fluidization reactor, whereby close control of the reaction conditions can be achieved.

For å opprettholde en termisk likevekt anvendes helst sulfidholdig brennstoff, f .eks. pyritt, hvorved også gy.ssf asens In order to maintain a thermal equilibrium, sulphide-containing fuel is preferably used, e.g. pyrite, whereby also gy.ssf asens

S02~ og O2~innhold kan variere innen ganske vide grenser. Det er herved mulig å anvende også ikke-jernmetallholdige (nærmest Zn- og Cu-holdige) pyritter (FeS), FeS-malmer og -stbv, eller S02~ and O2~ contents can vary within fairly wide limits. It is thereby possible to also use non-ferrous metal-containing (mostly Zn- and Cu-containing) pyrites (FeS), FeS ores and -stbv, or

i ytterste fall også jernholdig sinksulfidslig, hvorved også brennstoffets ikke-jernmetallinnhold (nærmest Zn- og Ci-innhold) kan ivaretas; også elementært svovel kan anvendes som brennstoff. in extreme cases also iron-containing zinc sulphide, whereby the fuel's non-ferrous metal content (mostly Zn and Ci content) can also be taken care of; elemental sulfur can also be used as fuel.

I denne sammenheng bor man ytterligere betone nødvendigheten av nbyaktig regulering av gassfasens S02~ og O2~innhold, samt en temperatur som tilsvarer dette innhold. Denne nbyaktige reguleringen kan best utfores i en fluidiserings-reaktor. In this context, the necessity of close regulation of the gas phase's S02~ and O2~ content, as well as a temperature that corresponds to this content, should be further emphasized. This close regulation can best be carried out in a fluidization reactor.

Når det gjelder sulfatisering av ikke-jernmetallene i brenn-stoffet og reguleringen av betingelsene, så henvises det til det finske patent nr. 41.874. Regarding sulphation of the non-ferrous metals in the fuel and the regulation of the conditions, reference is made to the Finnish patent no. 41,874.

De ved den termiske behandlingen erholdte produktene opplbses The products obtained during the thermal treatment are dissolved

i vann, og losningen kan tilbakefbres etter filtrering til lbsningssystemet for sinkrbstingsproduktene, hvortil også jern-slammets alkali tilbakevender. Ved prosessen, hvorved i samband med behandlingen av det primære losningsresiduum jernet utfelles som alkalijarositt, vil man spare de normale alkalitilsetningsomkostningene ved at alkali sirkulerer. in water, and the solution can be returned after filtration to the solution system for the zinc corrosion products, to which the alkali of the iron sludge also returns. In the process, whereby in connection with the treatment of the primary solution residue the iron is precipitated as alkali jarosite, the normal alkali addition costs will be saved by circulating alkali.

På tilsvarende måte oppnås, sammenlignet med de fleste og i innledningen nevnte fremgangsmåter,,en betydelig besparelse av SO^. Da ved nevnte fremgangsmåter nemlig jernet utfelles som basisk sulfat og slammet fjernes fra systemet uten termisk behandling, så går det sammen med slammet tapt en betydelig SO^-mengde, hvilken klart overstiger den mengde som innkommer sammen med rbsteproduktene i systemet. Sulfatunderskuddet erstattes vanligvis ved H^O^-tilsetning. Ved fremgangsmåten ifblge nærværende oppfinnelse fremskaffes en betydelig del av den SO^-tilsetningen som systemet krever av SO^-innholdet i slammet fra den termiske behandlingen. In a similar way, compared to most of the methods mentioned in the introduction, a significant saving of SO^ is achieved. When, in the aforementioned methods, the iron is precipitated as basic sulphate and the sludge is removed from the system without thermal treatment, a significant amount of SO^ is lost together with the sludge, which clearly exceeds the amount that enters the system together with the waste products. The sulphate deficit is usually replaced by H^O^ addition. In the method according to the present invention, a significant part of the SO^ addition required by the system is obtained from the SO^ content in the sludge from the thermal treatment.

EKSEMPEL 1 EXAMPLE 1

EKSEMPEL 1 EXAMPLE 1

Analyse av de fra jernslammet i en laboratorieovn rostede produktene (vi = vannloselig, vol = vannuloselig). EKSEMPEL 2 Analysis of the roasted products from the iron sludge in a laboratory furnace (vi = water-soluble, vol = water-insoluble). EXAMPLE 2

Na2S04~tilsetning 12% av jernslammet Na2S04~addition 12% of the iron sludge

Analyse av de fra jernslammet og Na2S04-tilsetningen i en laboratorieovn rostede produktene Analysis of the roasted products from the iron sludge and Na2S04 addition in a laboratory furnace

EKSEMPEL 3 Analyse av den som brennstoff anvendte pyritten EXAMPLE 3 Analysis of the pyrite used as fuel

Analyse av et fra jernslam og pyritt i forholdet 1:1 i en fluidiseringsreaktor rostet produkt Rbstingsbetingelser:, Analysis of a roasted product from iron sludge and pyrite in a ratio of 1:1 in a fluidization reactor Production conditions:

Claims (3)

1. Fremgangsmåte for rensing av ved elektrolytisk fremstilling av sink erholdt slam, hvilket inneholder basiske sulfater og hydroksyder av jern samt sinkferritt, hvilket slam egner seg som råmateriale for jernfremstilling og for gjenvinning av sink, karakterisert ved at man behandler termisk det alkaliholdige slammet slik at svovelets og oksygenets partialtrykk og temperatur i systemet Zn-Fe-S-0 reguleres innenfor det termiske stabilitetsområdet for ZnS04+Fe203, hvorved sinken og visse andre ikke-jernmetaller omdannes til vannloselige sulfater, og hvorved jernet som inngår i slammets basiske sulfater, som f.eks. i alkalijarositten MeFe3(S04)2(OH)^, hydroniumjaro-sitten H3OFe3(S04)2(OH)6 og/eller i glokkeritten Fe4S04(OH)6 og i ferrioksyhydroksydet FeOOH, omdannes til oksydform, og hvorved jernet i ferrittene, som f.eks. i sinkferritten ZnO . Fe203 eller i kadmiumferritten CdO . Fe203, erholdes som oksyd, og at produktene fra denne termiske behandlingen ekstraheres, hvoretter den erholdte losningen separeres fra det ulbselige oksydslammet.1. Process for cleaning sludge obtained by electrolytic production of zinc, which contains basic sulphates and hydroxides of iron as well as zinc ferrite, which sludge is suitable as raw material for iron production and for the recovery of zinc, characterized by thermally treating the alkali-containing sludge so that the partial pressure and temperature of the sulfur and oxygen in the system Zn-Fe-S-0 are regulated within the thermal stability range of ZnS04+Fe203, whereby the zinc and certain other non-ferrous metals are converted into water-soluble sulphates, and whereby the iron that is included in the sludge's basic sulphates, such as f .ex. in the alkali jarosite MeFe3(S04)2(OH)^, the hydronium jarosite H3OFe3(S04)2(OH)6 and/or in the glockerite Fe4S04(OH)6 and in the ferric oxyhydroxide FeOOH, is converted into the oxide form, and whereby the iron in the ferrites, which e.g. in the zinc ferrite ZnO. Fe203 or in the cadmium ferrite CdO. Fe2O3 is obtained as oxide, and that the products from this thermal treatment are extracted, after which the solution obtained is separated from the soluble oxide sludge. 2. Fremgangsmåte ifblge krav 1,karakterisert ved at den termiske behandlingen utfores i hvirvelsjiktovn eller i en fluidiserings-reaktor.2. Method according to claim 1, characterized in that the thermal treatment is carried out in a fluidized bed furnace or in a fluidization reactor. 3. Fremgangsmåte ifblge krav 1 og 2, karakterisert ved at i det tilfelle slammet inneholder lite eller overhode ingen alkalijarositt, så tilfores slammet en tilstrekkelig mengde alkaliforbindelser, som f.eks. natriumsulfat.3. Method according to claims 1 and 2, characterized in that in the event that the sludge contains little or no alkali jarosite, the sludge is supplied with a sufficient amount of alkali compounds, such as e.g. sodium sulfate.
NO00512/72A 1971-02-22 1972-02-21 NO130323B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI710508A FI47907C (en) 1971-02-22 1971-02-22 Process for the purification of alkaline arithmetic processes of zinc, basic sulphates and hydroxides of iron and zinc ferrite-containing waste into a raw material suitable for iron production and for the recovery of zinc from the waste

Publications (1)

Publication Number Publication Date
NO130323B true NO130323B (en) 1974-08-12

Family

ID=8504217

Family Applications (2)

Application Number Title Priority Date Filing Date
NO130323D NO130323L (en) 1971-02-22
NO00512/72A NO130323B (en) 1971-02-22 1972-02-21

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO130323D NO130323L (en) 1971-02-22

Country Status (8)

Country Link
AU (1) AU457886B2 (en)
BE (1) BE779613A (en)
CA (1) CA977555A (en)
DE (1) DE2208092A1 (en)
FI (1) FI47907C (en)
FR (1) FR2126253A1 (en)
NL (1) NL7202312A (en)
NO (2) NO130323B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981001420A1 (en) * 1979-05-25 1981-05-28 P Saikkonen A process for recovering non-ferrous metal values from ores,concentrates,oxidic roasting products or slags

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1121605A (en) * 1978-05-05 1982-04-13 Igor A.E. Wilkomirsky Recovery of non-ferrous metals by thermal treatment of solutions containing non-ferrous and iron sulphates
MX157259A (en) * 1980-09-30 1988-11-09 Outokumpu Oy IMPROVED HYDROMETALLURGICAL METHOD FOR TREATING A RAW MATERIAL CONTAINING OXIDE AND FERRITE OF ZINC, COPPER AND CADMIUM
FI65810C (en) * 1980-09-30 1984-07-10 Outokumpu Oy FOERFARANDE FOER BEHANDLING AV RAOMATERIAL INNEHAOLLANDE OXID OCH FERRIT AV ZINK KOPPAR OCH KADMIUM

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR534317A (en) * 1921-04-20 1922-03-23 Cons Mining & Smelting Company Process for the treatment of zinc ores, zinc concentrates and residues

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981001420A1 (en) * 1979-05-25 1981-05-28 P Saikkonen A process for recovering non-ferrous metal values from ores,concentrates,oxidic roasting products or slags

Also Published As

Publication number Publication date
AU457886B2 (en) 1975-01-24
CA977555A (en) 1975-11-11
FI47907C (en) 1974-04-10
NO130323L (en)
BE779613A (en) 1972-06-16
DE2208092A1 (en) 1972-09-07
FR2126253A1 (en) 1972-10-06
FI47907B (en) 1974-01-02
NL7202312A (en) 1972-08-24
FR2126253B1 (en) 1974-12-13
AU3920872A (en) 1973-08-23

Similar Documents

Publication Publication Date Title
JP2856933B2 (en) Hydrometallurgical method for treating zinc sulfide-containing feedstock
US8323377B2 (en) Recovery of metals from oxidised metalliferous materials
US4619814A (en) Process for the recovery of non-ferrous metals from sulphide ores and concentrates
Forward et al. Extraction of metals from sulphide ores by wet methods
US4415540A (en) Recovery of non-ferrous metals by thermal treatment of solutions containing non-ferrous and iron sulphates
US4063933A (en) Process for the treatment of complex lead-zinc concentrates
CA1082467A (en) Method of recovering non-ferrous metals from sulphidic materials
EP0113649A1 (en) A method for working-up complex sulphidic ore concentrates
US3880651A (en) Chlorine leaching of non-ferrous metal values with ammoniacal solutions
US3964901A (en) Production of copper and sulfur from copper-iron sulfides
NO123798B (en)
EP0155250B1 (en) A method for recovering the metal values from materials containing iron
WO1997031861A1 (en) Process for stabilization of arsenic
US4127639A (en) Process for recovering silver from residues containing silver and lead
CA1160055A (en) Method for the recovery of valuable metals from finely-divided pyrite
Haver Ferric chloride-brine leaching of galena concentrate
US4049770A (en) Recovery of copper and zinc as sulfides from copper-iron sulfides
Haver et al. Recovering elemental sulfur from nonferrous minerals: Ferric chloride leaching of chalcopyrite concentrate
US4168969A (en) Recovery of silver, copper, zinc and lead from partially roasted pyrite concentrate by acid chloride leaching
NO130323B (en)
US2094277A (en) Method of sulphating the ore metal values of a sulphide ore
CA1121605A (en) Recovery of non-ferrous metals by thermal treatment of solutions containing non-ferrous and iron sulphates
US4355005A (en) Process for the treatment of a raw material which contains oxide and ferrite of zinc, copper and cadmium
US4477323A (en) Method for recovering zinc from a sulfidic zinc source
US3523787A (en) Hydrometallurgical process for the recovery of high pure copper values from copper and zinc bearing materials and for the incidental production of potassium sulfate