NO125493B - - Google Patents

Download PDF

Info

Publication number
NO125493B
NO125493B NO3530/69A NO353069A NO125493B NO 125493 B NO125493 B NO 125493B NO 3530/69 A NO3530/69 A NO 3530/69A NO 353069 A NO353069 A NO 353069A NO 125493 B NO125493 B NO 125493B
Authority
NO
Norway
Prior art keywords
oil
viscosity
oils
viscosity index
category
Prior art date
Application number
NO3530/69A
Other languages
Norwegian (no)
Inventor
P Dun
J Van Hemert
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO125493B publication Critical patent/NO125493B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

Fremgangsmåte ved fremstilling av smøreoljer Procedure for the production of lubricating oils

med meget høy viskositetsindeks. with a very high viscosity index.

Foreliggende oppfinnelse angår en fremgangsmåte ved fremstilling av smoreoljer med meget hoy viskositetsindeks, -ved hydrogenbehandling av et hydrocarbonutgangsmateriale. Nærmere bestemt angår oppfinnelsen en fremgangsmåte ved hvilken opplosningsmiddel-raffinerte, asfaltfrie, voksholdige hydrocarbonoljer, hydrogenbe-handles ved bestemte temperaturer og trykk for fremstilling av smoreoljer som tilfredsstiller "SAE 10 W/30"-fordringene for fler-kategori-oljer ("helårsoljer"). The present invention relates to a method for the production of lubricating oils with a very high viscosity index, - by hydrogen treatment of a hydrocarbon starting material. More specifically, the invention relates to a method by which solvent-refined, asphalt-free, waxy hydrocarbon oils are hydrogenated at specific temperatures and pressures for the production of lubricating oils that satisfy the "SAE 10 W/30" requirements for multi-category oils ("all-season oils" ).

Smoreoljer for bilmotorer, omfattende såvel dieselmotorer Lubricating oils for car engines, including diesel engines as well

som bensinmotorer, klassifiseres efter et skjema foreslått av Society of Automotive Engineers, i henhold til hvilket viskositeten such as petrol engines, are classified according to a scheme proposed by the Society of Automotive Engineers, according to which the viscosity

målt i Seconds Saybolt Universal (SSU) ved 99°C angis ved et SAE-tall. measured in Seconds Saybolt Universal (SSU) at 99°C is indicated by an SAE number.

Opprinnelig ble det foreslått syv kategorier oljer, av hvilke de tre letteste, nemlig "SAE 5 W"-, "SAE 10 W"- og "SAE 20 W"-oljene, er kjent som vinteroljer (W = Winter). Disse vinteroljer oppfyller de samme viskositetsfordringer ved 99°C, men skal også oppfylle visse viskositetsfordringer ved -17,8°C, hvilke fordringer oker fra "5W"-oljene til "20W"-oljene. De ovrige fire oljekategorier, nemlig "SAE 20", "SAE 30", "SAE 4-0" og "SAE 50", har okende verdier for viskositeten ved 99°C men må ikke oppfylle noe krav til viskositeten ved -17,8°C. I de senere år er det imidlertid blitt utviklet flerkate-gori-oljer for anvendelse som smoreoljer for bilmotorer, og som faller innenfor mer enn en SAE-kategori. De er i en og samme olje både en vinterolje og en normalolje og sikrer således både god smorevirkning ved hoye temperaturer og tilstrekkelig hoy fluidltet ved lave temperaturer. De betegnes ved doble SAE-betegnelser som 5 W/20, 10 W/20, 20 W/20, 5 W/30, 10 W/30, 10 W/30, 20 W/30, osv. Originally seven categories of oils were proposed, of which the three lightest, namely the "SAE 5 W", "SAE 10 W" and "SAE 20 W" oils, are known as winter oils (W = Winter). These winter oils meet the same viscosity requirements at 99°C, but must also meet certain viscosity requirements at -17.8°C, which requirements increase from the "5W" oils to the "20W" oils. The other four oil categories, namely "SAE 20", "SAE 30", "SAE 4-0" and "SAE 50", have increasing values for the viscosity at 99°C but must not fulfill any requirement for the viscosity at -17.8 °C. In recent years, however, multi-category oils have been developed for use as lubricating oils for car engines, and which fall within more than one SAE category. They are both a winter oil and a normal oil in one and the same oil and thus ensure both good lubrication at high temperatures and sufficiently high fluidity at low temperatures. They are designated by double SAE designations such as 5 W/20, 10 W/20, 20 W/20, 5 W/30, 10 W/30, 10 W/30, 20 W/30, etc.

Rene mineralske smoreoljer oppfyller vanligvis ikke kravene som stilles, og for å oppnå den onskede fler-kategori-olje er det vanlig å tilsette viskositetsindeksforbedrende midler (VI)•for å for-bedre viskositet/temperatur-karakteristikken og/eller fortykningsmidler for å oke viskositeten. Dessuten kan det tilsettes andre oljeadditiver, såsom hellepunktnedsettende midler, antioxydasjonsmidler, korrosjonsinhibitorer, rensemidler og lignende, slik at de universal-oljer som finnes på markedet vanligvis er sammensatte oljer. Særlig foretrukne fler-kategori-oljer er "10 W/30"-oljer og "10 W/4-0"-oljer. Pure mineral lubricating oils usually do not meet the requirements set, and to achieve the desired multi-category oil it is common to add viscosity index improvers (VI) to improve the viscosity/temperature characteristic and/or thickeners to increase the viscosity . In addition, other oil additives can be added, such as pour point depressants, antioxidants, corrosion inhibitors, cleaning agents and the like, so that the universal oils available on the market are usually compound oils. Particularly preferred multi-grade oils are "10 W/30" oils and "10 W/4-0" oils.

Det er en velkjent kjennsgjerning at smoreoljer ved lengere tids bruk forringes av mange årsaker. Én av disse er den at det viskositetsindeksforbedrende middel og fortykningsmidiet, som vanligvis er hdymolekylære polymerisater, gradvis nedbrytes under innvirkning av skjærekreftene i motoren, hvilket medforer varig nedsettelse av viskositetsindeksen og av viskositeten. Til slutt må oljen skiftes ut med frisk fler-kategori-olje. Videre oppviser fler-kategori-oljen også en midlertidig nedsettelse av viskositeten under bruk, fordi polymer!satmolekylene innretter seg efter hverandre, hvilket medforer nedsettelse av den interne friksjon og folgelig en nedsettelse av viskositeten. Dette fenomen betegnes ofte "midlertidig avpolymeriser-ing". Med okende skjærekrefter vil den sammensatte oljes viskositet nærme seg viskositeten av basisoljen med smorevirkning. It is a well-known fact that lubricating oils deteriorate with prolonged use for many reasons. One of these is that the viscosity index improving agent and the thickening medium, which are usually high molecular polymers, gradually break down under the influence of the shearing forces in the engine, which results in a permanent reduction of the viscosity index and of the viscosity. Finally, the oil must be replaced with fresh multi-category oil. Furthermore, the multi-category oil also exhibits a temporary reduction in viscosity during use, because the polymer!sat molecules align with each other, which leads to a reduction in internal friction and consequently a reduction in viscosity. This phenomenon is often referred to as "temporary depolymerisation". With increasing cutting forces, the viscosity of the compound oil will approach the viscosity of the base oil with a lubricating effect.

Som folge av det som er nevnt ovenfor, ville det være meget fordelaktig om det kunne tilveiebringes fler-kategori-oljer inneholdende bare små mengder eller intet i det hele tatt av viskositets indeksforbedrende midler eller fortykningsmidler, fordi slike oljer ville fylle sin oppgave i motorer i meget lenger tid, samtidig som de ikke ville oppvise noen nedsettelse av viskositeten eller arbeids-betingelsene. Ennskjont det for visse SAE-kvaliteter allerede har vist seg mulig å fremstille direkte mineralske smoreoljer som oppfyller kravene til en bestemt fler-kategori-olje ifblge SAE-klassifi-seringssystemet, har det hittil ikke vært mulig å fremstille en virkelig "10 W/30"-fler-kategori-olje ut fra et hydrocarbonutgangsmateriale. As a result of the above, it would be very advantageous if multi-category oils could be provided containing only small amounts or none at all of viscosity index improvers or thickeners, because such oils would fulfill their purpose in engines in much longer, while they would show no reduction in viscosity or working conditions. Although for certain SAE grades it has already been shown to be possible to produce direct mineral lubricating oils that meet the requirements of a specific multi-category oil according to the SAE classification system, it has not been possible up to now to produce a real "10 W/30 "-multi-category oil from a hydrocarbon starting material.

Det er målet med den foreliggende oppfinnelse å tilveiebringe en fremgangsmåte for fremstilling av en fler-kategori-olje som oppfyller kravene til en "10 W/30"-olje, uten at det er nodvendig å tilsette additiver. Det er videre et mål med oppfinnelsen å tilveiebringe en slik olje ved å hydrogenbehandle en hydrocarbonolje på jordoljebasis, i nærvær av en katalysator. Det er videre et mål med oppfinnelsen å tilveiebringe fler-kategori-oljer med en "clear" viskositetsindeks (VI) på minst 132 og en "clear" viskositet ved 99°C på minst 9,6 centistoke, hvilke.oljer kan blandes ut til "10 W/4-0" - fler-kategori-oljer ved tilsetning av en relativt liten mengde viskositetsindeksforbedrende midler og/eller fortykningsmidler. It is the aim of the present invention to provide a method for the production of a multi-category oil which meets the requirements of a "10 W/30" oil, without the need to add additives. It is a further aim of the invention to provide such an oil by hydrotreating a hydrocarbon oil on a petroleum basis, in the presence of a catalyst. It is further an aim of the invention to provide multi-category oils with a "clear" viscosity index (VI) of at least 132 and a "clear" viscosity at 99°C of at least 9.6 centistokes, which oils can be mixed to "10 W/4-0" - multi-category oils with the addition of a relatively small amount of viscosity index improvers and/or thickeners.

Den foreliggende oppfinnelse vedrorer folgelig en fremgangsmåte for fremstilling av smoreoljer med meget hoy viskositetsindeks, hvilken fremgangsmåte går ut på at man hydrogenbehandler en opplbsningsmiddelraffinert, asfaltfri, voksholdig hydrocarbonolje i nærvær av en sulfidert katalysator omfattende et metall av gruppe VI og/eller gruppe VIII på en hovedsakelig ikke-sur tungtsmeltelig crackingbærer ved en temperatur i området mellom 4-20° og 4-60°C og et trykk mellom 165" og 225 kg/cm , og utvinner en avvokset smoreolje med viskositetsindeks på minst 132 og viskositet ved 99°C på minst 9,6 centistoke fra den hydiogerbehandlede voksholdige olje ved fraksjonering og avvoksing. The present invention therefore relates to a method for the production of lubricating oils with a very high viscosity index, which method involves hydrogenating a solvent-refined, asphalt-free, waxy hydrocarbon oil in the presence of a sulphided catalyst comprising a metal of group VI and/or group VIII on a predominantly non-acidic low-melting cracking carrier at a temperature in the range between 4-20° and 4-60°C and a pressure between 165" and 225 kg/cm , and recovers a dewaxed lubricating oil with a viscosity index of at least 132 and viscosity at 99°C of at least 9.6 centistokes from the hydioger-treated waxy oil by fractionation and dewaxing.

I den folgende beskrivelse refererer viskositetsindeksene seg til verdier bestemt etter ASTM-metode D-567, såfremt ikke annet er angitt. In the following description, the viscosity indices refer to values determined according to ASTM method D-567, unless otherwise stated.

Det har allerede vært foreslått å fremstille smoreoljer med viskositetsindeks på minst 125, ve(3 hydrogenbehandling av et raffinat erholdt ved opplosningsmiddelekstraksjon av et hydrocarbonutgangsmateriale til et innhold av aromatiske forbindelser svarende til en forekomst av carbonatomer i aromatiske ringer på mindre enn De anvendte hydrogenbehandlingsbetingelser er Imidlertid mindre strenge, og smoreoljene som fåes, har en viskositet ved 99°C som er langt under 9,0 centistoke (cS). It has already been proposed to produce lubricating oils with a viscosity index of at least 125, ve(3 hydrogen treatment of a raffinate obtained by solvent extraction of a hydrocarbon starting material to a content of aromatic compounds corresponding to an occurrence of carbon atoms in aromatic rings of less than less stringent, and the lubricating oils obtained have a viscosity at 99°C that is well below 9.0 centistokes (cS).

U.S. patentskrift nr. 2.967. 14-7 beskriver en hydrogenbehandling av en smoreolje som på forhånd er avasfaltert, losningsmiddelraffinert og avvokset, hvor hydrogenbehandlingen utfores ved relativ lav temperatur innen området 20<4>--371°C. Viskositetsindeksene til de erholdte produkter er imidlertid lave (ca. 98). U.S. patent document no. 2,967. 14-7 describes a hydrogen treatment of a lubricating oil which has previously been deasphalted, solvent-refined and dewaxed, where the hydrogen treatment is carried out at a relatively low temperature within the range of 20<4>--371°C. However, the viscosity indices of the products obtained are low (approx. 98).

Ennvidere beskriver U.S. patentskrift nr. 2.917.4-4-8 en fremgangsmåte ved hydrogenbehandling av en smoreolje som er avasfaltert og voksholdlg, men som ikke er losningsmiddelraffinert, hvor hydrogenbehandlingen foretas ved en temperatur innen området 363_399°C og et trykk innan, området 14-0-280 kg/cm . Det produkt som fremstilles har imidlertid bare en viskositet ved 99°C på 6,8 centistoke, selv om dets viskositetsindeks er på 125. Furthermore, the U.S. describes patent document no. 2.917.4-4-8 a method for hydrogen treatment of a lubricant oil which is deasphalted and wax-free, but which is not solvent refined, where the hydrogen treatment is carried out at a temperature within the range of 363_399°C and a pressure within, the range of 14-0- 280 kg/cm. However, the product produced only has a viscosity at 99°C of 6.8 centistokes, although its viscosity index is 125.

Blant de publikasjoner som omtaler bruk av andre typer ut-gang smateriale , skal spesielt nevnes U.S. patentskrift nr. 3-328.287. Ifblge dette patentskrift hydrogeneres et restfraksjonsmateriale inneholdende et harpiksaktig ekstrakt og aromatiske forbindelser. Among the publications that mention the use of other types of output material, special mention should be made of the U.S. patent document no. 3-328,287. According to this patent, a residual fraction material containing a resinous extract and aromatic compounds is hydrogenated.

Som et resultat av anvendelse av et slikt utgangsmateriale erholdes det smoreoljer ved relativt dårlige viskositetsindekser og/eller viskositeter. Selv om enkelte av de- fremstilte produkter har viskositetsindekser over 132 er viskositeten ved 99°C ikke storre enn 6,8 centi stoke. As a result of using such a starting material, lubricating oils with relatively poor viscosity indices and/or viscosities are obtained. Although some of the products produced have viscosity indices above 132, the viscosity at 99°C is not greater than 6.8 centi stoke.

Videre kan nevnes britisk patentskrift nr. 1.008.019 hvor det anvendes et utgangsmateriale som ikke er losningsmiddelraffinert og som fortrinnsvis er avvokset. De erholdte produkter har ifolge moderne standard relativt dårlig viskositetsindeks (52-100). British patent document no. 1,008,019 can also be mentioned, where a starting material is used which is not solvent-refined and which is preferably dewaxed. According to modern standards, the obtained products have a relatively poor viscosity index (52-100).

Videre har det vært foreslått å hydrogenbehandle avasfalterte oljer ved et trykk på minst 175 kg/cm og en temperatur mellom 390 og 4-4-0°C og å utvinne smoreoljer med viskositetsindeks på minst 115 fra det hydrogenbehandlede produkt. Således- beskriver U.S. patentskrift nr. 3.078.222 hydrogenbehandling av en avasfaltert olje ved en temperatur mellom 390-4-4-0°C og et trykk innen området 175-280 kg/cm . Utgangsmaterialet er ikke losningsmiddelraffinert. De således erholdte smoreoljer har viskositetsindeks lavere enn 125 og tilfredsstiller ikke fordringene til en "10 W/30"-fler-kategori-olje. Den nodvendige kvalitet av de fremstilte smoreoljer kan bare oppnås ved anvendelse av et rensetrinn omfattende urea-adduktdannelse. Selv etter dette trinn har ingen av de fremstilte produkter egenskaper som tilfredsstiller kravene til en virkelig 10 W/30 smoreolje. De kan imidlertid anvendes som "10 W/20"-, "20 W/30"- eller "20 W/4-0"-ol j er. Furthermore, it has been proposed to hydrogenate deasphalted oils at a pressure of at least 175 kg/cm and a temperature between 390 and 4-4-0°C and to extract lubricating oils with a viscosity index of at least 115 from the hydrogenated product. Thus- describes the U.S. patent document no. 3,078,222 hydrogen treatment of a deasphalted oil at a temperature between 390-4-4-0°C and a pressure within the range 175-280 kg/cm . The starting material is not solvent refined. The lubricating oils thus obtained have a viscosity index lower than 125 and do not satisfy the requirements of a "10 W/30" multi-category oil. The required quality of the manufactured lubricating oils can only be achieved by using a purification step including urea adduct formation. Even after this step, none of the manufactured products have properties that satisfy the requirements of a real 10 W/30 lubricating oil. However, they can be used as "10 W/20", "20 W/30" or "20 W/4-0" oils.

Fremgangsmåten ifolge oppfinnelsen har den fordel at man for-uten "10 W/30"-fler-kategori-oljen får et vesentlig utbytte av lette og middels maskinoljer med meget hoy viskositetsindeks som biprodukt- The method according to the invention has the advantage that, in addition to the "10 W/30" multi-category oil, a significant yield of light and medium machine oils with a very high viscosity index is obtained as a by-product.

er, mens den gjenværende del av hydrocarbonutgangsmaterialet over- is, while the remaining part of the hydrocarbon starting material over-

fores til et verdifullt brenselmateriale som hovedsakelig koker under 375°C is fed into a valuable fuel material that mainly boils below 375°C

Fordelene med smoreoljene med meget hoy viskositetsindeks, som fåes ved fremgangsmåten ifolge oppfinnelsen, er at viskositetsfor-bedrende midler eller fortykningsmidler ikke behover tilsettes for å danne en "10 W/30"-fler-kategori-olje. Dersom det onskes å frem- The advantages of the lubricating oils with a very high viscosity index, which are obtained by the method according to the invention, are that viscosity-improving agents or thickeners do not need to be added to form a "10 W/30" multi-category oil. If it is desired to develop

stille fler-kategori-oljer som oppfyller kravene til "5 W/30"-, quiet multi-category oils that meet the requirements of "5 W/30"-,

'10 W/4-0"- eller "10 W/50"-oljer, hvilke skal ha hoyere viskositets- '10 W/4-0" or "10 W/50" oils, which must have higher viscosity

indeks og/eller viskositet, er det tilstrekkelig med bare mindre til-.setninger av de nevnte forbindelser. Ytterligere oljeadditiver, såsom hellepunktnedsettende midler, antioksydasjonsmidler, korrosjonsinhibitorer, rensemidler og lignende kan om onskes tilsettes for å danne fler-kategori-oljer som oppfyller fordringene i henhold til andre spesifikasjoner. index and/or viscosity, only minor additions of the aforementioned compounds are sufficient. Additional oil additives, such as pour point depressants, antioxidants, corrosion inhibitors, cleaning agents and the like can be added if desired to form multi-category oils that meet the requirements of other specifications.

Av det ovenstående vil det fremgå at en "10 W/30"-oljebland- From the above, it will appear that a "10 W/30" oil mix-

ing på basis av en virkelig "10 W/30"-smoreolje fremstilt etter fremgangsmåten ifolge oppfinnelsen ikke utsettes for noen varig nedsettelse av viskositeten under innvirkning av skjærekrefter og heller ikke utsettes for noen midlertidig nedsettelse av viskositeten. Dersom en "10 W/30"-fler-kategori-olje er blitt tilberedt på basis av oljen fremstilt etter fremgangsmåten ifolge oppfinnelsen, under anvendelse av en mindre mengde av et fortykningsmiddel, vil fler-kategori-oljen aldri falle utenfor dens SAE-klassifisering, da basisoljen er en virkelig "10 W/30"-olje. Dessuten vil de således frem- ing on the basis of a real "10 W/30" lubricating oil produced according to the method according to the invention is not subjected to any permanent reduction in viscosity under the influence of shearing forces nor is it subjected to any temporary reduction in viscosity. If a "10 W/30" multi-category oil has been prepared on the basis of the oil produced according to the method of the invention, using a smaller amount of a thickener, the multi-category oil will never fall outside its SAE classification , as the base oil is a true "10 W/30" oil. Moreover, they will thus

stilte fler-kategori-oljer oppvise en målt viskositet ved -17,8°C som stilted multi-category oils exhibit a measured viscosity at -17.8°C which

er praktisk talt den samme som den ekstrapolerte viskositet ved is practically the same as the extrapolated viscosity at

-17,8°C, grunnet fraværet av polymerisater i oljen. -17.8°C, due to the absence of polymers in the oil.

I Tabell I er viskositeten som kreves i henhold til SAE-spesifikasjonene gitt i SSU-enheter for noen to-kategori-oljer. In Table I, the viscosity required by the SAE specifications is given in SSU units for some two-category oils.

I den folgende beskrivelse er imidlertid viskositeten fortrinnsvis angitt som kinematisk, uttrykt i centistoke (cS), isteden-for i SSU-enheter. Som kjent kan slike viskositeter lett omregnes til hverandre, eller de tilsvarende verdier kan taes ut fra viskosi-tetsomregningstabeller. Det henvises til tabellen i Handbook of Chemistry and Physics, 4-3. utgave av The Chemical Rubber Publishing Co., side 2210. In the following description, however, the viscosity is preferably stated as kinematic, expressed in centistokes (cS), instead of in SSU units. As is known, such viscosities can be easily converted to each other, or the corresponding values can be taken from viscosity conversion tables. Reference is made to the table in Handbook of Chemistry and Physics, 4-3. edition of The Chemical Rubber Publishing Co., page 2210.

På den vedfbyede tegning er to-kategori-oljene vist grafisk, med den kinematiske viskositet (cS) avsatt langs åbcissen. Oljer med SAE-tall 20, 30, h0 og 50 har kinematisk viskositet henholdsvis mellom 5,6 og 9,6, mellom 9,6 og 13,0, mellom 13,0 og 17,0 og mellom 17,0 og 20,3 ved 99°C. Viskositetsområdet for oljer med et gitt SAE-tall er likeledes angitt langs den horisontale akse. Langs den verti-kale akse eller ordinataksen er viskositetsindeksen, bestemt i henhold til ASTM-D 567, gitt, idet 80 er den laveste verdi for oljer med hoy viskositetsindeks. Den hbyre side av tegningen viser SAE Is-typene, idet området over den bverste kurve angir 5 W-typen, mens området mellom den bverste kurve og den midtre kurve angir 10 W-typen, og området mellom den midtre kurve og den nederste kurve angir 20 W-typen. Området mellom den loddrette linje som starter ved 9,6 cS, den loddrette linje som starter ved 13 cS, den bverste kurve og den midtre kurve angir "10 W/30"-oljer som fåes ved fremgangsmåten ifolge oppfinnelsen. Disse oljer er nye produkter. In the attached drawing, the two-category oils are shown graphically, with the kinematic viscosity (cS) plotted along the abscissa. Oils with SAE number 20, 30, h0 and 50 have kinematic viscosity respectively between 5.6 and 9.6, between 9.6 and 13.0, between 13.0 and 17.0 and between 17.0 and 20, 3 at 99°C. The viscosity range for oils with a given SAE number is also indicated along the horizontal axis. Along the vertical axis or ordinate axis, the viscosity index, determined according to ASTM-D 567, is given, 80 being the lowest value for oils with a high viscosity index. The right side of the drawing shows the SAE Is types, with the area above the top curve indicating the 5 W type, while the area between the top curve and the middle curve indicates the 10 W type, and the area between the middle curve and the bottom curve indicates 20 W type. The area between the vertical line starting at 9.6 cS, the vertical line starting at 13 cS, the right curve and the middle curve indicates "10 W/30" oils obtained by the process of the invention. These oils are new products.

For å fremstille den bnskede to-kategori-olje er det vesentlig å anvende en opplbsningsmiddelraffinert og asfaltfri hydrocarbonolje som utgangsmateriale. Oljen må dessuten være en voksholdig olje. Hydrocarbonoljen kan være et voksholdig destillat erholdt ved vakuumdestillasjon eller lignende destillasjon av en råolje, en redusert råolje eller en fraksjon av en sådan, som er blitt underkastet opp-lb sningsmiddelraffinering. In order to produce the desired two-category oil, it is essential to use a solvent-refined and asphalt-free hydrocarbon oil as starting material. The oil must also be a waxy oil. The hydrocarbon oil may be a waxy distillate obtained by vacuum distillation or similar distillation of a crude oil, a reduced crude oil or a fraction thereof, which has been subjected to solvent refining.

Hydrocarbonoljen er'fortrinnsvis en res tolje erholdt ved avasfaltering av en vakuumredusert råolje, dvs. en jordoljerest erholdt ved vakuumdestillasjon eller lignende destillasjon av en jordråolje, eller en avtoppet råolje eller råoljefraksjon, med et lavtkokende hydrocarbon såsom propan, og opplbsningsmiddelraffinering av den avasfalterte olje for å fjerne aromatiske forbindelser. Den opplbsnings-middelraffinerte, asfaltfrie, voksholdige hydrocarbonolje kan også være en syntetisk olje erholdt fra skiferolje. The hydrocarbon oil is preferably a residual oil obtained by deasphalting a vacuum-reduced crude oil, i.e. a crude oil residue obtained by vacuum distillation or similar distillation of a crude crude oil, or a drained crude oil or crude oil fraction, with a low-boiling hydrocarbon such as propane, and solvent refining of the deasphalted oil for to remove aromatic compounds. The solvent-refined, asphalt-free, waxy hydrocarbon oil may also be a synthetic oil obtained from shale oil.

Ennskjbnt hvilke som helst av de vanlige opplbsningsmidler med evne til å fjerne aromatiske hydrocarboner selektivt kan anvendes, foretrekkes det å anvende som utgangsmateriale et furfuralraffinat, dvs. en furfuralraffinert voksholdig olje. Andre opplbsningsmidler som er selektive overfor aromatiske hydrocarboner, såsom flytende svoveldioxyd, fenol, cresol, bis-(3-klorethylether og lignende, kan imidlertid også anvendes. Av-asfalteringen kan utfores ved hjelp av et hvilket som helst egnet opplbsningsmiddel. Foretrukne opplbsnings- Although any of the usual solvents capable of selectively removing aromatic hydrocarbons can be used, it is preferred to use a furfural raffinate as starting material, i.e. a furfural-refined waxy oil. However, other solvents which are selective towards aromatic hydrocarbons, such as liquid sulfur dioxide, phenol, cresol, bis-(3-chloroethyl ether) and the like, can also be used. The deasphalting can be carried out using any suitable solvent. Preferred solvents

midler er de laverekokende paraffiniske hydrocarboner, såsom ethan, propan, butan eller pentan eller blandinger derav, idet propan foretrekkes. Dersom det onskes et hoyt utbytte av avasfaltert olje, agents are the lower boiling paraffinic hydrocarbons, such as ethane, propane, butane or pentane or mixtures thereof, propane being preferred. If a high yield of deasphalted oil is desired,

er pentan det best egnede opplosningsmiddel. Som avasfalteringsopp-losningsmidler kan der også anvendes blandinger av de ovennevnte laverekokende hydrocarboner med alkoholer såsom methanol og isopropan-0.1. pentane is the most suitable solvent. Mixtures of the above-mentioned lower-boiling hydrocarbons with alcohols such as methanol and isopropane-0.1 can also be used as deasphalting solvents.

Avasfaltering og opplbsningsmiddelraffinering er metoder som Deasphalting and solvent refining are methods that

i og for seg er kjente i faget. De betingelser som benyttes under disse operasjoner for å bringe utgangsmaterialet i den bnskede til-stand for anvendelse ved fremgangsmåten ifolge oppfinnelsen, dvs. for å gi det den bnskede temperatur, det bnskede mengdeforhold opplbs-ning-smiddel/olje, o.s.v., er de konvensjonelle betingelser, som det ikke skulle være nbdvendig å redegjbre nærmere for her. in and of themselves are known in the field. The conditions used during these operations to bring the starting material into the desired condition for use in the method according to the invention, i.e. to give it the desired temperature, the desired quantity ratio solvent/oil, etc., are the conventional conditions, which it would not be necessary to explain in more detail here.

Betingelsene ved hydrogeribehandlingsoperasj onen velges fortrinnsvis slik at det til slutt fåes en avvokset smbreolje med viskositetsindeks i området mellom 130 og 160 og med kinematisk viskositet ved 99°C i området mellom 9,5 og 13,0 (cS). Fortrinnsvis benyttes det imidlertid såpass strenge betingelser at det fåes en avvokset smbreolje med viskositetsindeks på minst 132 og viskositet ved 99°0 og minst 9,6 cS, slik at SAE-spesifikasjonene til en "10 W/30"-olje oppfylles. The conditions of the hydrogery treatment operation are preferably chosen so that a dewaxed spreading oil is finally obtained with a viscosity index in the range between 130 and 160 and with a kinematic viscosity at 99°C in the range between 9.5 and 13.0 (cS). Preferably, however, such strict conditions are used that a dewaxed lubricating oil is obtained with a viscosity index of at least 132 and viscosity at 99°0 and at least 9.6 cS, so that the SAE specifications for a "10 W/30" oil are met.

Temperaturen og trykket som anvendes under hydrobehandlingen av det voksholdige raffinat, er fortrinnsvis henholdsvis mellom 4-30° og Mf5°C - idet disse temperaturer- er midlere reaktortemperaturer - og mellom 170 og 185 kg/cm . De anvendte romhastigheter pr. time er fortrinnsvis temmelig lave, for derved å gjore betingelsene ved be-handlingen strengere. Særlig foretrukne romhastigheter er de i området mellom 0,4- og 1,7 kg p.r liter pr. time. Hydrogengasstil-fbrselshastigheten kan imidlertid variere innenfor et bredt område og er fortrinnsvis mellom 500 og 5000 NI hydrogen pr. kg. utgangsmateriale . The temperature and pressure used during the hydrotreatment of the waxy raffinate are preferably respectively between 4-30° and Mf5°C - these temperatures being average reactor temperatures - and between 170 and 185 kg/cm . The applied space velocities per hours are preferably rather low, thereby making the conditions for the treatment more stringent. Particularly preferred space velocities are those in the range between 0.4 and 1.7 kg per liter per hour. However, the hydrogen gas production rate can vary within a wide range and is preferably between 500 and 5000 NI hydrogen per kg. starting material.

Katalysatoren som benyttes ved fremgangsmåten, må ha en hovedsakelig ikke-sur, tungtsmeltelig crackingbærer for å unngå overdreven cracking ved de angitte reaktorbetingelser. Surhet av crackingbæreren fremmer de hydrocarbonomdannelser som innebærer dannelse av carboniumioner-, for eksempel dealkylering og hydro-cracking. For oppfinnelsens formål er egnede ikke-sure cracking- bærere visse metalloxyder, såsom aluminiumoxyd, boroxyd, siliciumdioxyd, magnesiumoxyd og zirkoniumoxyd. Likeledes kan det benyttes blandinger av enkelte av disse oxyder, såsom blandinger av aluminiumoxyd og magnesiumoxyd eller blandinger av magnesiumoxyd og zirkoniumoxyd, mens metalloxydblandinger som inneholder siliciumdioxyd, er uegnede. Aluminiumoxyd foretrekkes spesielt som crackingbærer. Aluminiumoxydbæreren kan inneholde mindre mengder alkali-metall eller jordalkalimetall for å sikre bærerens ikke-surhet. Foretrukne mengder er 0,05 - 1,5 vekt$, uttrykt som metalloxyd. Kommersielle aluminiumoxyder som inneholder siliciumdioxyd i mengder storre enn 5 vekt$, og/eller halogen såsom fluor og/eller klor, er uegnede. The catalyst used in the process must have a mainly non-acidic, low-melting cracking carrier to avoid excessive cracking at the indicated reactor conditions. Acidity of the cracking carrier promotes the hydrocarbon conversions which involve the formation of carbonium ions, for example dealkylation and hydro-cracking. For the purposes of the invention, suitable non-acidic cracking carriers are certain metal oxides, such as aluminum oxide, boron oxide, silicon dioxide, magnesium oxide and zirconium oxide. Likewise, mixtures of some of these oxides can be used, such as mixtures of aluminum oxide and magnesium oxide or mixtures of magnesium oxide and zirconium oxide, while metal oxide mixtures containing silicon dioxide are unsuitable. Aluminum oxide is particularly preferred as a cracking carrier. The aluminum oxide carrier may contain minor amounts of alkali metal or alkaline earth metal to ensure the non-acidity of the carrier. Preferred amounts are 0.05-1.5% by weight, expressed as metal oxide. Commercial aluminum oxides containing silicon dioxide in amounts greater than 5% by weight, and/or halogen such as fluorine and/or chlorine, are unsuitable.

■Foretrukne metaller av gruppe VI og gruppe VIII er molybden, wolfram, kobolt, nikkel og platina. De ikke-edle metaller kan være tilstede på crackingbæreren enten i form av sulfidet eller i form av oxydet. Katalysatorene inneholdende disse metaller anvendes imidlertid fortrinnsvis i den sulfiderte form. Sulfideringen av katalysatoren kan utfores ved hjelp av en hvilken som helst i faget kjent teknikk. Særlig egnede katalysatorer for anvendelse ved fremgangsmåten ifolge oppfinnelsen, er de kommersielt tilgjengelige hydro-desulfureringskatalysatorer som inneholder, mellom 1 og 5$ nikkel og mellom 3 og 20% molybden og en aluminiumoxydbærer. ■Preferred group VI and group VIII metals are molybdenum, tungsten, cobalt, nickel and platinum. The non-precious metals can be present on the cracking carrier either in the form of the sulphide or in the form of the oxide. The catalysts containing these metals are, however, preferably used in the sulphided form. The sulphidation of the catalyst can be carried out using any technique known in the art. Particularly suitable catalysts for use in the method according to the invention are the commercially available hydrodesulfurization catalysts which contain between 1 and 5% nickel and between 3 and 20% molybdenum and an aluminum oxide carrier.

Avlopet fra hydrogenbehandling ss onen vil inneholde laverekokende reaksjonsprodukter såsom bensin, kerosin og gassolje. Disse laverekokende produkter uten smorevirkning må skilles fra smbreoljen. Vanligvis vil de produkter som koker hoyere enn 375°C, utvinnes som smbreoljefraksjonen. Denne smoreoljefraks jon vil så bli fraksjonert videre i forskjellige basis-smbreoljer. Basisoljene med meget hoy viskositetsindeks, som utgjor gjenstanden for den foreliggende oppfinnelse, vil hensiktsmessig være den fraksjon som koker hoyere enn<1>+80°C. Det nedre kokepunkt for disse oljer med meget hoy viskositetsindeks kan imidlertid variere i området mellom 460° og 515°C. The effluent from hydrogen treatment will contain lower-boiling reaction products such as petrol, kerosene and gas oil. These lower-boiling products without a spreading effect must be separated from the spreading oil. Generally, the products that boil higher than 375°C will be recovered as the spread oil fraction. This lubricating oil fraction will then be further fractionated into different base lubricating oils. The base oils with a very high viscosity index, which form the object of the present invention, will suitably be the fraction that boils higher than <1>+80°C. However, the lower boiling point for these oils with a very high viscosity index can vary in the range between 460° and 515°C.

Til slutt fjernes den tilstedeværende voks ved avvoksing. Avvoksingen kan utfores etter en hvilken som helst konvensjonell metode for avvoksing av oljer. Fortrinnsvis avvokses smoreoljene til et hellepunkt som er lavere enn -12,2%, og aller helst avvokses de til et hellepunkt under -15°C Med avtagende temperatur under avvoksingen av smbreoljen nedsettes utbyttet, idet nedsettelsen av utbyttet kan være så stor som 30$ for oljefraksjonen som koker hoyere enn 4-80°C. Det fåes en tilsvarende nedsettelse av viskositetsindeksen på ca. 2-3 enheter. I en typisk, tilfredsstillende avvoksningsprosess opploses oljen i et opplbsningsmiddel såsom propan, methylethylketon eller toluen eller i en blanding av de to sistnevnte opplosningsmidler, hvoretter oljeopplosningen kjoles og deretter filtreres. Avvoksningsopplosningsmidlet kan fjernes: ved destillasjon. Finally, the wax present is removed by dewaxing. The dewaxing can be carried out according to any conventional method for the dewaxing of oils. Preferably, the lubricant oils are dewaxed to a pour point lower than -12.2%, and most preferably they are dewaxed to a pour point below -15°C With decreasing temperature during the dewaxing of the lubricant oil, the yield is reduced, as the reduction in yield can be as great as 30$ for the oil fraction that boils higher than 4-80°C. There is a corresponding reduction in the viscosity index of approx. 2-3 units. In a typical, satisfactory dewaxing process, the oil is dissolved in a solvent such as propane, methyl ethyl ketone or toluene or in a mixture of the two latter solvents, after which the oil solution is cooled and then filtered. The dewaxing solvent can be removed: by distillation.

"10 W/30"-fler-kategori-oljen som fåes ved fremgangsmåten ifolge oppfinnelsen, kan blandes ut til fler-kategori-oljer inneholdende en storre andel av en virkelig "10 W/30"-fler-kategori-olje og en mindre andel av et eller flere smoreoljeadditiver som nevnt ovenfor. Vanligvis tilsettes disse additiver i en mengde av mellom 1 og 10 vekt$. The "10 W/30" multi-category oil obtained by the method according to the invention can be mixed into multi-category oils containing a larger proportion of a real "10 W/30" multi-category oil and a smaller proportion of one or more lubricating oil additives as mentioned above. Usually these additives are added in an amount of between 1 and 10% by weight.

Eksempler på additiver som kan blandes inn i "10 W/30"-oljen, er de kjente viskositetsindeksforbedrende midler, såsom isobutylen-polymerisater, polyacrylater, polymethacrylater og lignende, rensemidler eller vaskemidler av typen metallsulfonater, metallfenater og metallnafthenater, og polymerisatdispergeringsmidler, såsom poly-ethylenglycolsubstituerte polymethacrylater og lignende. Antioxyda-sjonsmidlene innbefatter forbindelser såsom zinkdithiofosfater og alkylerte fenoler, og eksempler på kjente korrosjonsinhibitorer er aminavledede ravsyreanhydrider. Examples of additives that can be mixed into the "10 W/30" oil are the known viscosity index improving agents, such as isobutylene polymers, polyacrylates, polymethacrylates and the like, cleaning agents or detergents of the type metal sulfonates, metal phenates and metal naphthenates, and polymer dispersants, such as poly -ethylene glycol-substituted polymethacrylates and the like. The antioxidants include compounds such as zinc dithiophosphates and alkylated phenols, and examples of known corrosion inhibitors are amine-derived succinic anhydrides.

De folgende eksempler vil illustrere oppfinnelsen. I de beskrevne forsok ble smoreoljefraksjonene avvokset til et såpass lavt hellepunkt som -19°C for å vise at resultatene som oppnåes ved hjelp av fremgangsmåten ifolge oppfinnelsen, ikke er avhengige av de anvendte avvoksningstemperaturer. The following examples will illustrate the invention. In the experiments described, the lubricating oil fractions were dewaxed to a pour point as low as -19°C to show that the results obtained by means of the method according to the invention are not dependent on the dewaxing temperatures used.

Eksempel 1 Example 1

En med propan avasfaltert olje erholdt fra en råolje fra Midt-Osten ble opplosningsmiddelraffinert med furfural ved en temperatur av ca. 120°C og et mengdeforhold opplosningsmiddel/olje på 5/1. Det erholdte voksholdige raffinat ( 60%, beregnet på den avasfalterte olje) ble benyttet som utgangsmateriale for fremstilling av basis-smoreoljer ved hydrobehandlingen. Det voksholdige raffinat 'hadde de folgende karakteristika? A propane deasphalted oil obtained from a crude oil from the Middle East was solvent refined with furfural at a temperature of approx. 120°C and a solvent/oil ratio of 5/1. The resulting waxy raffinate (60%, calculated on the deasphalted oil) was used as starting material for the production of base lubricating oils during the hydrotreatment. The waxy raffinate 'had the following characteristics?

Destillasjons- Distillation

område area

Det voksholdige raffinat ble bragt i kontakt med hydrogen i en laboratoriereaktor med total kapasitet 250 ml, i nærvær av en kommersielt tilgjengelig hydrodesulfureringskatalysator. Katalysatoren ble benyttet i form av 1,5 ml ekstrudater og hadde folgende sammensetning: 17,6 vektdeler MoO^og h, 0 vektdeler NiO på 100 vektdeler Al20y Væskeavlopet fra reaktoren ble fraksjonert, og materialet som kokte ved temperaturer over<4>-80°C, ble tatt ut som voksholdig smoreolje. Denne voksholdige smoreolje ble avvokset ved~30°C med en blanding av methylethylketon og toluen (i volumforholdet 50/50), således at oljen fikk et hellepunkt på -19°C Katalysatoren ble forhåndssulfidert ved at det ble foretatt en kald oppstartning under anvendelse av en gassolje erholdt fra en råolje fra Midt-Osten (1,6 vekt$ svovel) som sulfideringsmiddel. Det voksholdige raffinat ble behandlet ved to forskjellige reaktortemperaturer. Resultatene er gitt i tabell II. The waxy raffinate was contacted with hydrogen in a laboratory reactor of total capacity 250 ml, in the presence of a commercially available hydrodesulfurization catalyst. The catalyst was used in the form of 1.5 ml extrudates and had the following composition: 17.6 parts by weight MoO^ and h, 0 parts by weight NiO on 100 parts by weight Al2Oy The liquid effluent from the reactor was fractionated, and the material which boiled at temperatures above <4>-80 °C, was extracted as waxy lubricating oil. This waxy lubricating oil was dewaxed at ~30°C with a mixture of methyl ethyl ketone and toluene (in the volume ratio 50/50), so that the oil had a pour point of -19°C. The catalyst was presulfided by making a cold start using a gas oil obtained from a crude oil from the Middle East (1.6 wt% sulphur) as sulphiding agent. The waxy raffinate was treated at two different reactor temperatures. The results are given in Table II.

Dataene i tabellen viser at det kreves en viss minstetempera-tur og en viss strenghet av betingelsene for å oppnå en olje med viskositetsindeks (VI) på minst 132. The data in the table show that a certain minimum temperature and a certain strictness of the conditions are required to obtain an oil with a viscosity index (VI) of at least 132.

Til -tross f or. at det ble benyttet en med furfural raffinert hydrocarbonolje som utgangsmateriale, hadde den erholdte smoreolje lav viskositetsindeks. Despite. that a hydrocarbon oil refined with furfural was used as the starting material, the lubricating oil obtained had a low viscosity index.

Eksempel II Example II

Forsbkene beskrevet i eksempel I ble gjentatt under anvendelse av strengere betingelser i et anlegg i halvindustriell målestokk, under anvendelse av samme utgangsmateriale og katalysator. Reaktoren hadde en kapasitet av ca. 7 liter og var tilpasset for drift med resirkulering av hydrogengassen. Katalysatoren ble forhåndssulfidert i 21 timer med en gassolje (1,6 vekt# svovel), idet det ble foretatt en kald oppstartning. Avlbpet fra reaktoren ble opparbeidet på samme måte som i de beskrevne forsbk 1 og 2. Resultatene er oppfort i nedenstående Tabell III. Denne tabell gir data også for smbreolje-fraksjonene med kokeområde 375° - 4-80°C, hvilke fraksjoner fåes i tillegg til smbreoljen med kokeområde over V80°C. The experiments described in Example I were repeated using more stringent conditions in a semi-industrial scale plant, using the same starting material and catalyst. The reactor had a capacity of approx. 7 liters and was adapted for operation with recirculation of the hydrogen gas. The catalyst was presulfided for 21 hours with a gas oil (1.6 wt# sulfur), making a cold start. The effluent from the reactor was processed in the same way as in the described experiments 1 and 2. The results are listed in Table III below. This table also provides data for the frying oil fractions with a boiling range of 375° - 4-80°C, which fractions are obtained in addition to the frying oil with a boiling range above V80°C.

Oljen erholdt ved forsbk 5 er en virkelig "10 W/30"-fler-katageori-olje som oppfyller SAE-fordringene med hensyn til viskositet og viskositetsindeks. Dataene viser at man ved anvendelse av de angitte data kan fremstille en smoreolje med viskositetsindeks hoyere enn 132 og viskositet ved 99°C hoyere enn 9,6 fra en furfural-ekstrahert avasfaltert olje. The oil obtained in test 5 is a true "10 W/30" multi-category oil that meets the SAE requirements for viscosity and viscosity index. The data show that, by applying the given data, a lubricating oil with a viscosity index higher than 132 and a viscosity at 99°C higher than 9.6 can be produced from a furfural-extracted deasphalted oil.

Biproduktene innbefatter store mengder lette og middels maskinoljer med hoy viskositetsindeks (fraksjoner 375-44-0°C og 4-4-0-1+80°C), som gjor fremgangsmåten ifolge oppfinnelsen til en konkurransedyktig prosess. The by-products include large amounts of light and medium machine oils with a high viscosity index (fractions 375-44-0°C and 4-4-0-1+80°C), which make the method according to the invention a competitive process.

Eksempel III Example III

Dette eksempel viser hvor viktig det er å foreta en opplos-ningsmiddelraffinering for å oppnå en "10 W/30"-olje. This example shows how important it is to perform a solvent refining to obtain a "10 W/30" oil.

Den avasfalterte olje fra Eksempel I ble anvendt som utgangsmateriale ved hydrobehandlingen, idet opplosningsmiddelraffinerings-trinnet med furfural ble sloyfet. Hydrobehandlingstrinnet ble utfort ved tre forskjellige temperaturer, idet samme katalysator ble benyttet som i Eksempel I. Betingelsene som ble benyttet, var et trykk på 200 kg/cm 2, en romhastighet på 1 kg pr. liter pr. time og et mengdeforhold hydrogen:olje på 3000 Nl/1. The deasphalted oil from Example I was used as starting material in the hydrotreatment, the solvent refining step with furfural being omitted. The hydrotreatment step was carried out at three different temperatures, the same catalyst being used as in Example I. The conditions used were a pressure of 200 kg/cm 2 , a space velocity of 1 kg per liters per hour and a hydrogen:oil quantity ratio of 3000 Nl/1.

De oppnådde resultater er gitt i Tabell IV nedenfor. The results obtained are given in Table IV below.

Smdreoljefraksjonen med kokeområde over 375°C fra forsok The lubricating oil fraction with a boiling range above 375°C from trials

nr. 6 og 8 ble fraksjonert ytterligere i 3 separate smoreoljefrak-sjoner, nemlig i en fraksjon med kokeområde 4-00-4-4-0°C, en fraksjon med kokeområde 4-4-0-4-80°C og en fraksjon med kokeområde over 4-80°C. Fraksjonene som ble erholdt etter avvoksingen, er oppfort med deres viskositet og viskositetsindeks i Tabell V nedenfor. Nos. 6 and 8 were further fractionated into 3 separate lubricating oil fractions, namely into a fraction with a boiling range of 4-00-4-4-0°C, a fraction with a boiling range of 4-4-0-4-80°C and a fraction with a boiling range above 4-80°C. The fractions obtained after the dewaxing are listed with their viscosity and viscosity index in Table V below.

Resultatene viser at fraksjonen med kokeområde over 4-80°C fra forsok 8 har den nodvendige viskositet hoyere enn 9,6 cS, men at dens viskositetsindeks er langt lavere enn 132. Denne fraksjon tilfredsstiller således ikke fordringene til en "10 W/30"-smoreolje. The results show that the fraction with a boiling range above 4-80°C from trial 8 has the required viscosity higher than 9.6 cS, but that its viscosity index is far lower than 132. This fraction thus does not satisfy the requirements of a "10 W/30" -butter oil.

EksempelIV Example IV

Ved et forsok som strakte seg over lengere tid, ble det fremstilt en storre porsjon virkelig "10 W/30"-smoreolje. Samme utgangsmateriale og samme katalysator ble benyttet som i Eksempel I. Reaktoren, som var i halvindustriell målestokk, inneholdt 15,12 kg katalysator. Katalysatoren ble forhåndssulfidert ved en kald oppstartning med en påfolgende innkjbringsperiode under hydrodesulfur-eringsbetingelser med en svovelholdig gassolje. Betingelsene som ble benyttet under det langvarige forsok, holdt seg temmelig konstante. Tabell VI nedenfor angir resultatene som ble oppnådd i begynnelsen av forsbket og mot forsbkets slutt (ca. 600 timer). Smbreoljefrak-sjonene ble avvokset til et hellepunkt på -19°C. In an experiment extending over a longer period, a larger batch of true "10 W/30" lubricating oil was produced. The same starting material and the same catalyst were used as in Example I. The reactor, which was on a semi-industrial scale, contained 15.12 kg of catalyst. The catalyst was presulfided by a cold start with a subsequent buy-in period under hydrodesulfurization conditions with a sulfur-containing gas oil. The conditions used during the long-term trial remained fairly constant. Table VI below indicates the results obtained at the beginning of the experiment and towards the end of the experiment (approx. 600 hours). The butter oil fractions were dewaxed to a pour point of -19°C.

Fraksjonene som koker over 4-80°C, oppfyller ikke fullt ut "10 W/30"-spesifikasjonene. Det vil imidlertid være klart for en fagmann at.man ved å endre den nedre fraksjoneringsgrense under The fractions boiling above 4-80°C do not fully meet the "10 W/30" specifications. However, it will be clear to a person skilled in the art that by changing the lower fractionation limit below

fraksjoneringen av f raks jonen ,> 4-80°C vil få en slik fler-kategori-olje. Etter avsluttet forsok ble smoreolj ef raks jonene<1>+4-0-4-80° og }<4>-80°C omdestillert under laboratoriebetingelser. Det ble erholdt en "10 W/30"-smoreolje med en viskositet ved 99°C på 956 cS og en viskositetsindeks på 133,5, i et utbytte på ca. 6, 2% beregnet på det voksholdige raffinat. the fractionation of the fraction ion > 4-80°C will result in such a multi-category oil. After the end of the experiment, the smoreol ef raks ions<1>+4-0-4-80° and }<4>-80°C were redistilled under laboratory conditions. A "10 W/30" lubricating oil with a viscosity at 99°C of 956 cS and a viscosity index of 133.5 was obtained, in a yield of approx. 6.2% calculated on the waxy raffinate.

Claims (7)

1. Fremgangsmåte- ved fremstilling av smoreoljer med viskositetsindeks på minst 132 og viskositet ved 99°C på minst 9,6 centistoke, ved hydrogenbehandling av en losningsmiddelraffinert, asfaltfri, voksholdig hydrocarbonolje i nærvær av en sulfidert katalysator omfattende et metall fra gruppe VI og/eller gruppe VIII på en hovedsakelig ikke-sur, tungtsmeltelig bærer ved forhoyet temperatur, ved et trykk mellom 165°g 225 kg/cm og en romhastighet mellom 0,25°g 2,25 kg olje pr. liter katalysator pr. time, og den hydrogenbehandlede olje fraksjoneres og avvokses,karakterisert vedat hydrogenbehandlingen utfores ved en temperatur i området 4-20 - 4-60°C.1. Process - in the production of lubricating oils with a viscosity index of at least 132 and a viscosity at 99°C of at least 9.6 centistokes, by hydrotreating a solvent-refined, asphalt-free, waxy hydrocarbon oil in the presence of a sulfided catalyst comprising a metal from group VI and/ or group VIII on a mainly non-acidic, low-melting carrier at elevated temperature, at a pressure between 165°g 225 kg/cm and a space velocity between 0.25°g 2.25 kg oil per liter of catalyst per hour, and the hydrogen-treated oil is fractionated and dewaxed, characterized in that the hydrogen treatment is carried out at a temperature in the range 4-20 - 4-60°C. 2. Fremgangsmåte ifolge krav 1, karakterisert vedat det anvendes en temperatur mellom 4-30° og 4-'+5°C.2. Procedure according to claim 1, characterized in that a temperature between 4-30° and 4-'+5°C is used. 3. Fremgangsmåte ifolge et av kravene 1-2,karakterisert vedat det anvendes et trykk mellom 170 og 185 kg/cm<2>.3. Method according to one of claims 1-2, characterized in that a pressure between 170 and 185 kg/cm<2> is used. 4-. Fremgangsmåte ifolge et av kravene 1 - 3,karakterisert vedat det anvendes en romhastighet mellom 0,4- og 1,7 kg pr. liter pr. time.4-. Method according to one of claims 1 - 3, characterized in that a space velocity between 0.4 and 1.7 kg per liters per hour. 5. Fremgangsmåte ifolge et av kravene- 1 - 4-,karakterisert vedat det tilfores hydrogen i en mengde av mellom 500 og 5000 NI pr. kg utgangsmateriale.5. Method according to one of the claims - 1 - 4 -, characterized in that hydrogen is supplied in an amount of between 500 and 5000 NI per kg starting material. 6. Fremgangsmåte ifolge et av kravene 1-5,karakterisert vedat smbreoljen etter fraksjoneringen avvokses til et hellepunkt lavere enn -12,2°C.6. Method according to one of the claims 1-5, characterized in that after the fractionation the spreading oil is dewaxed to a pour point lower than -12.2°C. 7. Fremgangsmåte ifolge et av kravene 1-6,karakterisert vedat katalysatoren omfatter en bærer på aluminiumoxydbasis og inneholder nikkel og molybden som metallene.7. Method according to one of claims 1-6, characterized in that the catalyst comprises an aluminum oxide-based carrier and contains nickel and molybdenum as the metals.
NO3530/69A 1968-09-05 1969-09-03 NO125493B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB42311/68A GB1182885A (en) 1968-09-05 1968-09-05 A process for the production of very High-Viscosity-Index Lubricating Oils

Publications (1)

Publication Number Publication Date
NO125493B true NO125493B (en) 1972-09-18

Family

ID=10423877

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3530/69A NO125493B (en) 1968-09-05 1969-09-03

Country Status (10)

Country Link
US (1) US3663422A (en)
AT (1) AT295716B (en)
BE (1) BE738357A (en)
CA (1) CA945096A (en)
CH (1) CH524681A (en)
DE (1) DE1944757A1 (en)
FR (1) FR2019327B1 (en)
GB (1) GB1182885A (en)
NL (1) NL6913396A (en)
NO (1) NO125493B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515680A (en) * 1983-05-16 1985-05-07 Ashland Oil, Inc. Naphthenic lube oils
GB8425837D0 (en) * 1984-10-12 1984-11-21 Shell Int Research Manufacture of lubricating base oils
GB8518940D0 (en) * 1985-07-26 1985-09-04 Shell Int Research Manufacture of lubricating base oils
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
US4992159A (en) * 1988-12-16 1991-02-12 Exxon Research And Engineering Company Upgrading waxy distillates and raffinates by the process of hydrotreating and hydroisomerization
US5167847A (en) * 1990-05-21 1992-12-01 Exxon Research And Engineering Company Process for producing transformer oil from a hydrocracked stock
DE4128381A1 (en) * 1991-08-27 1993-03-04 Mobil Oil Deutschland CARBURETTOR FUEL ADDITIVE
US5376257A (en) * 1993-08-02 1994-12-27 Nippon Petroleum Refining Company, Limited Process for feed oil refining for production of lubricating oil
WO1998002502A1 (en) * 1996-07-16 1998-01-22 Chevron U.S.A. Inc. Base stock lube oil manufacturing process
PL194787B1 (en) * 2000-12-19 2007-07-31 Shell Int Research Process to prepare a spindle oil, light machine oil and a medium machine oil
CN114350395B (en) * 2021-04-21 2022-09-23 山东省新睿化工科技有限公司 Special asphalt for producing graphite electrode raw material, calcined coke and metallurgical coke and preparation process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078222A (en) * 1960-07-27 1963-02-19 Gulf Research Development Co Preparation of multi-grade lubricating oil by severe hydrogenation and urea adduction
GB1006508A (en) * 1962-01-12 1965-10-06 British Petroleum Co Improvements relating to the production of lubricating oils
FR1333117A (en) * 1962-05-23 1963-07-26 British Petroleum Co Improvements relating to the production of lubricating oils
FR1521459A (en) * 1966-03-07 1968-04-19 Gulf Research Development Co Process for improving lubricating oils and catalyst that can be used for its implementation
US3328287A (en) * 1966-06-02 1967-06-27 Mobil Oil Corp Production of lubricating oils from resin extracts

Also Published As

Publication number Publication date
GB1182885A (en) 1970-03-04
AT295716B (en) 1972-01-10
CH524681A (en) 1972-06-30
DE1944757A1 (en) 1970-03-12
BE738357A (en) 1970-03-03
FR2019327A1 (en) 1970-07-03
FR2019327B1 (en) 1973-12-21
NL6913396A (en) 1970-03-09
CA945096A (en) 1974-04-09
US3663422A (en) 1972-05-16

Similar Documents

Publication Publication Date Title
US3732154A (en) Catalytic hydrofinishing of lube oil product of solvent extraction of petroleum distillate
DK167880B1 (en) PROCEDURE FOR THE MANUFACTURING OF LUBRICATION BASIC OILS AND LUBRICATION OIL CONTAINING AT LEAST ONE BASIC MANUFACTURED BASIC OIL
CA2107376C (en) Process for producing low viscosity lubricating base oil having high viscosity index
US3883417A (en) Two-stage synthesis of lubricating oil
US3682813A (en) Multizone hydrocracking process for hvi lubricating oils
KR20020052180A (en) Novel hydrocarbon base oil for lubricants with very high viscosity index
JPH06116571A (en) Production of low-viscosity base oil having high viscosity index for lubricating oil
NO125493B (en)
US4521296A (en) Process for the production of refrigerator oil
US2960458A (en) Process for preparing a multi-grade lubricating oil and product
US3925220A (en) Process of comprising solvent extraction of a blended oil
US5300213A (en) Process for making basestocks for automatic transmission fluids
US3904507A (en) Process comprising solvent extraction of a blended oil
US3242068A (en) Production of lubricating oil
US3142635A (en) Production of lubricating oils
US3870622A (en) Hydrogenation of a hydrocracked lubricating oil
US5021142A (en) Turbine oil production
JP6228742B2 (en) Lubricating oil composition
US3691067A (en) Production of lubricating oils by hydrotreating and distillation
US3012963A (en) Hydrogenation of lubricating oils to remove sulfur and saturate aromatics
CN108003925B (en) Hydrocracking method for preparing lubricating oil base oil raw material
JPH08259974A (en) Lube base oil and its production
US3928168A (en) Oil and process of manufacture of blended hydrorefined oil
CN109705895B (en) Process for producing lube base oil and naphthenic base oil
EP1148112A2 (en) Rubber process oil, high-viscosity base oil, and process for the production thereof