NO124731B - - Google Patents

Download PDF

Info

Publication number
NO124731B
NO124731B NO1119/70A NO111970A NO124731B NO 124731 B NO124731 B NO 124731B NO 1119/70 A NO1119/70 A NO 1119/70A NO 111970 A NO111970 A NO 111970A NO 124731 B NO124731 B NO 124731B
Authority
NO
Norway
Prior art keywords
furnace
reduction
gas
melting
led
Prior art date
Application number
NO1119/70A
Other languages
Norwegian (no)
Inventor
M Tiberg
Original Assignee
Skf Svenska Kullagerfab Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skf Svenska Kullagerfab Ab filed Critical Skf Svenska Kullagerfab Ab
Publication of NO124731B publication Critical patent/NO124731B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5252Manufacture of steel in electric furnaces in an electrically heated multi-chamber furnace, a combination of electric furnaces or an electric furnace arranged for associated working with a non electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C2007/0093Duplex process; Two stage processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

Fremgangsmåte ved fremstilling av stål ved Procedure for the production of steel by

reduksjon og smelting av jernmalm i en dobbeltovn. reduction and smelting of iron ore in a double furnace.

Oppfinnelsen angår en fremgangsmåte ved fremstilling av stål The invention relates to a method for the production of steel

i en dobbeltovn ved reduksjon og smelting av jernmalm i foim av finslig eller derav fremstilte kuler eller briketter. in a double furnace by reducing and melting iron ore in the form of fins or balls or briquettes made from it.

En slik dobbeltovn er kjent bl.a. fra britisk patentskrift Such a double oven is known i.a. from British patent writing

nr. 10106^-5 og U.S. patentskrift nr. 3379815. Det tas der sikte på No. 10106^-5 and U.S. Pat. patent document no. 3379815. This is aimed at

å anvende ovnskonstruksjonen for forvarming av beskikningen i den ene ovnsdel mens smelting av beskikningen med oxygen og olje og smelting med elektroder eller varmetilforsel med elektroder utfores i den andre ovnsdel. Det anvendes imidlertid ved foreliggende fremgangsmåte en dobbeltovn som er utformet på en spesiell måte. to use the furnace construction for preheating the coating in one furnace part while melting of the coating with oxygen and oil and melting with electrodes or heat supply with electrodes is carried out in the other furnace part. However, in the present method, a double oven is used which is designed in a special way.

Det er kjent en rekke fremgangsmåter for direkte reduksjon av jernmalm, f.eks. HoganMsmetoden hvor malmslig og carbon pakkes i kapsler som oppvarmes, eller Wiberg-Soderforsmetoden hvor malmen reduseres med en gass, hovedsakelig carbonmonoxyd, idet reduksjonsgassen sir-kuleres og carbureres i en carburator. Reduksjon av malmen med en gassblanding av CO og H ? er fordelaktig i en rekke henseender. A number of methods are known for the direct reduction of iron ore, e.g. The Hogan method, where ore and carbon are packed in capsules that are heated, or the Wiberg-Soderfors method, where the ore is reduced with a gas, mainly carbon monoxide, as the reducing gas is circulated and carbureted in a carburettor. Reduction of the ore with a gas mixture of CO and H ? is advantageous in a number of respects.

Ved direkte reduksjon av jernmalm må det ved anvendelse av sjaktovner og også andre ovnstyper, f.eks. roterovner, tas hensyn til risikoen for vedheftning, dvs. sammenbrenning av godset. Temperaturen må derfor under reduksjonen ikke overstige en viss maksimums-verdi. Den hoyeste temperatur som kan anvendes under reduksjonen, beror på malmtypen og andre forhold, men er sjelden over 1000°C. Denne risiko for sammenbakning påvirker selvfolgelig reaksjonshas-tigheten og dermed produksjonen og er en stor ulempe ved all direkte reduksjon av jernmalm (unntatt kapselprosesser). Dessuten må den reduserte jernmalm som fremstilles uten anvendelse av kapsler, av-kjoles til under en viss temperatur da den ved reduksjonen dannede jernsvamp er pyrofor. Denne egenskap til jernsvampen er en ytterligere ulempe, og risikoen for en gjenoxydasjon må tas i betraktning og den reduserte jernmalm oppbevares i gasstette beholdere eller lagres på annen måte for å unngå en selvantennelse. Også dette forhold kompliserer og fordyrer fremstillingen av redusert jernmalm ved hittil kjente fremgangsmåter. In the case of direct reduction of iron ore, when using shaft furnaces and also other types of furnaces, e.g. rotary kilns, the risk of adhesion, i.e. burning together of the goods, is taken into account. The temperature must therefore not exceed a certain maximum value during the reduction. The highest temperature that can be used during reduction depends on the type of ore and other conditions, but is rarely above 1000°C. This risk of caking obviously affects the reaction speed and thus the production and is a major disadvantage in all direct reduction of iron ore (except capsule processes). In addition, the reduced iron ore produced without the use of capsules must be cooled below a certain temperature as the iron sponge formed during the reduction is pyrophoric. This property of the sponge iron is a further disadvantage, and the risk of a re-oxidation must be taken into account and the reduced iron ore kept in gas-tight containers or otherwise stored to avoid spontaneous combustion. This situation also complicates and makes the production of reduced iron ore more expensive by previously known methods.

Det tas ved oppfinnelsen sikte på å minske de ovenfor anforte ulemper. Dette oppnås ved foreliggende fremgangsmåte for fremstilling av stål ved reduksjon og smelting av jernmalm i en dobbeltovn, hvor gass via en kanal ledes fra den ene ovnsdel til den annen, og_ fremgangsmåten er særpreget ved at en reduksjonsgass dannes fra en blanding av propan og vanndamp i den ene for smelting anvendte ovnsdel og innfores i den annen med skrap beskikkede ovnsdel og der ledes gjennom et skikt av kulesinter eller gjennom en kontinuerlig tilf/.t strom av finslig for å redusere denne, derefter ledes ned gjennom skrapbeskikningen og ledes bort, hvorefter ovnsdelenes funksjon ombyttes slik at smelteovnen blir reduksjonsovn og reduksjonsovnen blir smelteovn. The invention aims to reduce the above mentioned disadvantages. This is achieved by the present method for the production of steel by reducing and smelting iron ore in a double furnace, where gas is led via a channel from one part of the furnace to the other, and_ the method is characterized by the fact that a reducing gas is formed from a mixture of propane and water vapor in one part of the furnace used for melting and is introduced into the other part of the furnace covered with scrap and is led through a layer of coal sinter or through a continuous supply of fines to reduce this, then led down through the layer of scrap and led away, after which the furnace parts function is switched so that the melting furnace becomes a reduction furnace and the reduction furnace becomes a melting furnace.

Ved en utforelsesform av foreliggende fremgangsmåte ledes en del, fortrinnsvis 2/3, av den ved reduksjonen dannede avgass tilbake til smelteovnen. Tilforselen av vanndamp minskes da mens propantilforselen okes fordi den tilbakeforte gass inneholder H20. In one embodiment of the present method, a part, preferably 2/3, of the waste gas formed during the reduction is led back to the melting furnace. The supply of water vapor is then reduced while the propane supply is increased because the withdrawn gas contains H20.

Foreliggende fremgangsmåte vil bli nærmere beskrevet under hen-visning til tegningene hvorav fig. l viser et lengdesnitt av en doDbeltovn og fig. 2 dobbeltovnen sett ovenfra. Dobbeltovnen er en lysbueovn med to ikke-tippbare ovnsdeler hhv. 1 og 2. Til ovnsdelene 1 eller 2 horer et elektrodehve.lv 3 som kan anbringes enten på den ene eller den andre ovnsdel. Dessuten finnes et elektrodelost hvelv h som uavhengig av hvelvet 3 kan anbringes vekselvis på ovnsdelene 2 eller 1. . Ovnsdelene 1 og 2 er forsynt med små åpninger i veggene for inspeksjon, provetaging og blåsing med lanse. Straks over slagg - linjen er det gassuttaksåpninger 6 som forer til ringkanaler 1' og 2'. De to ringkanaler er hver forsynt med en gasskanal 7, 8 son på sin side hver er forsynt med en sidekanal 13, lk som forer direkte til en avgassdampkjeie (ikke vist). I hver av disse fire gass-kanaler 7 og 8 er det anordnet et vifteaggregat 9. Fra dampkjelen forer en avgasskanal (ikke vist) til et renseanlegg og en utsugings-vifte. Dobbeltovnenes overdeler står dessuten i forbindelse med hverandre gjennom en gasskanal 5 forsynt med et spjell 5!. Pa elektrodehvelvet 3 er det anordninger 10 for tilforsel av de for-.bindelser hvorfra reduksjonsgass skal dannes slik at tilforselen foregår langsetter elektrodene 11. The present method will be described in more detail with reference to the drawings, of which fig. l shows a longitudinal section of a double oven and fig. 2 the double oven seen from above. The double oven is an electric arc oven with two non-tiptable oven parts, respectively. 1 and 2. An electrode lifter 3 belongs to the furnace parts 1 or 2, which can be placed either on one or the other furnace part. There is also an electrodeless vault h which, independently of the vault 3, can be placed alternately on the furnace parts 2 or 1. . Furnace parts 1 and 2 are provided with small openings in the walls for inspection, sampling and blowing with a lance. Immediately above the slag line, there are gas outlet openings 6 which lead to ring ducts 1' and 2'. The two ring ducts are each provided with a gas duct 7, 8 and in turn each is provided with a side duct 13, 1k which leads directly to an exhaust gas steam boiler (not shown). In each of these four gas channels 7 and 8, a fan assembly 9 is arranged. From the steam boiler, an exhaust gas channel (not shown) leads to a cleaning system and an extraction fan. The upper parts of the double ovens are also connected to each other through a gas channel 5 provided with a damper 5!. On the electrode vault 3 there are devices 10 for supplying the compounds from which reducing gas is to be formed so that the supply takes place along the electrodes 11.

Den ene ovnsdel 2 kan altså utnyttes for å utfore slutt-reduksjons- og smeltetrinnet under samtidig dannelse av reduksjonsgass mens den andre ovnsdel 1 virker som forreduksjonsovn og for-varmingsovn for skrapbeskikning. Ovnsdelene kan siden bytte funksjon. Gassen fra smelteovnen 2 ledes via kanalen 5 inn over beskikningen i reduksjonsovnen 1, passerer ned gjennom denne og suges ut gjennom gassuttakene 6 over slagglinjen og inn i ringkanalen 1'. One furnace part 2 can thus be used to carry out the final reduction and melting step with the simultaneous formation of reducing gas, while the other furnace part 1 acts as a pre-reduction furnace and pre-heating furnace for scrap coating. The oven parts can then switch functions. The gas from the melting furnace 2 is led via the channel 5 into the coating in the reduction furnace 1, passes down through this and is sucked out through the gas outlets 6 above the slag line and into the ring channel 1'.

En del av de avgående gasser kan derved fores via gasskanalen 8, vifteaggregatet 9 og gasskanalen 7 tilbake inn i smelteovnen for dannelse av ytterligere reduksjonsgass. Resten av avgassene ledes bort via gasskanalene 8, lh direkte til dampkjelen hvor de forbrennes. Malmen kan enten i form av finslig innfores direkte i gasstrommen mellom ovnene via en trakt 12 i elektrodehvelvet h eller chargeres ovenpå beskikningen som et ovre lag i form av kulesinter, hvorved reduksjonsgassen passerer gjennom kulesinterén. Part of the outgoing gases can thereby be fed via the gas channel 8, the fan unit 9 and the gas channel 7 back into the melting furnace to form further reducing gas. The rest of the exhaust gases are led away via the gas ducts 8, lh directly to the steam boiler where they are burned. The ore can either be introduced in the form of fines directly into the gas chamber between the furnaces via a funnel 12 in the electrode vault h or charged on top of the coating as an upper layer in the form of coal sinter, whereby the reducing gas passes through the coal sinter.

Da det er spesielt fordelaktig å la finslig komme i kontakt As it is particularly advantageous to allow Finnish to come into contact

med den fra smelteovnen kommende reduksjonsgass, vil denne-utforelsesform av foreliggende fremgangsmåte bli nærmere behandlet. with the reducing gas coming from the melting furnace, this embodiment of the present method will be treated in more detail.

Som angitt ovenfor kan reduksjonsgasser fremstilles i smelteovnen ved at en blanding av propan (C^Hg) og vanndamp sproytes inn i smelteovnen under smeltingen og da fortrinnsvis mellom elektrodene og ovnsveggen. Ved den hoye temperatur som forekommer i lysbuen, As indicated above, reducing gases can be produced in the melting furnace by spraying a mixture of propane (C^Hg) and water vapor into the melting furnace during melting and then preferably between the electrodes and the furnace wall. At the high temperature that occurs in the arc,

er reaksjonen C^Hg + 3^0 = 3C0 <+> TQ.^. ^et fås altså en reduksjonsgass som hovedsakelig inneholder 30 % CO og 70 % H2. På grunn av den hoye temperatur i smelteovnen vil denne gass forlate smelteovnen med en hby temperatur som ved slutten av smelteperioden er inntil 1200 - 1500°C. Dersom nu en eventuelt til 850°C (over denne temperatur baker finsligen seg sammen) forvarmet finslig innfores i gass-strbmmen, foregår reduksjonen med stor hastighet, og et jernpulver, eller mer korrekt, en slags jerntåke, dannes som vil hefte fast til både ovnsvegger og beskikning i reduksjonsovnen. is the reaction C^Hg + 3^0 = 3C0 <+> TQ.^. A reducing gas is thus obtained which mainly contains 30% CO and 70% H2. Due to the high temperature in the melting furnace, this gas will leave the melting furnace at a high temperature, which at the end of the melting period is up to 1200 - 1500°C. If now a preheated fin, possibly to 850°C (above this temperature the fins bake together), is introduced into the gas stream, the reduction takes place at great speed, and an iron powder, or more correctly, a kind of iron mist, is formed which will adhere firmly to both furnace walls and coating in the reduction furnace.

Ved foreliggende fremgangsmåte er det fordelaktig bare å frem-stille en bestemt prosent av beskikningen i form av jern fra malmslig, f.eks. 30 %. Beskikningen vil da virke som et filter, og den fine jerntåke vil hefte fast til beskikningen, noe som er nbdvendig for gjennomfbringen av fremgangsmåten. Jerntåken ville ellers ha fulgt med ut i gassuttakene og tilstoppet disse. In the present method, it is advantageous to only produce a certain percentage of the coating in the form of iron from ore, e.g. 30%. The coating will then act as a filter, and the fine iron mist will stick to the coating, which is necessary for carrying out the procedure. The iron mist would otherwise have followed out into the gas outlets and blocked them.

Når gassen er blitt anvendt for reduksjon av finsligen, passerer den, som angitt ovenfor, gjennom beskikningen og oppvarmer denne samtidig som den avkjbles. På denne måte tas det vare på en stor del av reduksjonsgassens fysikalske varme, og beskikningen oppvarmes slik at smeltingen etterpå kan foregå hurtigere med en mindre effekttilfbrsel når reduksjonsovnen anvendes som smelteovn. When the gas has been used for reducing the fines, it passes, as stated above, through the coating and heats it at the same time as it is disconnected. In this way, a large part of the reduction gas's physical heat is taken care of, and the coating is heated so that the melting can subsequently take place faster with a smaller power input when the reduction furnace is used as a melting furnace.

Ved et dobbeltovnanlegg med en 60 tonns charge har hver ovnsdel et volum av 70 m r>, og tverrsnittet i den ovre del av hver ovnsdel er 17,5 m 2. Smelteovnseffekten er 25 MVA. Ved et slikt anlegg be-regnes en reduksjon av 19 tonn jern å kreve 1 time. Propanforbruket er beregnet til 150 kg/tonn redusert jern med 90 % reduksjonsgrad. Effektforbruket er beregnet til 700 kWh/tonn redusert jern med 90 % redi:':-jjonsgrad, og chargetiden for begge ovner sammenkoblet er beregnet til 2 timer og 10 minutter. In a double furnace system with a 60-tonne charge, each furnace section has a volume of 70 m r>, and the cross-section in the upper part of each furnace section is 17.5 m 2. The melting furnace power is 25 MVA. With such a plant, a reduction of 19 tonnes of iron is calculated to require 1 hour. The propane consumption is calculated at 150 kg/tonne of reduced iron with a 90% degree of reduction. The power consumption is calculated at 700 kWh/tonne of reduced iron with a 90% reduction degree, and the charge time for both furnaces connected together is calculated at 2 hours and 10 minutes.

Fremstillingen av en smelte og reduksjonen av jern fra malmslig foregår på fblgende måte. Straks smelteovnen tappes, og dette foregår på samme måte som fra en Siemens-Martinovn ved at det slås hull, svinges elektrodehvelvet over til den ovnsdel hvori reduksjonen og forvarmingen foregår. Deretter flikkes den tomme ovnsdel med en roterende flikkemaskin, og chargeringen begynner med tungt skrap i bunnen og lettere skrap ovenpå inntil ^5 tonn skrap er blitt innfort i denne ovnsdel. Imens er spjellet:i gasskanalen mellom de to ovnsdeler stengt, og utsugningen fra smelteovnen foregår direkte gjennom denne ovnsdels utsugningsåpning til ringkanalen og dampkjelen. Når flikkingen og chargeringen er ferdig, svinges hvelvet med anordningen for tilforsel av finslig over reduksjonsovnen. Spjellet i forbindel-seskanalen mellom ovnsdelene åpnes, og de ovrige spjell innstilles slik at gass suges fra smelteovnen inn i reduksjonsovnen og via ut-sugningsåpningene til dampkjelen eller tilbake til smelteovnen. Den eventuelt til 8^ 0°C forvarmede finslig innfores i reduksjonsovnen på The production of a melt and the reduction of iron from ore takes place in the following way. Immediately the melting furnace is drained, and this takes place in the same way as from a Siemens-Martin furnace by punching a hole, swinging the electrode vault over to the furnace part in which the reduction and preheating take place. The empty furnace section is then chipped with a rotary chipping machine, and charging begins with heavy scrap at the bottom and lighter scrap on top until ^5 tons of scrap have been fed into this furnace section. Meanwhile, the damper: in the gas channel between the two furnace parts is closed, and the extraction from the melting furnace takes place directly through the extraction opening of this furnace part to the ring duct and the steam boiler. When the flicking and charging are finished, the vault with the device for supplying fines is swung over the reduction furnace. The damper in the connection channel between the furnace parts is opened, and the other dampers are adjusted so that gas is sucked from the melting furnace into the reduction furnace and via the exhaust openings to the steam boiler or back to the melting furnace. The possibly preheated to 8^ 0°C fine is introduced into the reduction furnace on

en slik måte at den kommer i kontakt med gasstrommen fra smelteovnen. Forut for dette er propan- og vanndamptilfor selen til smelteovnen blitt påbegynt. 27 - 28 tonn finslig tilfores nu pr. time og reduseres kontinuerlig i den varme gasstrbm, og reduksjonen fortsetter idet ufull-stendig redusert slig setter seg fast på den underliggende beskikning. Reduksjonen foregår så lenge smelting forekommer i smelteovnen. Når chargen skal gjbres ferdig i smelteovnen, f.eks. ved bortfersking av C på i og for seg kjent måte ved at oxygenholdig gass innfores i badet, og analysen og temperaturen reguleres, tilfores ikke propan og vanndamp. De gasser som dannes under ferdiggjøringen, består hovedsakelig av CO, og disse gasser kan ledes inn i reduksjonsovnen for å avslutte reduksjonen og holde beskikningen varm. such a way that it comes into contact with the gas drum from the melting furnace. Prior to this, propane and steam supply to the furnace has been started. 27 - 28 tonnes of Finnish food are now supplied per hour and is continuously reduced in the hot gas stream, and the reduction continues as the incompletely reduced thus settles on the underlying coating. The reduction takes place as long as melting occurs in the melting furnace. When the charge is to be finished in the melting furnace, e.g. when removing C in a manner known per se by introducing oxygen-containing gas into the bath, and the analysis and temperature are regulated, propane and water vapor are not supplied. The gases formed during finishing are mainly CO, and these gases can be fed into the reduction furnace to complete the reduction and keep the coating warm.

Når tappingen av smelteovnen er over, gjentas forlopet i om-vendt rekkefolge. When the tapping of the melting furnace is over, the process is repeated in reverse order.

Claims (2)

1. Fremgangsmåte ved fremstilling av stål ved reduksjon og smelting av jernmalm i en dobbeltovn, hvor gass via en kanal ledes fra den ene ovnsdel til den annen, karakterisert ved at en reduksj.onsgass dannes fra en blanding av propan og vanndamp i den ene for smelting anvendte ovnsdel og innfores i den annen med skrap beskikkede ovnsdel og der ledes gjennom et skikt av kulesinter eller gjennom en kontinuerlig tilfort strom av finslig for å redusere denne, derefter ledes ned gjennom skrapbeskikningen og ledes bort, hvorefter ovnsdelenes funksjon ombyttes slik at smelteovnen blir re-duks jonsovn og reduksjonsovnen blir smelteovn.1. Procedure for the production of steel by reduction and smelting of iron ore in a double furnace, where gas is led via a channel from one furnace part to the other, characterized by the fact that a reduction gas is formed from a mixture of propane and water vapor in one for furnace part used for melting and is introduced into the other furnace part covered with scrap and is led through a layer of coal sinter or through a continuous supply of fines to reduce this, then led down through the scrap coating and led away, after which the function of the furnace parts is exchanged so that the melting furnace becomes redux ion furnace and the reduction furnace becomes a melting furnace. 2. Fremgangsmåte ifolge krav 1,karakterisert ved at den del, fortrinnsvis 2/3, av den ved reduksjonen dannede avgass tilbakeføres til smelteovnen for dannelse av reduksjonsgass, hvorved propantilforselen okes og vanndamptilforselen minskes.2. Method according to claim 1, characterized in that the part, preferably 2/3, of the waste gas formed by the reduction is returned to the melting furnace for the formation of reduction gas, whereby the propane supply is increased and the water vapor supply is reduced.
NO1119/70A 1969-03-26 1970-03-24 NO124731B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE426769A SE329861B (en) 1969-03-26 1969-03-26

Publications (1)

Publication Number Publication Date
NO124731B true NO124731B (en) 1972-05-29

Family

ID=20263827

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1119/70A NO124731B (en) 1969-03-26 1970-03-24

Country Status (17)

Country Link
JP (1) JPS4838053B1 (en)
AT (1) AT300866B (en)
BE (1) BE748011A (en)
BG (1) BG19194A3 (en)
BR (1) BR7017727D0 (en)
CH (1) CH550251A (en)
DK (1) DK126008B (en)
ES (1) ES377986A1 (en)
FI (1) FI49629C (en)
FR (1) FR2035911B1 (en)
GB (1) GB1311290A (en)
LU (1) LU60603A1 (en)
NL (1) NL146537B (en)
NO (1) NO124731B (en)
PL (1) PL80644B1 (en)
SE (1) SE329861B (en)
ZA (1) ZA701878B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8300288A (en) * 1983-01-26 1984-08-16 Hengelmolen Eng OVEN FOR MELTING METALS.
DE102006056671A1 (en) 2006-11-30 2008-06-05 Sms Demag Ag Method and apparatus for stainless steel production without electrical energy supply on the basis of pig iron pretreated in a DDD plant
DE102006056672A1 (en) 2006-11-30 2008-06-05 Sms Demag Ag Method and apparatus for stainless steel production without electrical energy supply based on pig iron
CN114480771A (en) * 2022-02-11 2022-05-13 中钢设备有限公司 Integrated iron making device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT232020B (en) * 1961-08-02 1964-02-25 Voest Ag Method and device for the production of liquid iron by reducing iron oxide ore
FR1466981A (en) * 1966-02-03 1967-01-20 Voest Ag Method and device for manufacturing steel and their various applications

Also Published As

Publication number Publication date
BR7017727D0 (en) 1973-02-22
ES377986A1 (en) 1973-01-01
DE2014339A1 (en) 1970-10-29
FR2035911A1 (en) 1970-12-24
NL7004314A (en) 1970-09-29
DE2014339B2 (en) 1973-02-01
FI49629C (en) 1975-08-11
BE748011A (en) 1970-08-31
LU60603A1 (en) 1970-05-26
JPS4838053B1 (en) 1973-11-15
PL80644B1 (en) 1975-08-30
FI49629B (en) 1975-04-30
GB1311290A (en) 1973-03-28
BG19194A3 (en) 1975-04-30
SE329861B (en) 1970-10-26
CH550251A (en) 1974-06-14
DK126008B (en) 1973-05-28
AT300866B (en) 1972-08-10
FR2035911B1 (en) 1975-01-10
ZA701878B (en) 1971-04-28
NL146537B (en) 1975-07-15

Similar Documents

Publication Publication Date Title
US2818247A (en) Steel making apparatus
US3060014A (en) Multi-furnace for refining metal
US3194650A (en) Metallurgical melting and refining process
CN108624739B (en) Steelmaking equipment and smelting method for steelmaking by using scrap steel
US4032121A (en) Process for the production of iron from iron ores and apparatus for carrying out said process
NO124731B (en)
CN108715914A (en) A kind of scrap steel preheating method, semi-steel making process and the method for improving molten steel yield using semisteel smelting
US2078747A (en) Process of and apparatus for operating cupolas
US1948695A (en) Method and apparatus for the production of molten steel
GB1532204A (en) Cupola furnace and a method for the melting and refining of cement copper
US3533612A (en) Steel making apparatus including scrap preheater
US3301664A (en) Apparatus for and method of production of steel
US3248211A (en) Refining of iron
US3880648A (en) Method for producing steel in an electric arc furnace
US3313618A (en) Method and apparatus for making steel continuously
SU721010A3 (en) Iron ore processing device
US2235154A (en) Method for the reduction of metallic oxides
US1449834A (en) Rotating or oscillating electric-furnace plant
US100003A (en) bessemer
US1904684A (en) Method of melting
US1904683A (en) Combustion-arc process and apparatus
CA1053007A (en) Process for the production of iron from iron ores and apparatus for carrying out said process
US88480A (en) Improvement in the manufacture of iron and steel
US2558A (en) Improvement in heating furnaces
CN1184333C (en) Multiple molten pool oxygen steel-making furnace for iron core reducing melting and its technological process