NO124709B - - Google Patents

Download PDF

Info

Publication number
NO124709B
NO124709B NO15846965A NO15846965A NO124709B NO 124709 B NO124709 B NO 124709B NO 15846965 A NO15846965 A NO 15846965A NO 15846965 A NO15846965 A NO 15846965A NO 124709 B NO124709 B NO 124709B
Authority
NO
Norway
Prior art keywords
condensation
walls
vapors
chamber
condensation chamber
Prior art date
Application number
NO15846965A
Other languages
Norwegian (no)
Inventor
John Frank Byrne
Original Assignee
Rank Xerox Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rank Xerox Ltd filed Critical Rank Xerox Ltd
Publication of NO124709B publication Critical patent/NO124709B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • C09B67/0026Crystal modifications; Special X-ray patterns of phthalocyanine pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0535Polyolefins; Polystyrenes; Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0539Halogenated polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0542Polyvinylalcohol, polyallylalcohol; Derivatives thereof, e.g. polyvinylesters, polyvinylethers, polyvinylamines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0553Polymers derived from conjugated double bonds containing monomers, e.g. polybutadiene; Rubbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0567Other polycondensates comprising oxygen atoms in the main chain; Phenol resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0575Other polycondensates comprising nitrogen atoms with or without oxygen atoms in the main chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/087Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and being incorporated in an organic bonding material

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

Apparatur og fremgangsmåte til kondensering av kloreringsprodukter av niob-tantal-malmer. Apparatus and method for condensing chlorination products of niobium-tantalum ores.

Kondensasjon av klorider slik som FeCl3, Condensation of chlorides such as FeCl3,

AlClg, TaCl5 og NbCl5 direkte til fast tilstand byr fremgangsmåteteknisk på en del vanskeligheter, idet det må unngås at klo-ridene avsetter seg krusteformig på veggene i kondensasjonsrommet. Kondensasjonen av oksykloridene av niob og tantal har vist seg særlig vanskelig. Disse forbindelser, som som bekjent oppstår i betraktelig mengde ved siden av de tilsvarende pentaklorider ved klorering av malmkull-blandinger med klorgass ved 600 til 1000° har bare dårlig krystallisasjonstendens og har en utpreget tilbøyelighet til dannelse av meget hårde belegg på flater, hvis temperatur er lavere enn damptemperaturen for kloreringsproduktene. Ved en krustedannelse kompliseres ikke bare fjernelsen av produktet, men fjernelsen av konden-sasjonsvarmen fra de faste klorider van-skeliggjøres også. Krustedannelsen kan endog føre til tilstopning av apparaturen og dermed ofte til uønsket avbrudd ved kontinuerlig fremstilling av kloreringsprodukter av niob- og tantalholdige malmer. AlClg, TaCl5 and NbCl5 directly to the solid state presents a number of difficulties in terms of process technology, as it must be avoided that the chlorides are deposited in crusty form on the walls of the condensation chamber. The condensation of the oxychlorides of niobium and tantalum has proved particularly difficult. These compounds, which, as is known, occur in considerable quantities alongside the corresponding pentachlorides during the chlorination of ore-coal mixtures with chlorine gas at 600 to 1000° have only a poor tendency to crystallize and have a distinct tendency to form very hard coatings on surfaces, the temperature of which is lower than the steam temperature of the chlorination products. If a crust forms, not only is the removal of the product complicated, but the removal of the heat of condensation from the solid chlorides is also made difficult. The crust formation can even lead to clogging of the apparatus and thus often to unwanted interruptions in the continuous production of chlorination products from niobium- and tantalum-containing ores.

For å hindre krustedannelsen er det blitt To prevent crust formation, it has been

foreslått forskjellige midler, f. eks. mekanisk vibrering av veggene i kondensasjonskammeret ved hjelp av hamring, ban-king, vibrering ved hjelp av en vibrator. For å løsne dannede kruster ble det videre bygget inn mekaniske skrapeanordninger i kondensatoren. Alle disse forholdsregler medfører konstruktive komplikasjoner, idet det anvendes mekanisk bevegede deler. proposed different means, e.g. mechanical vibration of the walls of the condensation chamber using hammering, pounding, vibration using a vibrator. In order to loosen formed crusts, mechanical scraping devices were also built into the condenser. All these precautions entail constructive complications, as mechanically moving parts are used.

Problemet kan løses på en grunnleg-gende måte ved at under kondensasjonen The problem can be solved in a fundamental way by that during the condensation

av de dampformede kloreringsprodukter av niob- og tantalholdige malmer holdes ten-densen til krustedannelse på en minste-verdi ved at dampene med en minimal be-røring med veggene i kondensasjonsrommet avkjøles til fast tilstand. of the vapour-form chlorination products of niobium- and tantalum-containing ores, the tendency to crust formation is kept to a minimum value by the fact that the vapors are cooled to a solid state with minimal contact with the walls of the condensation chamber.

Foreliggende oppfinnelse angår altså en fremgangsmåte til kondensering av materialer som inneholder kloreringsprodukter av niob og/eller tantal, idet man inn-fører kloreringsproduktene i det avkjølte kondensasjonskammer gjennom en opphetet tilledning som holdes over størk-ningstemperaturen for metallkloridet, således at kloriddampene med minimal be-røring med veggene i kondensasjonskammeret avkjøles til fast tilstand, hvilket er karakterisert ved at den oppvarmbare tilledning for kloriddampene springer så langt inn i det indre av kondensasjonskammeret at de damper som trer ut av munningen har tilstrekkelig stor avstand fra samtlige vegger i kammeret for at de kan størkne før de kommer i berøring med veggene. Kondensasjonskammeret vil være desto større jo større hastigheten og jo høyere temperaturen for de inntredende damper er. Hensiktsmessig anvender man et vertikalt kondensasjonskammer, f. eks. en sylinderformet kondensator, hvori kloriddampene ledes inn ovenfra. The present invention therefore relates to a method for condensing materials containing chlorination products of niobium and/or tantalum, introducing the chlorination products into the cooled condensation chamber through a heated supply which is kept above the solidification temperature for the metal chloride, so that the chloride vapors with minimal stirring with the walls of the condensation chamber cools to a solid state, which is characterized by the fact that the heatable supply for the chloride vapors extends so far into the interior of the condensation chamber that the vapors that emerge from the mouth have a sufficiently large distance from all walls in the chamber so that they can solidify before they come into contact with the walls. The condensation chamber will be the larger the greater the speed and the higher the temperature of the entering vapors. It is appropriate to use a vertical condensation chamber, e.g. a cylindrical condenser, into which the chloride vapors are introduced from above.

En ekstra fjernelse av varme ved kon-veksjon fåes ved denne fremgangsmåte når kloriddampene er blandet med inerte gasser, slik som kullmonoksyd, kulldioksyd, fosgen eller kvelstoff. Her kan temperaturene og dimensjonene av tilledning og kammer dimensjoneres således at de inerte gasser etter utkondenseringen av metallkloridene kommer i berøring med kamme-rets kalde vegg, deretter blander seg med ennå ikke eller ennå ikke tilstrekkelig av-kjølte kloriddamper og således bevirker deres videre avkjøling til størkning. Dette tilfelle fåes særlig i den nedre del av kondensasjonskammer et. En slik blanding med inerte gasser fåes særlig ved den umiddel-bare klorering av niob- og/eller tantalmal-mer, hvorfor foreliggende fremgangsmåte er særlig fordelaktig til kondensasjon umiddelbart etter kloreringen. Fig. 1 viser et utførelseseksempel på et kondensasjonskammer for utførelsen av fremgangsmåten, og Fig. 2 viser en variant av fig. 1. Fig. 1 viser som utførelseseksempel et snitt gjennom et kondensasjonsrom som kan anvendes for utførelsen av foreliggende fremgangsmåte. Kloriddampene 10 som befinner seg på en temperatur som ligger over kondensasjonspunktet og som fortrinsvis er blandet med inerte gasser, slik som CO, C02 - N2, trer gjennom tilledningen 17 som er opphetet til temperaturen Tx inn til munningen 12 og som stikker ut fra lokket 14 inn i det indre av kammeret 16 inn i kondensasj onsrommet som dannes av kammeret. Fortrinsvis holdes temperaturen T, over størknings-temperaturen for kloriddampene. Opphet-ningen foregår f. eks. ved hjelp av en varmevikling 19. Veggene 18 i kondensasj onsrommet 16 holdes f. eks. ved hjelp av dobbeltkappen 20 ved hjelp av kjøling med luft eller eventuelt et flytende varmeover-føringsmiddel på en konstant temperatur T2, idet temperaturen T2 er lavere enn T,. Ved tilsvarende tilpasning av tverrsnittet og lengden for kammeret 16 samt temperaturen T1 og T2 til den gitte sammenset-ning og hastighet for kloriddampene lyk-kes det å bringe totalmengden av de subli-merbare klorider til krystallisasjon i det frie rom og dermed hindre en kondensasjon på veggene. Tilsvarende kan man i en apparatur av gitt dimensjon ved regu-lering av inntredelseshastigheten for kloriddampene likeledes hindre en kondensasjon på veggene i kondensasj onskammeret. De faste klorider avsetter seg i bunn-delen 22 av kammeret, mens den øvrige gass trer ut gjennom rørledningen 24. Mer fordelaktig kan tilledningen 17 i beholde-ren på sin utvendige flate være forsynt med en varmeisolasjon 21, for å hindre at den ved stråling oppheter kammerveggene. Kondensasjonen av de dampformede kloreringsprodukter i det frie rom i konden- An additional removal of heat by convection is obtained by this method when the chloride vapors are mixed with inert gases, such as carbon monoxide, carbon dioxide, phosgene or nitrogen. Here, the temperatures and dimensions of the inlet and chamber can be dimensioned so that the inert gases, after the condensation of the metal chlorides, come into contact with the cold wall of the chamber, then mix with not yet or not yet sufficiently cooled chloride vapors and thus cause their further cooling to solidification. This case occurs particularly in the lower part of the condensation chamber et. Such a mixture with inert gases is obtained in particular by the immediate chlorination of niobium and/or tantalum ores, which is why the present method is particularly advantageous for condensation immediately after chlorination. Fig. 1 shows an embodiment of a condensation chamber for carrying out the method, and Fig. 2 shows a variant of Fig. 1. Fig. 1 shows, as an exemplary embodiment, a section through a condensation chamber which can be used for the execution of the present method. The chloride vapors 10 which are at a temperature above the condensation point and which are preferably mixed with inert gases, such as CO, C02 - N2, pass through the supply line 17 which is heated to the temperature Tx into the mouth 12 and which protrudes from the lid 14 into the interior of the chamber 16 into the condensation space formed by the chamber. Preferably, the temperature T is kept above the solidification temperature for the chloride vapors. The heating takes place e.g. by means of a heating coil 19. The walls 18 in the condensation space 16 are kept, e.g. by means of the double jacket 20 by means of cooling with air or possibly a liquid heat transfer agent at a constant temperature T2, the temperature T2 being lower than T1. By corresponding adaptation of the cross-section and length of the chamber 16 as well as the temperature T1 and T2 to the given composition and speed of the chloride vapors, it is possible to bring the total quantity of the sublimable chlorides to crystallization in the free space and thus prevent a condensation of the walls. Similarly, in an apparatus of a given dimension, by regulating the rate of entry of the chloride vapors, condensation on the walls of the condensation chamber can also be prevented. The solid chlorides settle in the bottom part 22 of the chamber, while the other gas escapes through the pipeline 24. More advantageously, the supply line 17 in the container can be provided on its outer surface with a thermal insulation 21, to prevent it from radiation heats the chamber walls. The condensation of the vapour-form chlorination products in the free space in the condensa-

sasj onssonen kan videre sikres ved at det ifølge utførelseseksemplet som er vist på fig. 2 mellom veggene 18 i kondensasj onskammeret og dampene som trer inn fra munningen 12 innsjaltes en inert gass. Denne gass innføres ved hjelp av tilkop-lingene 30. Som inert gass kan det f. eks. anvendes kvelstoff, C02 eller reaksjonsgass som er befridd for kloreringsprodukter. I det sistnevnte tilfelle ledes avgassene som strømmer ut av utløpsledningen 24 etter utskilling av de faste klorider tilbake til åpningen 30 — som antydet ved hjelp av pilen 32. Den inerte, kalde gass kan til-føres kondensasj onsrommet langs veggene eller umiddelbart omgivende kloriddampene, f. eks. ved anvendelse av en konsen-trisk omkring damptilføringen anordnet og parallelt rettet tilledning. The sash zone can also be secured by the fact that, according to the design example shown in fig. 2 between the walls 18 of the condensation chamber and the vapors entering from the mouth 12, an inert gas is sealed. This gas is introduced using the connections 30. As an inert gas, it can e.g. nitrogen, C02 or reaction gas that has been freed from chlorination products is used. In the latter case, the exhaust gases flowing out of the outlet line 24 after separation of the solid chlorides are led back to the opening 30 — as indicated by the arrow 32. The inert, cold gas can be supplied to the condensation space along the walls or immediately surrounding the chloride vapors, f e.g. by using a concentrically arranged and parallel directed supply around the steam supply.

Ved hjelp av passende valg av temperatur og mengden av den ekstra tilsatte inerte gass kan en betraktelig mengde av kondensasj onsvarmen føres vekk, således at kloreringsproduktet, som på grunn av den omgivende kalde gasskappe ikke kan nå veggene, faller ut fast i det frie rom henholdsvis i skillegassen. By means of a suitable choice of temperature and the quantity of the additionally added inert gas, a considerable amount of the condensation heat can be carried away, so that the chlorination product, which due to the surrounding cold gas mantle cannot reach the walls, falls out solidly in the free space or in the separating gas.

For samme formål kan man også mellom veggene på kondensasj onsrommet og de inntredende varme kloreringsgasser i stedet for en inert skillegass tilsette flytende forbindelser, som ikke reagerer med metallkloridene, særlig flytende klorider, f. eks. siliciumtetraklorid, titantetraklorid eller tetraklorkullstoff, fortrinsvis i finfor-delt form og i slike mengder at alle flytende tilsatte klorider fordamper og forblir i dampfase mens de faste klorider utskil-les. I dette tilfelle ville man f. eks. an-vende forstøvningsdyser ved utløpet for stussene 30. For the same purpose, liquid compounds which do not react with the metal chlorides, particularly liquid chlorides, e.g. silicon tetrachloride, titanium tetrachloride or carbon tetrachloride, preferably in finely divided form and in such quantities that all liquid added chlorides evaporate and remain in the vapor phase while the solid chlorides are separated. In this case, one would e.g. use atomizing nozzles at the outlet for the spigots 30.

Kondensasj onskammeret kan være fremstilt av nikkel, stål, forniklet eller emaljert stål. I tilfelle veggene i kammeret holdes under ca. 100 °C kommer også alu-minium i betraktning som konstruksjons-materiale for kondensasj onskammeret. The condensation chamber can be made of nickel, steel, nickel-plated or enamelled steel. In case the walls of the chamber are kept below approx. 100 °C aluminum also comes into consideration as a construction material for the condensation chamber.

Ifølge foreliggende fremgangsmåte kan det i apparaturen ifølge oppfinnelsen kon-denseres de forskjelligste kloreringsprodukter som går direkte over i fast tilstand under vidtgående unngåelse av krustedannelse. Som utgangsstoffer kommer særlig de klorider som kan fåes ved klorering av niob- og/eller tantalholdige malmer, frem-for alt slike kloridblandinger i betraktning, som ved siden av pentaklorider også inneholder tantal- og fortrinsvis nioboksyklo-rid. Man kommer til slike blandinger ifølge i og for seg kjente fremgangsmåter, f. eks. ved klorering av en blanding av oksydet av niob og tantal med klorgass og et reduk-sjonsmiddel slik som kull ved 400 til 1000° i en sjakt- eller rørovn. Herved kan det benyttes de vanligvis i teknikken foreliggende blandinger med et innhold av oksyder av niob og tantal eller også naturpro-duktene som for det meste inneholder de to elementer i form av deres oksyder, slik som f. eks. malmer som eventuelt er etter-behandlet for anrikning, som f. eks. nio-bitt, tantalitt, pyroklor osv. According to the present method, in the apparatus according to the invention, a wide variety of chlorination products can be condensed which go directly into a solid state while largely avoiding crust formation. As starting materials, the chlorides which can be obtained by chlorination of niobium- and/or tantalum-containing ores, above all such chloride mixtures, which besides pentachlorides also contain tantalum and preferably nioboxychloride come into consideration. Such mixtures are arrived at according to methods known per se, e.g. by chlorination of a mixture of the oxide of niobium and tantalum with chlorine gas and a reducing agent such as coal at 400 to 1000° in a shaft or tube furnace. In this way, it is possible to use the mixtures usually available in the art with a content of oxides of niobium and tantalum or also the natural products which mostly contain the two elements in the form of their oxides, such as e.g. ores that have possibly been post-treated for enrichment, such as e.g. nio-bite, tantalite, pyrochlore, etc.

I det følgende eksempel betyr deler, såfremt intet annet angis, vektsdeler, pro-senter vektsprosenter. Temperaturene er angitt i Celsiusgrader. In the following example, parts, unless otherwise stated, means parts by weight, percentages percentages by weight. The temperatures are indicated in degrees Celsius.

Eksempel 1: Under anvendelse av en til 700°C for-varmet ovn med et innvendig tverrsnitt på 60 mm ble briketter av 80 deler kolumbitt-malm og 20 deler sot klorert i en kontinuerlig klorstrøm. Temperaturen i klo-reringsovnen ble under omsetningen holdt på ca. 750 °C og de varme kloreringsprodukter ble med en hastighet på 40 cm pr. se-kund ledet gjennom en elektrisk på 450°C holdt tilledning med en diameter på 15 mm ovenfra inn i et sylinderformet, vertikalt kondensasj onsrom med en indre diameter på 120 mm og en høyde på 250 mm. Munningen på tilledningen som ble holdt på 450° ved hjelp av motstandsopphetning (på fig. 1 betegnet med E) befant seg 50 mm under lokket som lukket kondensasj onsrommet. Veggene i kondensasj onsrommet ble utvendig fra ved hjelp av en luftstrøm holdt på romtemperatur. Example 1: Using a furnace preheated to 700°C with an internal cross-section of 60 mm, briquettes of 80 parts of columbite ore and 20 parts of carbon black were chlorinated in a continuous flow of chlorine. The temperature in the chlorination furnace was kept at approx. 750 °C and the hot chlorination products were at a speed of 40 cm per seconds led through an electric at 450°C held supply with a diameter of 15 mm from above into a cylindrical, vertical condensation chamber with an inner diameter of 120 mm and a height of 250 mm. The mouth of the supply which was kept at 450° by means of resistance heating (in Fig. 1 denoted by E) was located 50 mm below the lid which closed the condensation space. The walls in the condensation chamber were kept at room temperature from the outside by means of an air flow.

Det krystalliserte produkt var av fin-pulveraktig beskaffenhet, løst og fritt-strømmende. Det inntrådte ikke noen krustedannelse på veggene. Små støvavset-ninger gle ned av veggene så snart de hadde nådd en nevneverdig mengde. The crystallized product was of a fine-powdery nature, loose and free-flowing. No crust formation occurred on the walls. Small deposits of dust slid down the walls as soon as they had reached a significant quantity.

Eksempel 2: Example 2:

Ved et videre eksempel ble det fremstilt en strøm av kloreringsprodukter, som inneholdt 30—40 vol.-% metallkloriddam-per og ble ledet inn med en hastighet på 30 l/min. og en temperatur på 300° i kondensasj onsrommet. Tilf ørselsledningen rakk til 70 cm under lokket i det indre av kondensatoren og hadde et tverrsnitt på 30 mm. Den sylindriske kondensator hadde et tverrsnitt på 20 cm og en lengde på 350 cm. Kloriddampstrømmens hastighet utgjorde ved utløpet fra tilledningen i kondensatoren 0,7 m/sek. Veggene i kondensa toren ble holdt på romtemperatur ved hjelp av en luftstrøm. In a further example, a stream of chlorination products was produced, which contained 30-40 vol.-% metal chloride vapors and was introduced at a rate of 30 l/min. and a temperature of 300° in the condensation room. The supply line reached 70 cm below the lid in the interior of the condenser and had a cross-section of 30 mm. The cylindrical condenser had a cross section of 20 cm and a length of 350 cm. The velocity of the chloride vapor stream at the outlet from the supply in the condenser was 0.7 m/sec. The walls in condensation the tor was kept at room temperature by means of an air stream.

Det erholdte produkt var løst og fritt-strømmende. Ved et kontrollforsøk ble inn-munningstemperaturen øket, og det dannet seg da belegg på lokket av kondensatoren. Ble derimot den sylindriske konden-satordel forkortet med samme størrelse for innmunningshastigheten, dannet det seg i avgassledningen på grunn av den ufull-stendige kondensasjon i kondensatoren hårde kloridansamlinger. The product obtained was loose and free-flowing. In a control experiment, the inlet temperature was increased, and a coating then formed on the lid of the condenser. If, on the other hand, the cylindrical condenser part was shortened by the same amount for the inlet velocity, hard chloride accumulations formed in the exhaust line due to the incomplete condensation in the condenser.

Eksempel 3: Example 3:

Fra kloreringsinnretningen ble det fremstilt en kloreringsblanding, som var sammensatt av kloriddamper og reaksjons-gasser omtrent i forholdet 2:3. Denne ble med en temperatur på 300° og en mengde på ca. 200 l/min. innført i kondensatoren. Kondensatoren hadde sylindrisk form med en konisk innsnevret bunndel (ifølge teg-ningene) og hadde et tverrsnitt på 800 mm og en lengde for den sylindriske del på 1300 mm. Innføringsledningen stakk 200 mm inn i det indre av kondensasj onsrommet fra lokket og hadde ved munningen et tverrsnitt på 200 mm. Den ble ved opp-hetning holdt på temperaturen for de inn-førte damper (ca 300°C). Innmunningshastigheten utgjorde 0,1 m/sek. For av-kjølingsformål hadde kondensatoren en dobbeltkappe, hvori det fremkaltes en tvungen luftstrømning. A chlorination mixture was produced from the chlorination device, which was composed of chloride vapors and reaction gases in an approximate ratio of 2:3. This was with a temperature of 300° and a quantity of approx. 200 l/min. introduced into the condenser. The condenser had a cylindrical shape with a conical narrowed bottom part (according to the drawings) and had a cross-section of 800 mm and a length for the cylindrical part of 1300 mm. The introduction line protruded 200 mm into the interior of the condensation space from the lid and had a cross-section of 200 mm at the mouth. When heated, it was kept at the temperature of the introduced vapors (about 300°C). The muzzle velocity was 0.1 m/sec. For cooling purposes, the condenser had a double jacket, in which a forced air flow was induced.

Det erholdte produkt var fint til grov-krystallinsk med en variasjon for innmun-ningstemperaturen innen grensene 250— 350°. The product obtained was fine to coarsely crystalline with a variation for the mouth temperature within the limits of 250-350°.

Det er innlysende at den ovenfor be-skrevne apparatur kan modifiseres til vil-kårlige dimensjoner. Avgjørende for den tilstrebede virkning er utelukkende at damphastigheten, avstanden mellom inn-munningen av de varme kloriddamper og den nærmest liggende vegg, dampenes temperatur og temperaturen for veggene i kondensasj onsrommet holdes i et slikt forhold at kloriddampene blir faste i det frie rom før de treffer veggene. It is obvious that the apparatus described above can be modified to arbitrary dimensions. Decisive for the desired effect is exclusively that the steam velocity, the distance between the mouth of the hot chloride vapors and the nearest wall, the temperature of the vapors and the temperature of the walls in the condensation room are kept in such a ratio that the chloride vapors become solid in the free space before they hit the walls.

Claims (5)

1. Fremgangsmåte til kondensering av materialer som inneholder kloreringsprodukter av niob og/eller tantal, ved at man innfører kloreringsproduktene i det avkjølte kondensasjonskammer gjennom en opphetet tilledning som holdes over størk-ningstemperaturen for metallkloridene, således at kloriddampene avkjøles til fast til-1. Method for condensing materials containing chlorination products of niobium and/or tantalum, by introducing the chlorination products into the cooled condensation chamber through a heated supply line which is kept above the solidification temperature for the metal chlorides, so that the chloride vapors are cooled to a solid stand med høyst minimal berøring av veggene i kondensasj onsrommet, karakterisert ved at den oppvarmbare tilledning for kloriddampene springer så langt frem i det indre av kondensasj onskammeret at de damper som trer ut av munningen har en tilstrekkelig stor avstand fra alle kamme-rets vegger til at de størkner før de kommer i berøring med veggene.state with very minimal contact with the walls of the condensation chamber, characterized by the fact that the heatable supply for the chloride vapors extends so far into the interior of the condensation chamber that the vapors emerging from the mouth have a sufficiently large distance from all the walls of the chamber so that they solidify before they come into contact with the walls. 2. Kondensasjonskammer ifølge påstand 1, karakterisert ved at tilledningen springer frem i kondensasj onsrommet inn-til % av kondensasj onsrommets høyde. 2. Condensation chamber according to claim 1, characterized in that the supply line extends into the condensation space up to % of the height of the condensation space. 3. Fremgangsmåte ifølge påstand 1 og 2, karakterisert ved at det separat inn-ledes en kald, inert gass mellom veggene for kondensasj onskammeret og de inntredende damper. 3. Method according to claims 1 and 2, characterized in that a cold, inert gas is introduced separately between the walls of the condensation chamber and the entering vapors. 4. Fremgangsmåte ifølge påstand 3, karakterisert ved at det som inert gass anvendes avkjølt, kloridfri reaksjonsgass. 4. Method according to claim 3, characterized in that cooled, chloride-free reaction gas is used as inert gas. 5. Fremgangsmåte ifølge påstand 3, karakterisert ved at det som inert gass anvendes kulldioksydgass.5. Method according to claim 3, characterized in that carbon dioxide gas is used as inert gas.
NO15846965A 1964-06-15 1965-06-14 NO124709B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37519164A 1964-06-15 1964-06-15

Publications (1)

Publication Number Publication Date
NO124709B true NO124709B (en) 1972-05-23

Family

ID=23479871

Family Applications (2)

Application Number Title Priority Date Filing Date
NO15846965A NO124709B (en) 1964-06-15 1965-06-14
NO243971A NO131174C (en) 1964-06-15 1971-06-28

Family Applications After (1)

Application Number Title Priority Date Filing Date
NO243971A NO131174C (en) 1964-06-15 1971-06-28

Country Status (16)

Country Link
JP (1) JPS494338B1 (en)
AT (2) AT293165B (en)
BE (1) BE664883A (en)
CA (1) CA950251A (en)
CH (1) CH479094A (en)
CY (1) CY496A (en)
DE (2) DE1497205C3 (en)
ES (1) ES313979A1 (en)
FR (1) FR1447277A (en)
GB (2) GB1116553A (en)
IL (2) IL23342A (en)
LU (1) LU48728A1 (en)
MY (1) MY6900153A (en)
NL (1) NL153339B (en)
NO (2) NO124709B (en)
SE (2) SE316682B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573904A (en) * 1967-01-09 1971-04-06 Xerox Corp Combination of electrography and manifold imaging
JPS5364040A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Photosensitive plate for xerography
GB1599430A (en) * 1977-06-27 1981-09-30 Konishiroku Photo Ind Photoconductive composition for use in the preparation of an electrophotographic material
JPS58166355A (en) * 1982-03-29 1983-10-01 Toyo Ink Mfg Co Ltd Electrophotographic receptor
JPS58182639A (en) * 1982-04-20 1983-10-25 Hitachi Ltd Electrophotographic receptor
JPS59232348A (en) * 1983-06-15 1984-12-27 Mita Ind Co Ltd Laminated photosensitive body and its production
JPS6050539A (en) * 1983-08-31 1985-03-20 Toyo Ink Mfg Co Ltd Electrophotographic sensitive body
DE3417951A1 (en) * 1984-05-15 1985-11-21 Hoechst Ag, 6230 Frankfurt ELECTROPHOTOGRAPHIC RECORDING MATERIAL
US4975350A (en) * 1986-10-20 1990-12-04 Konica Corporation Photoreceptor having a metal-free phthalocyanine charge generating layer
DE69101338T2 (en) * 1990-05-25 1994-09-01 Matsushita Electric Ind Co Ltd Photosensitive materials containing organic photoconductive substances in a polymeric binder comprising aromatic rings linked to OH groups and bromine atoms.
DE4234922A1 (en) * 1992-10-16 1994-04-21 Basf Ag Metal-free phthalocyanine of the gamma modification
EP1731575A4 (en) * 2004-03-04 2009-03-04 Mitsubishi Chem Corp Phthalocyanine composition, and photoconductive material, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition

Also Published As

Publication number Publication date
ES313979A1 (en) 1966-03-01
SE339730B (en) 1971-10-18
SE316682B (en) 1969-10-27
CA950251A (en) 1974-07-02
DE1497205C3 (en) 1979-04-12
DE1497205B2 (en) 1978-08-03
FR1447277A (en) 1966-07-29
IL23342A (en) 1970-06-17
BE664883A (en) 1965-12-03
NO131174B (en) 1975-01-06
DE1794329B2 (en) 1974-05-30
NO131174C (en) 1975-04-16
MY6900153A (en) 1969-12-31
AT297883B (en) 1972-04-10
CY496A (en) 1969-05-24
GB1116554A (en) 1968-06-06
NL6507664A (en) 1965-12-16
NL153339B (en) 1977-05-16
LU48728A1 (en) 1965-12-01
DE1794329A1 (en) 1971-12-30
DE1794329C3 (en) 1975-02-06
JPS494338B1 (en) 1974-01-31
AT293165B (en) 1971-09-27
DE1497205A1 (en) 1969-04-30
GB1116553A (en) 1968-06-06
CH479094A (en) 1969-09-30
IL33063A (en) 1970-06-17

Similar Documents

Publication Publication Date Title
NO124709B (en)
KR20110040962A (en) Production of zinc dust
US2997385A (en) Method of producing refractory metal
ZA200705597B (en) Metal vapour condensation and liquid metal withdrawal
US2668424A (en) Process for cooling vaporous materials
US3628913A (en) Process for recovering titanium tetrachloride from titaniferous ore
US2782118A (en) Production of refractory metals
NO151503B (en) PROCEDURE FOR CALCINATION OF PARTICULAR PETROLEUM COOK
US3148035A (en) Apparatus for the continuous production of silicon chloroform and/or silicon tetrachloride
NO131999B (en)
US2999733A (en) Chlorination processes
NO115801B (en)
US460985A (en) Curt netto
US4925454A (en) Aluminum chloride granules and process to obtain them
US2368319A (en) Condensation of chromic chloride
DK172381B1 (en) Process for condensation of aluminum chloride
US2889221A (en) Method of producing titanium
US3201101A (en) Apparatus for the purification of metals
US2762702A (en) Process of distilling metals with halide vapors
CH346527A (en) Process and condensation chamber for condensing metal chlorides which go directly into the solid state
US3085873A (en) Method for collecting and separating the refractory metal component from the reaction products in the production of the refractory metals titanium, zirconium, vanadium, hafnium, silicon, thorium, chromium, or columbium
US2029921A (en) Apparatus for producing substantially pure magnesium
US2842425A (en) Use of slag for agglomeration of rutile for shaft furnace chlorination
US711281A (en) Combined metallurgic furnace and precipitating water-tank.
US1645142A (en) Process of solidifying aluminum chloride