NO124160B - - Google Patents

Download PDF

Info

Publication number
NO124160B
NO124160B NO66164328A NO16432866A NO124160B NO 124160 B NO124160 B NO 124160B NO 66164328 A NO66164328 A NO 66164328A NO 16432866 A NO16432866 A NO 16432866A NO 124160 B NO124160 B NO 124160B
Authority
NO
Norway
Prior art keywords
catalyst
methanol
temperature
copper
zinc
Prior art date
Application number
NO66164328A
Other languages
Norwegian (no)
Inventor
J Gallagher
J Kidd
Original Assignee
Ici Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ici Ltd filed Critical Ici Ltd
Publication of NO124160B publication Critical patent/NO124160B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1512Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by reaction conditions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

Fremgangsmåte for kontinuerlig fremstillingProcess for continuous production

av metanol med lite innhold av organiskeof methanol with a low content of organics

forurensninger.pollutants.

Foreliggende oppfinnelse vedrører en fremgangsmåte for kontinuerlig fremstilling av metanol med meget lite innhold av organiske forurensninger ved å la karbonmonoksyd eller karbondioksyd eller begge reagere med hydrogen ved et trykk i området 10-150 atmosfærer og ved en temperatur i området 160-300°C i nærvær av en katalysator som inneholder oksydene av kobber og sink og minst ett annet metall som er fra gruppene II til IV i det periodiske system og hvis oksyd er vanskelig reduserbart, og fremgangsmåten erkarakterisert vedat det anvendes en katalysator hvor kobberinnholdet i katalysatoren er minst 20% og fortrinnsvis mer enn 35%, og sinkinnholdet er mindre enn 70%, spesielt mellom 15 og 50%, og hvor det tredje metall er aluminium i en mengde av minst 4%, samtlige prosentangivelser basert på atomprosent av de aktuelle metaller i katalysatoren, og den volum-romhastighet som prosessen utføres ved, er høyere enn 5000 . time , basert på et trykk svarende til én atmosfære absolutt og temperatur 20°C. The present invention relates to a method for the continuous production of methanol with a very low content of organic contaminants by allowing carbon monoxide or carbon dioxide or both to react with hydrogen at a pressure in the range of 10-150 atmospheres and at a temperature in the range of 160-300°C in the presence of a catalyst containing the oxides of copper and zinc and at least one other metal which is from groups II to IV in the periodic table and whose oxide is difficult to reduce, and the method is characterized by using a catalyst where the copper content in the catalyst is at least 20% and preferably more than 35%, and the zinc content is less than 70%, especially between 15 and 50%, and where the third metal is aluminum in an amount of at least 4%, all percentages based on the atomic percentage of the relevant metals in the catalyst, and the volume-space velocity at which the process is carried out is higher than 5000 . hour, based on a pressure corresponding to one atmosphere absolute and a temperature of 20°C.

Fremgangsmåten i henhold til oppfinnelsen kan, som en følge av den spesielle katalysator og betingelsene som benyttes, brukes industrielt i lange perioder uten tap i effektivitet, i motsetning til tidligere fremgangsmåter. Dette gjelder også ved de relativt lave trykk og temperaturer det foretrekkes å benytte fremgangsmåten. Videre er den økonomisk sett, en tiltrekkende fremgangsmåte også ved produksjon i middelstor målestokk. The method according to the invention can, as a result of the special catalyst and the conditions used, be used industrially for long periods without loss of efficiency, in contrast to previous methods. This also applies at the relatively low pressures and temperatures at which it is preferred to use the method. Furthermore, from an economic point of view, it is an attractive method also for medium-scale production.

Det foretrekkes å benytte en blanding av karbonmonoksyd og karbondioksyd i utgangsmaterialet for prosessen, dvs. i gassen i kontakt med katalysatoren. Volumprosenten av karbondioksyd i denne utgangsgass er fortrinnsvis mellom 1 og 20%, spesielt mellom 3 og 12%. Den prosentvise andel av karbondioksyd kan være: lik, større eller mindre enn andelen av karbonmonoksyd. Det foretrekkes at det som kilde for syntesegassen benyttes en primær hydrokarbon-damp-reformeringsprosess som arbeider ved en temperatur og et trykk som vil gi den ønskede gassblanding. Syntesegassen fremstilt på denne måte renses i alt vesentlig for overskudds-damp, som den opprinnelig inneholder, men tilføres fortrinnsvis metanolsynteseanlegget uten fjerning av karbondioksyd. Hvis ønskelig, kan karbondioksyd fjernes delvis, og det fjernede karbondioksyd kan føres tilbake til innløpet for reformeren.Alterna-tivt kan karbondioksydet fjernes fullstendig, og en del av det tilføres metanolsyntesen og en annen del til innløpet for reformeren. Syntesegassen kan komme fra en hvilken som helst kilde, eller kombinasjon av kilder som vil gi den nødvendige sammensetning. Hvis reformeren brukes med naturgass som råmateriale, vil det væ-re nødvendig å tilsette en betraktelig mengde karbonoksyd for å oppveie det høye hydrogen/karbonforhold i metan, som er høyere enn det som er nødvendig for metanol fremstillingen. Dette ekstra karbon kan hensiktsmessig tilsettes i form av karbondioksyd, enten til reformeren eller til metanolanlegget, eller begge. Al-ternativt fremstilles syntesegassen ved partiell oksydasjon av metan. Hvis råmaterialet for reformeren er nafta, er det bare litt mere enn to hydrogenatomer til stede for hvert karbonatom, og fremgangsmåten anvendes da fortrinnsvis i forbindelse med en damp-nafta-reformerprosess, spesielt av den type som er beskrevet i britisk patent 953 877. Syntesegassen må i alt vesentlig være svovel fri, dvs. at den ikke må inneholde mer svovel enn 5 dpm etter vekt, og fortrinnsvis mindre enn 1 dpm. Hvis gass med mindre enn 0,1 dpm kan skaffes, er dette enda mer fordelaktig. It is preferred to use a mixture of carbon monoxide and carbon dioxide in the starting material for the process, i.e. in the gas in contact with the catalyst. The percentage by volume of carbon dioxide in this starting gas is preferably between 1 and 20%, especially between 3 and 12%. The percentage share of carbon dioxide can be: equal to, greater than or less than the share of carbon monoxide. It is preferred that a primary hydrocarbon-steam reforming process is used as a source for the synthesis gas, which operates at a temperature and pressure that will give the desired gas mixture. The synthesis gas produced in this way is substantially cleaned of excess steam, which it originally contains, but is preferably supplied to the methanol synthesis plant without removal of carbon dioxide. If desired, carbon dioxide can be partially removed, and the removed carbon dioxide can be returned to the inlet of the reformer. Alternatively, the carbon dioxide can be completely removed, and part of it is supplied to the methanol synthesis and another part to the inlet of the reformer. The synthesis gas can come from any source, or a combination of sources that will give the required composition. If the reformer is used with natural gas as raw material, it will be necessary to add a considerable amount of carbon monoxide to compensate for the high hydrogen/carbon ratio in methane, which is higher than that required for methanol production. This extra carbon can conveniently be added in the form of carbon dioxide, either to the reformer or to the methanol plant, or both. Alternatively, the synthesis gas is produced by partial oxidation of methane. If the feedstock for the reformer is naphtha, only slightly more than two hydrogen atoms are present for each carbon atom, and the process is then preferably used in connection with a steam-naphtha reformer process, especially of the type described in British patent 953 877. The synthesis gas must be substantially free of sulphur, i.e. that it must not contain more than 5 dpm of sulfur by weight, and preferably less than 1 dpm. If gas with less than 0.1 dpm can be obtained, this is even more advantageous.

Så lave svovelinnhold kan oppnås hensiktsmessig ved fremgangsmåten i henhold til britisk patent 902 148, når flytende råmaterialer benyttes. De kobber-inneholdende katalysatorers mottagelighet for forgiftning med svovel, og nyttigheten av "beskyttelses-katalysatorer" i forbindelse med dem, er vel kjent. Such low sulfur contents can be suitably achieved by the method according to British patent 902 148, when liquid raw materials are used. The susceptibility of copper-containing catalysts to sulfur poisoning, and the usefulness of "protective catalysts" in connection therewith, is well known.

Mol forholdet mellom karbondioksyder og hydrogen i gassen som er i kontakt med katalysatoren, er fortrinnsvis mellom det stø-kiometriske forhold og 1 : 10. Det later til at en hurtigere reak-sjon finner sted når det er mer hydrogen enn den støkiometriske mengde i den gass som er i kontakt med katalysatoren. For å benytte seg av denne større reaksjonshastighet er forholdet fortrinnsvis mellom 1,3 og 3 ganger det støkiometriske forholdet. På den annen side virker prosessen tilfredsstillende og gir god kvalitet metanol når forholdet er det samme som eller ikke meget under det støkiometriske. The mole ratio between carbon dioxide and hydrogen in the gas in contact with the catalyst is preferably between the stoichiometric ratio and 1:10. It appears that a faster reaction takes place when there is more hydrogen than the stoichiometric amount in the gas in contact with the catalyst. In order to make use of this greater reaction rate, the ratio is preferably between 1.3 and 3 times the stoichiometric ratio. On the other hand, the process seems satisfactory and gives good quality methanol when the ratio is the same as or not much below the stoichiometric.

En definisjon av "oksydene" som benyttes i katalysatoren er nødvendig, for, skjønt det ville være bekvemt å spesifisere sam-mensetningen av katalysatorpartiklene som tilføres syntesekonverte-ren, som de oksyder som er til stede på dette trinn, blir disse oksyder redusert, f.eks. av hydrogen, før syntesegassen ledes over dem. Imidlertid er reduksjonen ufullstendig, siden det av de oksyder som er til stede, bare er kobberoksyd som er lett reduserbart til metall. Videre antar man at den nøyaktige reduksjonstil-stand varierer med syntesegassenes trykk, og med innholdet av karbondioksyd og vann (som har en oksyderende virkning) og av karbonmonoksyd og hydrogen (som har en reduserende virkning). Således vil uttrykket "oksyder" bli brukt for å beskrive det reduksjonspro-dukt av oksydene som er til stede under betingelsene for syntesen. A definition of the "oxides" used in the catalyst is necessary because, although it would be convenient to specify the composition of the catalyst particles fed to the synthesis converter, as the oxides present at this stage, these oxides are reduced, f .ex. of hydrogen, before the synthesis gas is passed over them. However, the reduction is incomplete, since of the oxides present, only copper oxide is readily reducible to metal. Furthermore, it is assumed that the exact state of reduction varies with the pressure of the synthesis gases, and with the content of carbon dioxide and water (which have an oxidizing effect) and of carbon monoxide and hydrogen (which have a reducing effect). Thus, the term "oxides" will be used to describe the reduction product of the oxides present under the conditions of the synthesis.

Trykket som anvendes ved utførelse av fremgangsmåten er fortrinnsvis 30 til 120 atmosfærer, f.eks. 40 til 80 atmosfærer. Disse er absolutte trykk. Disse trykk er hensiktsmessig lik trykket ved utløpet av fremstillingsanlegget for syntesegassen, eller høyst 5 ganger så høyt. Trykket kan hensiktsmessig økes til det som er nødvendig for syntesen, ved hjelp av en rotasjonskompressor, og i virkeligheten er en av fordelene ved denne oppfinnelse at den muliggjør bruken av rotasjonskompressorer i anlegg for middelstor produksjon, f.eks. for å produsere fra 120 tonn metanol pr. The pressure used when carrying out the method is preferably 30 to 120 atmospheres, e.g. 40 to 80 atmospheres. These are absolute pressures. These pressures are suitably equal to the pressure at the outlet of the production plant for the synthesis gas, or at most 5 times as high. The pressure can conveniently be increased to that required for the synthesis by means of a rotary compressor, and in fact one of the advantages of this invention is that it enables the use of rotary compressors in facilities for medium production, e.g. to produce from 120 tonnes of methanol per

døgn og oppover.24 hours and above.

Temperaturen som prosessen arbeider ved, er fortrinnsvis i området 190 - 270°C. The temperature at which the process works is preferably in the range 190 - 270°C.

Den volum-romhastighet som prosessen utføres ved, erThe volume-space velocity at which the process is carried out is

som nevnt høyere enn 5000 pr. time ^, og er hensiktsmessig meget høyere, f.eks. opptil 50 000 time<-1>, spesielt 7000 time<-1>til 25 000 time ^. Disse romhastigheter er basert på et trykk svarende til 1 atmosfære absolutt og temperaturen 20°C as mentioned higher than 5000 per hour ^, and is appropriately much higher, e.g. up to 50,000 hours<-1>, especially 7,000 hours<-1>to 25,000 hours ^. These space velocities are based on a pressure corresponding to 1 atmosphere absolute and a temperature of 20°C

Prosessen utføres i et system med gjentatt kretsløp, i hvilket uomsatte reaktanter føres tilbake til metanolsyntesen etter at metanol er fjernet fra dem. Et slikt system kan omfatte mer enn ett metanolsyntesetrinn og fjerning av metanol i tilbake-førselssløyfen. Hvis det i et kretsløpssystem er ønskelig å opp-rettholde forholdet mellom hydrogen og karbonoksyder på de over-støkiometriske nivåer, som ble nevnt ovenfor, følger at den til-bakeførte gassen i alminnelighet vil inneholde et høyere hydrogen-karbonoksydforhold enn syntesegassen som ble tilført systemet, unn-tatt, selvfølgelig, når det er en lokal avtager, som f.eks. en ammoniakksyntese, for overskuddshydrogen. Ved fremgangsmåten i henhold til oppfinnelsen kan temperaturkontrollen i eller mellom syntesekonverterne finne sted ved enhver passende metode, f.eks. ved tilførselsgass-forvarmere, -kjølere eller -bråkjølere. The process is carried out in a system with repeated circulation, in which unreacted reactants are returned to the methanol synthesis after methanol has been removed from them. Such a system may comprise more than one methanol synthesis step and removal of methanol in the return loop. If in a circuit system it is desirable to maintain the ratio between hydrogen and carbon oxides at the above-stoichiometric levels, which were mentioned above, it follows that the returned gas will generally contain a higher hydrogen-carbon oxide ratio than the synthesis gas that was supplied to the system , except, of course, when there is a local buyer, such as e.g. an ammonia synthesis, for excess hydrogen. In the method according to the invention, the temperature control in or between the synthesis converters can take place by any suitable method, e.g. in the case of supply gas preheaters, coolers or quenchers.

Kobberinnholdet i katalysatoren er som nevnt fortrinnsvis minst 20%, spesielt mer enn 35%. Fortrinnsvis er det høyere enn sinkinnholdet. Sinkinnholdet er mindre enn 70%, spesielt mellom 15 og 50%. Innholdet av det tredje metall, aluminium, er minst 4%, f.eks. fra 4 til 20%. således inneholder passende katalysatorer kobber, sink og aluminium i forholdene 30:60:10, 40.40:20, 60:30:10 og 75:20:5 og mellomliggende forhold. Alle disse forhold er med hensyn til atomer av de aktuelle metaller. As mentioned, the copper content in the catalyst is preferably at least 20%, especially more than 35%. Preferably it is higher than the zinc content. The zinc content is less than 70%, especially between 15 and 50%. The content of the third metal, aluminium, is at least 4%, e.g. from 4 to 20%. thus suitable catalysts contain copper, zinc and aluminum in the ratios 30:60:10, 40.40:20, 60:30:10 and 75:20:5 and intermediate ratios. All these conditions are with respect to atoms of the relevant metals.

Andre oksyder, som magnesiumoksyd, titandioksyd, zirko-niumdioksyd, ceriumdioksyd og thoriumdioksyd kan være tilstede. Også en viss mengde kromoksyd kan være tilstede. Other oxides, such as magnesium oxide, titanium dioxide, zirconium dioxide, cerium dioxide and thorium dioxide may be present. A certain amount of chromium oxide may also be present.

Katalysatoren som anvendes ved fremgangsmåten ifølge oppfinnelsen er fortrinnsvis en, i hvilken minst kobber og sink er innført ved samutfelning. Fortrinnsvis er også dén største delen av aluminium innført på denne måte. Ved fremstilling av katalysatoren utføres samutfelningen fortrinnsvis ved å blan- The catalyst used in the method according to the invention is preferably one in which at least copper and zinc are introduced by co-precipitation. Preferably, the largest part of aluminum is also introduced in this way. When producing the catalyst, the co-precipitation is preferably carried out by mixing

de vannløselige salter av kobber, sink og aluminium, enten i blanding, eller ved samtidig tilsetning, med et karbonat eller the water-soluble salts of copper, zinc and aluminium, either in mixture, or by simultaneous addition, with a carbonate or

hydrogenkarbonat av et alkalimetall. For å unngå katalysator-gifter bør nevnte salt ikke være et halogenid eller et annet svo-velinneholdende salt. Andre utfelningsmidler omfatter hydroksy-der og oksalater, og en del eller alt av aluminiumet og sinket kan tilsettes som aluminat, eller sinkat. Imidlertid er fortrinnsvis alle komponentene til stede som salter i hvilke de eksisterer som kationer, spesielt nitratene.Betingelsene for samutfelningen må reguleres meget omhyggelig, og det er således fordelaktig å blande ingrediensene ved en løpende m±ode. pH kan være mellom 1 enhet på den sure siden av nøytralitet og 2 enheter på den alkalis-ke siden, men en bedre katalysator resulterer hvis pH er innenfor 0,5 enheter fra nøytralitet ved den temperatur som benyttes. I ethvert tilfelle må pH være innenfor de nødvendige grenser for å sikre fullstendig utfelning. Det skal legges merke til at den numeriske verdi for pH er avhengig av temperaturen. Temperaturen for samutfelningen er fortrinnsvis mellom 50 og 100°C. Bunnfallet må vaskes godt for å fjerne alkalimetaller fra katalysatoren. Der-etter tørkes det og kalsineres ved f.eks. 300°C for å overføre kar-bonatene og andre forbindelser til oksyder og formes så ved f„eks. pelletisering under trykk. hydrogen carbonate of an alkali metal. To avoid catalyst poisons, said salt should not be a halide or another sulphur-containing salt. Other precipitating agents include hydroxides and oxalates, and some or all of the aluminum and zinc can be added as aluminate or zincate. However, preferably all the components are present as salts in which they exist as cations, especially the nitrates. The conditions for coprecipitation must be regulated very carefully, and it is thus advantageous to mix the ingredients in a continuous manner. The pH can be between 1 unit on the acidic side of neutrality and 2 units on the alkaline side, but a better catalyst results if the pH is within 0.5 units of neutrality at the temperature used. In any case, the pH must be within the necessary limits to ensure complete precipitation. It should be noted that the numerical value for pH is temperature dependent. The temperature for the coprecipitation is preferably between 50 and 100°C. The precipitate must be washed well to remove alkali metals from the catalyst. After that, it is dried and calcined by e.g. 300°C to transfer the carbonates and other compounds to oxides and are then formed by e.g. pelletization under pressure.

Oppfinnelsen illustreres ved det i det følgende anførte. The invention is illustrated by what is stated below.

Fremstilling av en katalysator ( A) som inneholder kobber, sinkPreparation of a catalyst (A) containing copper, zinc

og aluminium.and aluminium.

Til en oppløsning av 27,5 g natriumaluminat i 250 mlTo a solution of 27.5 g of sodium aluminate in 250 ml

vann ble 87,5 ml konsentrert salpetersyre tilsatt. Aluminiumhyd-roksyd ble utfelt først, men løste seg opp igjen ved røring. Til den resulterende oppløsning ble tilsatt en oppløsning i 1,5 liter vann av 435 g kobber-II-nitrattrihydrat og 269 g sinknitratheksa-hydrat, fulgt av tilstrekkelig vann til å bringe volumet opp til 3 liter. Oppløsningen ble varmet opp til 85°C og ledet ved en hastighet av-6,7 liter/time gjennom en blandingssone samtidig med at en molar oppløsning av natriumkarbonat ble ledet gjennom ved 7,3 liter/time. Disse hastighetene gav en oppslemming med en konstant pH på 7,0. Den resulterende oppslemming ble rørt ved 85°C inntil pH forble konstant. Den endelige pH målt ved 85°C var 7,1 som in-nebærer en svak alkalinitet, svarende til en alkalinormalitet i filtratet på 0,03. Oppslemmingen ble filtrert, vasket omhyggelig med vann og tørket natten over ved 110°C og kalsinert ved 300°C i 6 timer. Før kalsineringen var mesteparten av produktet lyst grønt, noe som viser at lite, hvis noen, nedbrytning av kobber- water, 87.5 ml of concentrated nitric acid was added. Aluminum hydroxide was precipitated first, but dissolved again on stirring. To the resulting solution was added a solution in 1.5 liters of water of 435 g of copper II nitrate trihydrate and 269 g of zinc nitrate hexahydrate, followed by sufficient water to bring the volume up to 3 liters. The solution was heated to 85°C and passed at a rate of -6.7 liters/hour through a mixing zone while a molar solution of sodium carbonate was passed through at 7.3 liters/hour. These rates produced a slurry with a constant pH of 7.0. The resulting slurry was stirred at 85°C until the pH remained constant. The final pH measured at 85°C was 7.1, which implies a weak alkalinity, corresponding to an alkali normality in the filtrate of 0.03. The slurry was filtered, washed thoroughly with water and dried overnight at 110°C and calcined at 300°C for 6 hours. Before calcination, most of the product was bright green, indicating that little, if any, degradation of the copper

karbonatene til oksyd hadde funnet sted. Det kalsinerte materi-ale ble pelletisert med 2% grafitt for å gi 5,4 x 5,4 mm pellets med en tetthet pa o 2,2 g/cm 3og med en gjennomsnittlig vertikal knusningsstyrke på 147,4 kg. Pelletene hadde følgende sammen- the carbonates to oxide had taken place. The calcined material was pelletized with 2% graphite to give 5.4 x 5.4 mm pellets with a density of 2.2 g/cm 3 and an average vertical crushing strength of 147.4 kg. The pellets had the following composition

i in

setning:sentence:

Eksempel 1 Example 1

Bruk av katalysatoren ( A) for metanolsyntese.Use of the catalyst (A) for methanol synthesis.

En viss mengde katalysator i form av knuste partikler av størrelse 18 til 25 B.S.S, ble redusert under atmosfærisk trykk ved bruk av en blanding av hydrogen, 80%, karbonmonoksyd 10% og karbondioksyd 10%, idet temperaturen langsomt ble hevet til 250°C. Den samme gassblanding ble så ledet over den ved et trykk på 50 atmosfærer og en romhastighet på 40 OOO time . Katalysatorens aktivitet ble målt med passende mellomrom over en tids bruk som den prosentvise andel av metanol i produktgassen og er vist i tabell 1 sammenlignet med resultatene for en kontrollkatalysator som inneholder de samme andeler kobber og sink, men med kromoksyd i stedet for aluminiumoksyd. A certain amount of catalyst in the form of crushed particles of size 18 to 25 B.S.S was reduced under atmospheric pressure using a mixture of hydrogen, 80%, carbon monoxide 10% and carbon dioxide 10%, the temperature being slowly raised to 250°C. The same gas mixture was then passed over it at a pressure of 50 atmospheres and a space velocity of 40,000 hours. The activity of the catalyst was measured at appropriate intervals over a period of use as the percentage of methanol in the product gas and is shown in Table 1 compared to the results for a control catalyst containing the same proportions of copper and zinc, but with chromium oxide instead of alumina.

Metanolen som ble fremstilt var, før rensning, i form av en vandig oppløsning som inneholdt 76 vektprosent metanol, med bare et meget lavt innhold av organiske forurensninger. The methanol produced was, before purification, in the form of an aqueous solution containing 76% by weight of methanol, with only a very low content of organic impurities.

Resultatene som er gitt i tabell 1, ble regnet om for en katalysator som har en tetthet på 1,0. Under de prosessbetingel-ser som er beskrevet, er omdannelsen av reaktantene til metanol lav på grunn av den høye romhastighet, og følgelig er reaksjons graden, med god tilnærmelse, lineært omvendt proporsjonal med romhastigheten, dvs. lineært proporsjonal med den mengde katalysator som er i kontakt med gassen over et lite variasjonsområde. Da re-aksjonen ikke er begrenset ved diffusjon under de betingelser som er beskrevet, avhenger reaksjonsgraden av katalysatorvekten, og ikke av volumet av katalysatoren>og følgelig er det tillatt å dividere den prosentvise andel av metanol i produktgassen med tettheten av katalysatoren. I eksempel 1 er tettheten av den knuste kobberoksyd-sinkoksyd-aluminiumoksyd-katalysator 1,21. The results given in Table 1 were recalculated for a catalyst having a density of 1.0. Under the process conditions described, the conversion of the reactants to methanol is low due to the high space velocity, and consequently the degree of reaction is, to a good approximation, linearly inversely proportional to the space velocity, i.e. linearly proportional to the amount of catalyst that is in contact with the gas over a small range of variation. As the reaction is not limited by diffusion under the conditions described, the degree of reaction depends on the catalyst weight, and not on the volume of the catalyst> and consequently it is permissible to divide the percentage of methanol in the product gas by the density of the catalyst. In Example 1, the density of the crushed copper oxide-zinc oxide-alumina catalyst is 1.21.

Eksempel 2Example 2

Forsøk med bruk av en katalysator ( B) som inneholder 75%Experiments using a catalyst (B) containing 75%

kobber ( atomprosent).copper (atomic percentage).

Bortsett fra forskjellen i sammensetning fremstiltes katalysatoren ved den samme fremgangsmåte som beskrevet for katalysator A. Katalysatoren var i pelletform og hadde en tetthet på 2,14 g/cm og en gjennomsnittlig vertikal knusestyrke på 102,5 kg. Den nøyaktige vektprosentvise sammensetning av katalysatoren var: Tabell 2 viser aktivitet og stabilitet for denne katalysator, som bestemt ved fremgangsmåten beskrevet i eksempel 1. Pro-sentene .er blitt omregnet til en tetthet av 1,0 ved å dividere de måo lte verdier med tettheten (1,18 g/cm 3)„ Apart from the difference in composition, the catalyst was prepared by the same method as described for catalyst A. The catalyst was in pellet form and had a density of 2.14 g/cm and an average vertical crushing strength of 102.5 kg. The exact weight percentage composition of the catalyst was: Table 2 shows the activity and stability of this catalyst, as determined by the method described in example 1. The percentages have been converted to a density of 1.0 by dividing the measured values by the density (1.18 g/cm 3 )„

Eksempel 3 Example 3

Fremgangsmåte med bruk av en katalysator i pelletform som inneholder kobber, sink og aluminium i større målestokk Syntesegassen for dette eksempel ble fremstilt ved å om- sette svovelfri nafta (kokepunktsområde 30-170°C) med damp (damp- . forhold 3,0 molekyler pr. karbonatom) over en nikkel-magnesiumoksyd-kaolin-sement-pottaskekatalysator som beskrevet i britisk patent 1 003 702 under et trykk på 12,7 kg/cm 2 og en utgangstemperatur fra katalysatorskiktet på 780°C. Den prosentvise sammensetning som volum av syntesegassen var C0215-16, CO 1-12, H265-67 og CH^6-7%, og var således nær den støkiometriske sammensetning for metanolsyntesen. Den ble brukt uten fjerning av karbondioksyd. Method using a catalyst in pellet form containing copper, zinc and aluminum on a larger scale The synthesis gas for this example was produced by reacting sulphur-free naphtha (boiling point range 30-170°C) with steam (steam ratio 3.0 molecules per carbon atom) over a nickel-magnesium oxide-kaolin-cement-pot ash catalyst as described in British patent 1,003,702 under a pressure of 12.7 kg/cm 2 and an outlet temperature from the catalyst bed of 780°C. The percentage composition by volume of the synthesis gas was C0215-16, CO 1-12, H265-67 and CH^6-7%, and was thus close to the stoichiometric composition for the methanol synthesis. It was used without removal of carbon dioxide.

Katalysatoren for dette eksempel ble fremstilt ved fremgangsmåten beskrevet for katalysator (A) (men i større målestokk) og hadde nesten nøyaktig den samme sammensetning. To katalysator-prøver ble fremstillet, (a) 5,4 mm diameter og 3,6 mm høye sylindriske pellets og (b) 3,2 mm diameter x 3,2 mm høye sylindriske The catalyst for this example was prepared by the method described for catalyst (A) (but on a larger scale) and had almost exactly the same composition. Two catalyst samples were prepared, (a) 5.4 mm diameter by 3.6 mm high cylindrical pellets and (b) 3.2 mm diameter x 3.2 mm high cylindrical pellets

pellets, og disse ble prøvet parallelt. De to konvertersystemene gjorde bruk av gasskretsløp og arbeidet ved en utblåsningshastig-het slik at den prosentvise sammensetning av den sirkulerende gass ble holdt på C0213-15, CO 7-9, H254-46, CH419,5-26. Syntesetryk-ket var 51,7 kg/cm^, tabell 3 viser produksjonshastigheten for metanol ved en romhastighet på 9600 time 1 og ved tre gjennomsnitt-lige temperaturer. pellets, and these were tested in parallel. The two converter systems used gas circuits and operated at a blowdown rate such that the percentage composition of the circulating gas was maintained at C0213-15, CO 7-9, H254-46, CH419.5-26. The synthesis pressure was 51.7 kg/cm 2 , Table 3 shows the production rate for methanol at a space velocity of 9600 hour 1 and at three average temperatures.

(I det konvertersystem som ble benyttet, var det en temperaturøkning på 30°C mellom innløp og utløp. Det skal der-for legges merke til at innløpstemperaturen for forsøkene i tabell 3 er omtrent 15°C under, og at utløpstemperaturen er omkring 15°C høyere enn den middeltemperatur som er vist). (In the converter system that was used, there was a temperature increase of 30°C between inlet and outlet. It should therefore be noted that the inlet temperature for the experiments in table 3 is approximately 15°C lower, and that the outlet temperature is around 15° C higher than the mean temperature shown).

Når romhastigheten ble øket med omkring 50% til When the space velocity was increased by about 50% more

50 000 time"''" over den største katalysatoren, øket produks jons-hastigheten av metanol i det samme forhold, som viser at over begge katalysatorer var det nådd en god tilnærmelse til likevekt. 50,000 hours"''" over the largest catalyst, the production rate of methanol increased in the same ratio, showing that over both catalysts a good approximation to equilibrium had been reached.

Da 5,4 x 3,6 mm katalysatoren arbeidet kontinuerlig iThen the 5.4 x 3.6 mm catalyst worked continuously in

68 dager, tapte den sin aktivitet bare meget langsomt og med en 68 days, it lost its activity only very slowly and by a

hastighet av høyst 2-3% pr. måned.speed of no more than 2-3% per month.

I andre forsøk ble det ved bruk av samme katalysator funnet at karbondioksyd/karbonmonoksyd-forholdet kunne varieres betraktelig med meget små følger, bortsett fra å forandre vann-innholdet i råproduktets metanol. Innholdet av organiske forurensninger i metanolråproduktet ble funnet å være meget lavere enn i metanolråproduktet fremstillet ved høyere trykk og temperaturer. Således var f.eks. ved en gjennomsnittlig konvertertempe-ratur på 242°C og en romhastighet på 9600 time 1, innholdet av organiske forurensninger mindre enn 500 dpm, og ved den noe høye-re temperatur (250°C) og lavere romhastighet (5000time "*") var innholdet av organiske forurensninger fremdeles mindre enn 2000 dpm. In other experiments, using the same catalyst, it was found that the carbon dioxide/carbon monoxide ratio could be varied considerably with very little consequence, apart from changing the water content in the crude product's methanol. The content of organic contaminants in the methanol raw product was found to be much lower than in the methanol raw product produced at higher pressures and temperatures. Thus, e.g. at an average converter temperature of 242°C and a space velocity of 9600 h 1 , the content of organic pollutants less than 500 dpm, and at the somewhat higher temperature (250°C) and lower space velocity (5000 h "*") was the content of organic pollutants still less than 2000 dpm.

Claims (1)

Fremgangsmåte for kontinuerlig fremstilling av metanol med meget lite innhold av organiske forurensninger ved å la karbonmonoksyd eller karbondioksyd eller begge reagere med hydrogen ved et trykk i området 10-150 atmosfærer og ved en temperatur i området 160-300°C i nærvær av en katalysator som inneholder oksydene av kobber og sink og minst ett annet metall som er fra gruppene II til IV i det periodiske system og hvis oksyd er vanskelig reduserbart, karakterisert ved at det anvendes en katalysator hvor kobberinnholdet i katalysatoren er minst 20% og fortrinnsvis mer enn 35%, og sinkinnholdet er mindre enn 70%, spesielt mellom 15 og 50%, og hvor det tredje metall er aluminium i en mengde av minst 4%, samtlige prosentangivelser basert på atomprosent av de aktuelle metaller i katalysatoren, og den volum-romhastighet som prosessen utføres ved er høyere enn 5000 time- , basert på et trykk svarende til én atmosfære absolutt og temperatur 20°C.Process for the continuous production of methanol with a very low content of organic impurities by allowing carbon monoxide or carbon dioxide or both to react with hydrogen at a pressure in the range of 10-150 atmospheres and at a temperature in the range of 160-300°C in the presence of a catalyst which contains the oxides of copper and zinc and at least one other metal which is from groups II to IV in the periodic table and whose oxide is difficult to reduce, characterized in that a catalyst is used where the copper content in the catalyst is at least 20% and preferably more than 35% , and the zinc content is less than 70%, especially between 15 and 50%, and where the third metal is aluminum in an amount of at least 4%, all percentages based on the atomic percentage of the relevant metals in the catalyst, and the volume-space velocity that the process is carried out at is higher than 5000 hour-, based on a pressure corresponding to one atmosphere absolute and temperature 20°C.
NO66164328A 1965-08-18 1966-08-16 NO124160B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB3536865 1965-08-18
GB41002/65A GB1159035A (en) 1965-08-18 1965-09-27 Methanol Synthesis.

Publications (1)

Publication Number Publication Date
NO124160B true NO124160B (en) 1972-03-13

Family

ID=26262693

Family Applications (1)

Application Number Title Priority Date Filing Date
NO66164328A NO124160B (en) 1965-08-18 1966-08-16

Country Status (6)

Country Link
AT (1) AT281777B (en)
BE (1) BE685706A (en)
DE (1) DE1568864C3 (en)
ES (1) ES330359A1 (en)
GB (1) GB1159035A (en)
NO (1) NO124160B (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448161A (en) * 1968-02-12 1969-06-03 Dow Chemical Co Alkylation process
BE743652A (en) * 1968-12-26 1970-05-28
DE2013297B2 (en) * 1970-03-20 1973-10-25 Metallgesellschaft Ag, 6000 Frankfurt Process for utilizing the heat of reaction in the production of methanol
DE2153437B2 (en) * 1971-10-27 1974-11-21 Metallgesellschaft Ag, 6000 Frankfurt Reactor for the production of methanol
US4203915A (en) * 1976-01-29 1980-05-20 Metallgesellschaft Process of producing methanol
US4107089A (en) * 1977-03-14 1978-08-15 Petr Grigorievich Bondar Catalyst for the synthesis of methanol and method for preparing same
JPS54138509A (en) * 1978-04-18 1979-10-27 Toyo Engineering Corp Methanol manufacture
US4593015A (en) * 1978-05-15 1986-06-03 The Standard Oil Company Catalyst for the preparation of alcohols from synthesis gas
US4609678A (en) * 1978-05-15 1986-09-02 The Standard Oil Company Preparation of alcohols from synthesis gas
CA1136114A (en) * 1978-05-15 1982-11-23 Harley F. Hardman Preparation of alcohols from synthesis gas
US4668656A (en) * 1978-05-15 1987-05-26 The Standard Oil Company Catalyst for the preparation of alcohols from synthesis gas
US4540713A (en) * 1978-05-15 1985-09-10 The Standard Oil Company Preparation of alcohols from synthesis gas
DE2846614C3 (en) * 1978-10-26 1982-05-19 Basf Ag, 6700 Ludwigshafen Process for the production of methanol
EP0011404B1 (en) * 1978-11-10 1982-12-29 Imperial Chemical Industries Plc Integrated process for synthesis of methanol and of ammonia
JPS55106543A (en) 1979-02-10 1980-08-15 Mitsubishi Gas Chem Co Inc Preparation of catalyst for synthesizing methanol
US4226795A (en) * 1979-05-04 1980-10-07 E. I. Du Pont De Nemours And Company Purge gas in methanol synthesis
US4279781A (en) * 1979-10-09 1981-07-21 United Catalysts Inc. Catalyst for the synthesis of methanol
JPS5910256B2 (en) * 1979-11-12 1984-03-07 三菱瓦斯化学株式会社 Manufacturing method of methanol synthesis catalyst
IT1148864B (en) * 1980-05-16 1986-12-03 Snam Progetti PROCESS FOR THE PRODUCTION OF A MIXTURE OF METHANOL AND HIGHER ALCOHOLS FUEL DEGREE
IT1140947B (en) * 1980-05-16 1986-10-10 Snam Progetti PROCESS FOR THE PRODUCTION OF A MIXTURE OF METHANOL AND HIGHER ALCOHOL "FUEL DEGREE"
FR2494682A1 (en) * 1980-11-25 1982-05-28 Inst Francais Du Petrole PROCESS FOR IMPLEMENTING VERY EXOTHERMIC REACTIONS
EP0117944B1 (en) * 1982-12-13 1990-06-20 Imperial Chemical Industries Plc Methanol synthesis and catalyst therefor
DE3318855A1 (en) * 1983-05-25 1984-11-29 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING METHANOL
DE3403492A1 (en) * 1984-02-02 1985-08-08 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PRODUCING A MIXTURE OF METHANOL AND HIGHER ALCOHOLS
GB8521650D0 (en) * 1985-08-30 1985-10-02 Ici Plc Catalyst
US4943551A (en) * 1985-11-08 1990-07-24 Union Carbide Chemicals And Plastics Company, Inc. Catalyst for synthesis of mixtures of methanol and higher alcohols
US4876402A (en) * 1986-11-03 1989-10-24 Union Carbide Chemicals And Plastics Company Inc. Improved aldehyde hydrogenation process
US4762817A (en) * 1986-11-03 1988-08-09 Union Carbide Corporation Aldehyde hydrogenation catalyst
US4935395A (en) * 1986-12-19 1990-06-19 Associated Universities, Inc. Homogeneous catalyst formulations for methanol production
US5079267A (en) * 1989-09-16 1992-01-07 Xytel Technologies Partnership Methanol production
US5266281A (en) * 1989-09-16 1993-11-30 Xytel Technologies Partnership Catalytic reactor
DE69123432D1 (en) * 1990-09-18 1997-01-16 Csir Catalyst for methanol synthesis
DE4127318A1 (en) * 1991-08-17 1993-02-18 Hoechst Ag CATALYSTS CONTAINING COPPER ZINC OXIDE ALUMINUM
US5254596A (en) * 1992-09-15 1993-10-19 Eastman Kodak Company Process for the manufacture of methanol and dimethyl ether
DK169696B1 (en) * 1992-12-07 1995-01-16 Topsoe Haldor As Process for cooling synthesis gas in a catalytic reactor
DE4416425A1 (en) * 1994-05-10 1995-11-16 Metallgesellschaft Ag Process for the production of methanol
DE69808983T2 (en) * 1997-03-31 2003-08-07 Agency Ind Science Techn Methanol synthesis and reforming catalyst consisting of copper, zinc and aluminum
AU2007257434B2 (en) 2006-05-30 2010-08-26 Starchem Technologies, Inc. Methanol production process and system
US8623927B2 (en) 2008-07-24 2014-01-07 Hyundai Heavy Industries Co., Ltd. Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
KR101068995B1 (en) * 2008-12-08 2011-09-30 현대중공업 주식회사 Preparation method of methanol through synthesis gas derived from the combined reforming of methane gas with mixture of steam and carbon dioxide
GB0910364D0 (en) 2009-06-17 2009-07-29 Johnson Matthey Plc Carbon oxides conversion process
GB0910366D0 (en) 2009-06-17 2009-07-29 Johnson Matthey Plc Methanol synthesis process
MY162750A (en) * 2009-10-23 2017-07-14 Mitsubishi Gas Chemical Co Methanol synthesis catalyst
DE102011086451A1 (en) 2011-11-16 2013-05-16 Süd-Chemie Ip Gmbh & Co. Kg METHANOL SYNTHESIS CATALYST BASED ON COPPER, ZINC AND ALUMINUM
EP2628538A1 (en) 2012-02-17 2013-08-21 Total Raffinage Chimie Process for manufacturing a methanol synthesis catalyst
WO2013165655A1 (en) 2012-05-03 2013-11-07 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process
DE102013225724A1 (en) 2013-12-12 2015-06-18 Evonik Industries Ag Purification of liquid hydrocarbon streams by means of a copper-containing sorbent
EP3023131A1 (en) 2014-11-18 2016-05-25 Evonik Degussa GmbH Two stage fine desulphurisation of olefin mixtures
SG10201604013RA (en) 2015-05-28 2016-12-29 Evonik Degussa Gmbh Hydrogen-assisted adsorption of sulphur compounds from olefin mixtures
WO2017118573A1 (en) 2016-01-07 2017-07-13 Total Research & Technology Feluy Process for methanol synthesis using an indium oxide based catalyst
EP3400098B1 (en) 2016-01-07 2019-12-04 Total Raffinage Chimie Supported indium oxide catalyst and process for methanol synthesis using the same
AU2021382100A1 (en) 2020-11-17 2023-06-01 Totalenergies Onetech Process for methanol synthesis from co2-rich syngas
ES2914350B2 (en) * 2020-12-09 2023-01-30 Blueplasma Power S L DEVICE AND PROCESS TO PRODUCE DIMETHYL CARBONATE

Also Published As

Publication number Publication date
BE685706A (en) 1967-02-20
DE1568864A1 (en) 1970-07-16
AT281777B (en) 1970-06-10
GB1159035A (en) 1969-07-23
DE1568864C3 (en) 1979-12-20
ES330359A1 (en) 1967-09-01
DE1568864B2 (en) 1973-08-23

Similar Documents

Publication Publication Date Title
NO124160B (en)
US3850850A (en) Method of making a methanol synthesis catalyst
NO126254B (en)
KR101529906B1 (en) Process for operating hts reactor
US3303001A (en) Low temperature shift reaction involving a zinc oxide-copper catalyst
US3388972A (en) Low temperature shift reaction catalysts and methods for their preparation
NO154188B (en) REVERSION DEVICE FOR MARINE POWER UNIT.
US2767202A (en) Catalytic hydrogenation of carbon monoxides
NO318645B1 (en) Process for hydro-switching of dimethyl ether and energy generation
US4590176A (en) Catalyst for dimethyl ether synthesis and a process for its preparation
US3387942A (en) Production of hydrogen
US3897471A (en) Process for producing methanol
US4235799A (en) Production of methanol
AU713494B2 (en) Production of synthesis gas from hydrocarbonaceous feedstock
US2787628A (en) Reaction of carbon monoxide with hydrogen to form alcohols
KR101447682B1 (en) Catalyst for synthesis of methanol from syngas and preparation method thereof
CA1048482A (en) Methanation catalyst
US3947381A (en) Method of making a catalyst
CA1098316A (en) Process of producing town gas from methanol
EP0324618B1 (en) Catalyst composition for decomposition of methanol
JPH0977501A (en) Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials
US3507811A (en) Catalyst for the reaction of hydrocarbons with steam
NO164328B (en) PROCEDURE FOR SHUTTING OF REPLACEMENT FOR ELECTRICAL CABLES.
JPH06122501A (en) Method for producing hydrogen and catalyst used therefor
JPS63256136A (en) Methanol reforming catalyst