NO123432B - - Google Patents

Download PDF

Info

Publication number
NO123432B
NO123432B NO3081/68A NO308168A NO123432B NO 123432 B NO123432 B NO 123432B NO 3081/68 A NO3081/68 A NO 3081/68A NO 308168 A NO308168 A NO 308168A NO 123432 B NO123432 B NO 123432B
Authority
NO
Norway
Prior art keywords
sample
iron
stop
temperature
carbon equivalent
Prior art date
Application number
NO3081/68A
Other languages
Norwegian (no)
Inventor
T Muff
W Bourke
S Harris
Original Assignee
Harris Muff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Muff filed Critical Harris Muff
Publication of NO123432B publication Critical patent/NO123432B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S73/00Measuring and testing
    • Y10S73/09Molten metal samplers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

Fremgangsmåte til fremkalling av en innledende termisk Method of developing an initial thermal

stans i avkjølingskurven for hypereutektisk støpejern. stop in the cooling curve for hypereutectic cast iron.

Foreliggende oppfinnelse vedrorer en fremgangsmåte til fremkalling av en innledende termisk stans i avkjolingskurven for et hypereutektisk stopejern, for således å kunne bestemme jernets karbonekvivalent i smeltet tilstand for behandling og/eller de mekaniske og fysiske egenskaper hos jernet. The present invention relates to a method for inducing an initial thermal stop in the cooling curve for a hypereutectic stop iron, so as to be able to determine the carbon equivalent of the iron in the molten state for treatment and/or the mechanical and physical properties of the iron.

Bestemmelsen av karbonekvivalenten ved pyrometri er basert på noyaktig måling av temperaturen ved den midlertidige temperaturstans som opptrer i en prove av smeltet stopejern når denne begynner å fryse. Karbonekvivalenten (CE) kan defineres som den totale prosent karbon pluss l/3 av den totale prosent silisium pluss l/3 av den totale prosent fosfor som inneholdes i en prove av stopejernet, basert på provens totalvekt. Under omhyggelig regulerte forhold kan man lett observere likvidus-temperaturen for hypoeutektisk stopejern, dvs. stopejern med karbonekvivalent på mindre enn 4•35 %• Den varme som frigis når austenit begynner å utfelle fremkaller et temperaturtrinn eller en midlertidig temperaturstans i kjolekurven. The determination of the carbon equivalent by pyrometry is based on accurate measurement of the temperature at the temporary temperature stop that occurs in a sample of molten stoping iron when it begins to freeze. The carbon equivalent (CE) can be defined as the total percent carbon plus l/3 of the total percent silicon plus l/3 of the total percent phosphorus contained in a sample of the stope iron, based on the sample's total weight. Under carefully controlled conditions, one can easily observe the liquidus temperature for hypoeutectic ductile iron, i.e. ductile iron with a carbon equivalent of less than 4•35%• The heat released when austenite begins to precipitate induces a temperature step or a temporary temperature stop in the dress curve.

Den temperatur hvor likvidus-temperaturstansen opptrer er direkte forbundet med metallets karbonekvivalent og påvirkes ikke noe vesent'lig av vanlige mengder mangan, krom, nikkel eller andre vanlige forurensende grunnstoffer. Når den bestemmes noyaktig, er måling av likvidus-temperaturplatået godt reproduserbart, og er ved praktisk stopeteknikk mye hurtigere og påliteligere enn kjemisk analyse. Fra et praktisk synspunkt er karbon- og silisiuminnholdet de to hoved-variable i stopejernet, idet fosforinnholdet vanligvis er tilstede i så små mengder at fosforet er av relativt liten betydning for karbonekvivalenten. Silisiuminnholdet kan fastslås på basis av kokille-prover, og det blir derfor bare karboninnholdet som må bestemmes. The temperature at which the liquidus temperature stop occurs is directly related to the carbon equivalent of the metal and is not significantly affected by normal amounts of manganese, chromium, nickel or other common polluting elements. When determined accurately, measurement of the liquidus temperature plateau is highly reproducible, and in practical stopping techniques is much faster and more reliable than chemical analysis. From a practical point of view, the carbon and silicon content are the two main variables in the cast iron, as the phosphorus content is usually present in such small quantities that the phosphorus is of relatively little importance for the carbon equivalent. The silicon content can be determined on the basis of mold samples, and therefore only the carbon content needs to be determined.

Ved bestemmelse av karbonekvivalenten fra avkjolingskurven for en prove av støpejernet kan karboninnholdet beregnes ut fra dettes forhold til karbonekvivalenten. Med denne viten om karboninnholdet vil stoperiet for stopingen være klar over om stopejernsammensetningen oppfyller de onskede spesifikasjoner. When determining the carbon equivalent from the cooling curve for a sample of the cast iron, the carbon content can be calculated from its ratio to the carbon equivalent. With this knowledge of the carbon content, the stopper for the stopper will be aware of whether the stopper iron composition meets the desired specifications.

En egnet faseovergangsdetektor for bruk ved bestemmelse av karbonekvivalenten i smeltet stopejern er omtalt i US patent nr. A suitable phase transition detector for use in determining the carbon equivalent in molten pig iron is described in US patent no.

3 267 732. Karbonekvivalent-teknikken omfattende kjolekurveprover er også beskrevet i en artikkel med tittelen "'Carbon Equivalent in Sixty Seconds", som kom ut i mars 1962 i Modern Casting, side 37-39. I 3,267,732. The carbon equivalent technique involving dress curve samples is also described in an article entitled "'Carbon Equivalent in Sixty Seconds", which appeared in the March 1962 issue of Modern Casting, pages 37-39. IN

den artikkelen på side 38 er det pekt på at likvidusbruddet for hypereutektisk jern, dvs. jern med karbonekvivalent like stor eller storre enn ca. 4«35%> det eutektiske punkt, ikke er klart og tydelig nok til å kunne finnes med denne prove og at proven derfor er begrenset til hypereutektisk jern, dvs. jern med karbonekvivalent på under 4«3$« that article on page 38 points out that the liquidus fracture for hypereutectic iron, i.e. iron with a carbon equivalent equal to or greater than approx. 4«35%> the eutectic point, is not clear and distinct enough to be found with this sample and that the sample is therefore limited to hypereutectic iron, i.e. iron with a carbon equivalent of less than 4«3$«

Det har vært foreslått å utvide kjolekurveproven for bestemmelse av karbonekvivalenten for hypereutektisk stopejern ved hjelp av en teknikk som benytter fortynning av den hypereutektiske stopejernsprove med en kjent mengde stål med lavt karboninnhold, med påfolg<*>ende bestemmelse av karbonekvivalenten etter den vanlige metode med kjolekurver for hypereutektisk jern. Etter at karbonekvivalenten for blandingen av stålet og stopejernet er bestemt, tar man i betrakt-ning en korreksjon for å bestemme stopejernsprovens karbonekvivalent. Siden ståltilsetningen imidlertid ikke alltid smelter og blander seg med proven, reduseres ikke karbonekvivalenten så mye som den skulle og korreksjonen blir uriktig. Selv om anvendelsen av ståltråd med lavt karboninnhold i form av oppviklede spiraler som er rommelig for-delt i proven har forbedret fortynningsteknikkens pålitelighet, har den nøyaktighet som kreves ved omhyggelig fordeling av den fine jern-tråd i beholderen for å oppnå gode resultater, og ved bestemmelse av den riktige korreksjonsfaktor, gjort denne metode mindre tiltrekkende. It has been proposed to extend the dress curve test for the determination of the carbon equivalent of hypereutectic ductile iron by a technique which employs the dilution of the hypereutectic ductile iron sample with a known amount of low carbon steel, with subsequent determination of the carbon equivalent by the usual dress curve method for hypereutectic iron. After the carbon equivalent for the mixture of the steel and the stop iron has been determined, a correction is taken into account to determine the carbon equivalent of the stop iron sample. However, since the steel addition does not always melt and mix with the sample, the carbon equivalent is not reduced as much as it should be and the correction becomes incorrect. Although the use of low-carbon steel wire in the form of wound spirals spaced throughout the sample has improved the reliability of the dilution technique, the accuracy required by careful distribution of the fine iron wire in the container to obtain good results, and by determination of the correct correction factor, made this method less attractive.

Foreliggende oppfinnelse gjor det mulig å utstrekke karbon-ekvi valent-teknikken til hypereutektisk jern opp til den temperatur hvor fri grafitt dannes og flyter ut av det smeltede hypereutektiske stopejern når dette avkjoles, uten å måtte gripe til fortynnings-teknikk som forandrer karbonekvivalenten i stopejernsproven i forhold til smeiten. The present invention makes it possible to extend the carbon equivalent technique of hypereutectic iron up to the temperature where free graphite is formed and flows out of the molten hypereutectic stop iron when it cools, without having to resort to a dilution technique that changes the carbon equivalent in the stop iron sample in relation to the smelter.

Hypereutektisk stopejern danner stabil grafitt ved avkjoling fra smeltetemperaturen ned til storknetemperaturen for cementitt, via dannelse av ustabil jernkarbid som umiddelbart dekomponerer til jern og karbon (grafitt). Dette forårsaker innviklede varmevirkninger som resulterer i et dårlig midlertidig temperaturstansnivå i kjolekurven. Man har imidlertid funnet at når karbidet stabiliseres slik at fullstendig grafittdannelse forsinkes, oppnås enkel frysing av jernkarbid, hvilket gir en stans eller et platå i kjolekurven ved karbiddannelsestemperaturen på grunn av at jernkarbid har hoyere dannelsesvarme enn grafitt. Hypereutectic stope iron forms stable graphite on cooling from the melting temperature down to the solidification temperature for cementite, via the formation of unstable iron carbide which immediately decomposes into iron and carbon (graphite). This causes complex thermal effects that result in a poor temporary temperature standoff level in the dress curve. However, it has been found that when the carbide is stabilized so that complete graphite formation is delayed, simple freezing of iron carbide is achieved, which produces a stop or plateau in the dress curve at the carbide formation temperature due to iron carbide having a higher heat of formation than graphite.

Ifolge foreliggende oppfinnelse er det tilveiebragt en fremgangsmåte til fremkalling av en innledende termisk stans i avkjolingskurven for et hypereutektisk stopejern, hvor nevnte kurve oppnåes ved vesentlig kontinuerlig måling og plotting av temperaturen mens en stopejernsprove avkjoles fra smeltet til fast tilstand, kjennetegnet ved at det til proven av smeltet stopejern for noen vesentlig avkjoling derav, tilsettes en med hensyn til dens karbon-ekvi valent inert stabilisator, hvorved provens karbonekvivalent holdes uforandret fra smeltens karbonekvivalent, og hvorved stabilisatoren forsinker primær grafittdannelse under avkjoling av proven til dens storknetemperatur for å bevirke en stans i provens avkjolingskurve ved karbiddannelsestemperaturen. According to the present invention, a method is provided for inducing an initial thermal stop in the cooling curve for a hypereutectic stopping iron, where said curve is obtained by substantially continuous measurement and plotting of the temperature while a stopping iron sample is cooled from the molten to the solid state, characterized in that the sample of molten pig iron for any substantial cooling thereof, an inert stabilizer is added with respect to its carbon equivalent, whereby the carbon equivalent of the sample is kept unchanged from the carbon equivalent of the melt, and whereby the stabilizer delays primary graphite formation during cooling of the sample to its solidification temperature to effect a stop in proven's cooling curve at the carbide formation temperature.

Ved utforelse av oppfinnelsen kan man som stabilisator prinsippielt benytte ethvert materiale som har den egenskap at det forsinker primær-grafittdannelsen under avkjoling av en smeltet prove av det hypereutektiske stopejern til dens storknetemperatur, og er inert overfor karbonekvivalenten for den hypereutektiske stopejerns-smelte hvortil materialet settes (på den måten at materialet ikke forandrer provens karbonekvivalent fra smeiten). Vanligvis er stabilisatorer, som karakteriseres ved en hoy karbid-stabiliserende evne, lett opploselige i og dispergerbare i det smeltede jern, og vil gi et vedvarende klart temperaturplatå når jernkarbid-transformasjonen finner sted. In carrying out the invention, any material can in principle be used as a stabilizer which has the property that it delays primary graphite formation during cooling of a molten sample of the hypereutectic stop iron to its solidification temperature, and is inert to the carbon equivalent of the hypereutectic stop iron melt to which the material is added (in the way that the material does not change the sample's carbon equivalent from the smelting). Generally, stabilizers, which are characterized by a high carbide stabilizing ability, are readily soluble in and dispersible in the molten iron, and will provide a sustained clear temperature plateau when the iron carbide transformation takes place.

Stabilisatorer med ovenstående egenskaper er blant annet vismut, bor, cerium, bly, magnesium og tellur. Slike stabilisatorer behover ikke å tilsettes til den smeltede hypereutektiske stopejernsprove i elementær form, men kan tilsettes som en forbindelse eller i blandinger med andre stoffer som ikke forandrer stopejernprovens kar-bonekvi valent i forhold til smeltens. F.eks. kan bor tilsettes i form av ferrobor (FeB). Cerium kan tilsettes i form av misch-metall (en blanding av sjeldne jordmetaller, atomnummer 57 til 71, i metall-form). Magnesium kan tilsettes i form av kobbermagnesium (Cu-Mg) med et magnesiuminnhold på omkring 15 vektprosent. Forskjellige kombina-sjoner eller blandinger av nevnte tilsetningsstoffer har også vist seg gunstige for fremkalling av temperaturplatåer i avkjolingskurven for hypereutektisk stopejern. F.eks. har de nedenstående blandinger alle vist seg brukbare ved fremkalling av disse temperaturplatåer: en blanding av tellur, bor og mischmetall, en blanding av bor og mischmetall, en blanding av bly og mischmetall og en blanding av vismut og bor. Stabilizers with the above properties include bismuth, boron, cerium, lead, magnesium and tellurium. Such stabilizers do not need to be added to the molten hypereutectic pig iron sample in elemental form, but can be added as a compound or in mixtures with other substances that do not change the carbon equivalent of the pig iron sample in relation to that of the melt. E.g. boron can be added in the form of ferroboron (FeB). Cerium can be added in the form of misch metal (a mixture of rare earth metals, atomic numbers 57 to 71, in metal form). Magnesium can be added in the form of copper magnesium (Cu-Mg) with a magnesium content of around 15% by weight. Various combinations or mixtures of said additives have also proven beneficial for inducing temperature plateaus in the cooling curve for hypereutectic stoping iron. E.g. the following mixtures have all been found useful in inducing these temperature plateaus: a mixture of tellurium, boron and mixed metal, a mixture of boron and mixed metal, a mixture of lead and mixed metal and a mixture of bismuth and boron.

Som fagfolk vil forstå bor grafitterende materialer, dvs. stoffer som fremkaller grafittdannelse under avkjoling av hypereutektisk stopejern, unngås ved utforelse av oppfinnelsen. F.eks. er et materiale som ferrosilisium (FeSi) uegnet, siden denne forbindelse ikke bare fremkaller grafittering, men også forandrer stopejernprovens karbonekvivalent i forhold til smeltens. As those skilled in the art will understand, graphitizing materials, i.e. substances which induce graphite formation during cooling of hypereutectic ductile iron, should be avoided when carrying out the invention. E.g. is a material such as ferrosilicon (FeSi) unsuitable, since this compound not only induces graphitization, but also changes the carbon equivalent of the pig iron sample in relation to that of the melt.

Den mengde stabilisator som benyttes i henhold til oppfinnelsen kan variere innen vide grenser, og avhenger av den spesielle stabilisator som brukes, provens karboninnhold og mengde og type av de andre bestanddeler i den smeltede prove. Man kan oppnå tilfreds-stillende kurver med prover av stopejern som inneholder helt ned til 0.05 vektprosent stabilisator (basert på provens vekt). Fortrinnsvis brukes den minimale, nodvendige mengde for oppnåelse av onsket forsinkelse av primær grafittdannelse, med derav fSigende temperaturplatå i kjolekurven ved karbiddannelsestemperaturen. Selv om stabi-lisatormengder opp til 0.4 % med hell har vært brukt, foretrekkes The amount of stabilizer used according to the invention can vary within wide limits, and depends on the particular stabilizer used, the carbon content of the sample and the amount and type of the other components in the molten sample. Satisfactory curves can be obtained with samples of stoping iron that contain as little as 0.05 weight percent stabilizer (based on the weight of the sample). Preferably, the minimum necessary amount is used to achieve the desired delay of primary graphite formation, with consequent temperature plateau in the dress curve at the carbide formation temperature. Although stabilizer amounts up to 0.4% have been successfully used, it is preferred

vanligvis mindre mengder. usually smaller amounts.

Tilsetning av stabilisatorer til smeltet stopejernprover Addition of stabilizers to molten stop-iron samples

i henhold til oppfinnelsen kan skje på en hvilken som helst måte, forutsatt at den smeltede stopejernprovens temperatur ved stabilisa-tortilsetningen er tilstrekkelig hoy til å gi den onskede kjolekurve. F.eks. kan stabilisatoren tilsettes i form av små kuler, pellets, eller i finfordelt tilstand til den smeltede prove, umiddelbart etter at denne er heilt ut. Eventuelt kan stabilisatoren tilsettes til provetagerinnretningen for opphelling av proven. Andre fremgangs-måter for kombinering eller tilsetning av stabilisator til proven vil fremgå for fagfolk. according to the invention can take place in any way, provided that the temperature of the molten stop-iron sample at the time of the stabilizer addition is sufficiently high to give the desired dress curve. E.g. the stabilizer can be added in the form of small balls, pellets, or in a finely divided state to the molten sample, immediately after it has been completely exhausted. Optionally, the stabilizer can be added to the sampling device for pouring the sample. Other methods of combining or adding stabilizer to the sample will be apparent to those skilled in the art.

Andre trekk og fordeler ved oppfinnelsen samt en mer de-taljert beskrivelse folger nedenfor i forbindelse med de vedlagte tegninger. Other features and advantages of the invention as well as a more detailed description follow below in connection with the attached drawings.

Fig. 1 viser en avkjolingskurve for en prove av hypereutektisk stopejern oppnådd ved foreliggende oppfinnelse, Fig. 1 shows a cooling curve for a sample of hypereutectic stoping iron obtained by the present invention,

fig. 2 er et mikrofotografi i $ 00 gangers forstørrelse av mikrostrukturen som fremkalles på en picrol-etset prove med kjolekurve som på fig. 1, fig. 2 is a photomicrograph at $00 times magnification of the microstructure developed on a picrol-etched specimen with a dress curve as in FIG. 1,

fig. 3 viser kjolekurven for en prove av hypereutektisk stopejern med samme sammensetning som proven i eksempel 1, men ut-hellt på vanlig måte uten tilsetning. fig. 3 shows the wear curve for a sample of hypereutectic stoping iron with the same composition as the sample in example 1, but poured in the usual way without addition.

fig. 4 er et mikrofotografi av mikrostrukturen i $ 00 gangers forstorrelse av picrol-etset prove ifolge fig. 3>°g fig. 4 is a photomicrograph of the microstructure in $00 times magnification of the picrol-etched sample according to fig. 3>°g

fig. 5 er en kurve som viser forbindelsen mellom prosentvis karbonekvivalent hos hypereutektisk stopejern og temperaturplatået ved tilsetning av karbid-stabiliserende additiver i henhold til oppfinnelsen . fig. 5 is a curve showing the relationship between the percentage of carbon equivalent in hypereutectic stop iron and the temperature plateau when adding carbide-stabilizing additives according to the invention.

På fig. 1 er det vist en kjolekurve fra en prove av hypereutektisk stopejern oppnådd ved foreliggende oppfinnelse, ved å til-sette en stabilisator mens proven er i flytende tilstand, hvor stabilisatoren har evnen til å forsinke primær dannelse av grafitt under avkjoling av proven til frysetemperaturen. Den hypereutektiske stopejernprove hvor resultatene er gjengitt på fig. 1, hadde en sammensetning på 4-12 vektprosent karbon, 1.62 vektprosent silisium, og 0.076 vektprosent fosfor. Denne sammensetning ga en karbonekvivalent (CE) på /"CE = % C + 1/3 ( fS± + % ?Yf lik 4.69 %. In fig. 1 shows a wear curve from a sample of hypereutectic stoping iron obtained by the present invention, by adding a stabilizer while the sample is in a liquid state, where the stabilizer has the ability to delay primary formation of graphite during cooling of the sample to the freezing temperature. The hypereutectic ductile iron sample, the results of which are reproduced in fig. 1, had a composition of 4-12 weight percent carbon, 1.62 weight percent silicon, and 0.076 weight percent phosphorus. This composition gave a carbon equivalent (CE) of /"CE = % C + 1/3 ( fS± + % ?Yf equal to 4.69%.

Proven ble heilt ut i en faseforandringsdetektor av den type som er omtalt i nevnte US patent nr. 3 267 732. En slik detektor-innretning består av en liten kopp med et volum på omkring 150 ml eller mindre. Et termoelement av kromel-alumel-tråder stikker gjennom beholderveggen og har metallsammenloddingen fullstendig omgitt av proven når denne helles opp i koppen, og godt nedenfor eventuelt krympningssokk som dannes ved avkjoling. Termoelementet er forbundet med en egnet skriver som tegner provens kjolekurve etterhvert som temperaturen faller. Den elektriske forbindelse mellom detektorens termoelement og skriverens temperaturmålekrets foretas ved å plugge detektorens kontakter inn i de tilsvarende kontakter på et stativ som bærer detektoren i vertikal stilling for opptagelse av proven. The sample was poured into a phase change detector of the type described in said US patent no. 3,267,732. Such a detector device consists of a small cup with a volume of about 150 ml or less. A thermocouple of chromel-alumel wires protrudes through the container wall and has the metal solder completely surrounded by the sample when this is poured into the cup, and well below any shrinking sock that forms during cooling. The thermocouple is connected to a suitable printer which draws the sample's dress curve as the temperature falls. The electrical connection between the detector's thermocouple and the printer's temperature measurement circuit is made by plugging the detector's contacts into the corresponding contacts on a stand that carries the detector in a vertical position for recording the sample.

For oppnåelse av avkjolingskurven på fig. 1 ble cerium i form av en ett-grams perle av mischmetall innfort i koppen for den smeltede prove ble heilt opp i denne. Proven hadde en vekt på omkring 500 gram. Som ovenfor nevnt kan mengden av stabilisator variere innen et bredt område. F.eks. har man oppnådd gode kurver ved tilsetning av så lite som l/4 g mischmetall og opptil 2 g, til en 500 g smeltet prove av hypereutektisk stopejern inneholdende 4.. 2 % C og 1.5 % Si. To obtain the cooling curve in fig. 1, cerium in the form of a one-gram bead of mixed metal was introduced into the cup for the molten sample to be poured into. The sample had a weight of around 500 grams. As mentioned above, the amount of stabilizer can vary within a wide range. E.g. good curves have been obtained by adding as little as 1/4 g of misch metal and up to 2 g, to a 500 g molten sample of hypereutectic stop iron containing 4.. 2% C and 1.5% Si.

Man vil av fig. 1 se at når den smeltede prove av hypereutektisk stopejern ble heilt ut i koppen, beveget skriverens penn seg oppover fra punkt A til punkt B, inntil man nådde temperaturen som hersket i midten av proven. Fra dette punkt begynte skriveren å tegne kjolekurven. Likvidus-temperaturplatået kom til syne som et vertikalt stykke angitt ved C på kurven, hvor temperaturen er 1205°C. Platåtemperaturen nås normalt etter ca. 20 - 40 sekunder, avhengig One wants from fig. 1 see that when the molten sample of hypereutectic stop-iron was poured into the cup, the pen of the writer moved upwards from point A to point B, until the temperature which prevailed in the center of the sample was reached. From this point the scribe began to draw the dress curve. The liquidus temperature plateau appeared as a vertical piece indicated at C on the curve, where the temperature is 1205°C. The plateau temperature is normally reached after approx. 20 - 40 seconds, depending

av overhetingen, og denne temperatur kan derpå overfores til karbonekvivalent ved å benytte forut bestemte data for prosent karbonekvivalent versus temperatur. En kurve basert på slike forut bestemte verdier er angitt på fig. 5« Fra denne kurve vil man se at proven av hypereutektisk stopejern med platåtemperatur på 1205°C, har en karbonekvivalent på 4-7 Dette ligger tett opp til karbonekvivalenten på 4-69 % funnet ved kjemisk analyse av proven. of the superheat, and this temperature can then be converted to carbon equivalent by using predetermined data for percent carbon equivalent versus temperature. A curve based on such predetermined values is shown in fig. 5« From this curve you will see that the sample of hypereutectic ductile iron with a plateau temperature of 1205°C has a carbon equivalent of 4-7 This is close to the carbon equivalent of 4-69% found by chemical analysis of the sample.

Fig. 2 er et mikrofotografi av mikrostrukturen hos picrol-etset prove av hypereutektisk stopejern med avkjolingskurve som vist på fig. 1. Mikrostrukturen vist på fig. 2 er forstorret 500 ganger. Fig. 2 is a photomicrograph of the microstructure of the picrol-etched sample of hypereutectic ductile iron with a cooling curve as shown in fig. 1. The microstructure shown in fig. 2 is magnified 500 times.

På fig. 3 er vist en avkjolingskurve av hypereutektisk stopejern med samme sammensetning og heilt ut fra samme stopeskje som proven på fig. 1, men heilt opp i karbonekvivalentdetektorkoppen uten tilsetning av stabilisator. Denne prove ble heilt opp samtidig med proven på fig. 1, men avkjolingskurven som man fikk fra proven ikke inneholdende stabilisator, vist på fig. 3, oppviste ikke det onskede temperaturplatå over den eutektiske temperaturstans. Man kunne således ikke finne karbonekvivalenten ut fra kjolekurven på fig. 3, selv om denne prove var av det samme jern og derfor hadde samme kar-bonekvi valent og samme sammensetning som proven som ga resultatene på fig. 1. In fig. 3 shows a cooling curve of hypereutectic stoping iron with the same composition and entirely from the same stopping spoon as the sample in fig. 1, but completely up into the carbon equivalent detector cup without the addition of stabilizer. This sample was completed at the same time as the sample in fig. 1, but the cooling curve obtained from the sample not containing stabilizer, shown in fig. 3, did not exhibit the desired temperature plateau above the eutectic temperature stop. One could therefore not find the carbon equivalent from the dress curve in fig. 3, although this sample was of the same iron and therefore had the same car-bone equivalent and the same composition as the sample which gave the results in fig. 1.

På fig. 4 er det vist et mikrofotografi av mikrostrukturen for den picrol-etsede prove av det hypereutektiske stopejern brukt til fremstilling av avkjolingskurven på fig. 3> Mikrostrukturen er forstorret 500 ganger. De ormlignende partier er grafittflak og er lange og massive på fig. 4 sammenlignet med de korte og fine grafittflak på fig. 2, hvilket påviser virkningen av mischmetall-additivet ved inhibering eller forsinkelse av dannelse og/eller vekst for gra-fitten under avkjoling av proven til frysetemperatur. In fig. 4 shows a photomicrograph of the microstructure of the picrol-etched sample of the hypereutectic stop iron used to produce the cooling curve in fig. 3> The microstructure is magnified 500 times. The worm-like parts are graphite flakes and are long and massive in fig. 4 compared to the short and fine graphite flakes in fig. 2, which demonstrates the effect of the mixed metal additive by inhibiting or delaying the formation and/or growth of the graphite during cooling of the sample to freezing temperature.

Et temperaturplatå i avkjolingskurven for en prove av hypereutektisk stopejern, som angitt ved C på fig. 1, kan fremkalles med flere stabiliserende tilsetningsstoffer som har den egenskap at de forsinker primær grafittdannelse under avkjoling av proven til frysetemperatur. Man har brukt forskjellige stabilisatorer for å frem-kalle temperaturnivåer i prover av hypereutektisk stopejern med prosentvis karbonekvivalent mellom det eutektiske punkt ved 4'35 % °PP til ca. 4«95 %• De prosentvise karbonekvivalenter i disse forskjellige prover ble bestemt fra kjemisk analyse. Ved å sette opp platåtemperaturene mot prosentvis karbonekvivalent i provene, fikk man kurven på fig. 5»A temperature plateau in the cooling curve for a sample of hypereutectic ductile iron, as indicated by C in fig. 1, can be induced with several stabilizing additives which have the property of delaying primary graphite formation during cooling of the sample to freezing temperature. Different stabilizers have been used to induce temperature levels in samples of hypereutectic pig iron with percentage carbon equivalent between the eutectic point at 4.35% °PP to approx. 4«95%• The percentage carbon equivalents in these various samples were determined from chemical analysis. By plotting the plateau temperatures against the percentage of carbon equivalent in the sample, the curve in fig. 5"

Den folgende tabell viser karbonekvivalenten for hypereutektisk stopejern bestemt ut fra korrelasjonsverdiene på fig. 5 °S ved hjelp av karbidstabiliserende tilsetningsstoffer, sammenlignet med prosentvis karbonekvivalent bestemt ved kjemisk analyse. The following table shows the carbon equivalent for hypereutectic ductile iron determined from the correlation values on fig. 5 °S using carbide stabilizing additives, compared to percentage carbon equivalent determined by chemical analysis.

Man vil se at sammenligning mellom prosent karbonekvivalent bestemt fra platåtemperaturene, fremkalt i hypereutektisk stopejern oppnådd ved foreliggende oppfinnelse, ligger godt innenfor brukbare grenser. I virkeligheten har man funnet at denne metode for bestemmelse av prosent karbonekvivalent er påliteligere enn kjemisk analyse, idet kjemiske analyser av samme prover stopejern ofte vil variere fra et laboratorium til et annet. It will be seen that comparison between percent carbon equivalent determined from the plateau temperatures, induced in hypereutectic stop iron obtained by the present invention, is well within usable limits. In reality, this method of determining percent carbon equivalent has been found to be more reliable than chemical analysis, as chemical analyzes of the same sample of ductile iron will often vary from one laboratory to another.

Selv om det er angitt anvendelse av faseforandringsdetektor av en type som angitt i nevnte US patent nr. 3 267 732 i sammenheng med foreliggende oppfinnelse, skal man forstå at det kan brukes en hvilken som helst egnet type faseforandringsdetektor. Slike detek-torinnretninger består vanligvis av en kopp som er åpen overst for opptak av smeltet stopejernprove og med temperaturfolere som stikker inn i koppen og vil befinne seg under provens overflate, slik at den kan fole temperaturforandringen i proven etterhvert som den avkjoles. Temperaturfolerne kan være av en hvilken som helst egnet type, men består fortrinnsvis av et termoelement sammensatt av egnede materialer, avhengig av de temperaturer som skal behandles. Andre egnede karbonekvivalentdetektorer er angitt i US patent nr. 3 321 973, britisk patent nr. 944 302 og i artikkelen av februar 1962 fra "Modem Castings" med tittel "Gray Cast Iron Control By Cooling Curve Techniques", sidene 91 til 98'Although the use of a phase change detector of a type as stated in said US patent no. 3,267,732 in connection with the present invention has been indicated, it should be understood that any suitable type of phase change detector can be used. Such detector devices usually consist of a cup which is open at the top to receive a molten stop-iron sample and with temperature sensors that stick into the cup and will be located below the surface of the sample, so that it can sense the temperature change in the sample as it cools. The temperature foils can be of any suitable type, but preferably consist of a thermocouple composed of suitable materials, depending on the temperatures to be treated. Other suitable carbon equivalent detectors are disclosed in US Patent No. 3,321,973, British Patent No. 944,302 and in the February 1962 article from "Modem Castings" entitled "Gray Cast Iron Control By Cooling Curve Techniques", pages 91 to 98'

Claims (3)

1. Fremgangsmåte til fremkalling av en innledende termisk stans i avkjolingskurven for et hypereutektisk stopejern, hvor nevnte kurve oppnås ved vesentlig kontinuerlig måling og plotting av temperaturen mens en stopejernprove avkjoles fra smeltet til fast tilstand, karakterisert ved at det til proven av smeltet stopejern for noen vesentlig avkjoling derav, tilsettes en med hensyn til dens karbonekvivalent inert stabilisator, hvorved provens karbonekvivalent holdes uforandret fra smeltens karbonekvivalent, og hvorved stabilisatoren forsinker primær grafittdannelse under avkjoling av proven til dens storknetemperatur for å bevirke en stans i provens avkjolingskurve ved karbiddannelsestemperaturen.1. Method for inducing an initial thermal stop in the cooling curve for a hypereutectic stop iron, where said curve is obtained by substantially continuous measurement and plotting of the temperature while a stop iron sample is cooled from the molten to a solid state, characterized in that the sample of molten stop iron for some substantial cooling thereof, an inert stabilizer is added with respect to its carbon equivalent, whereby the carbon equivalent of the sample is kept unchanged from the carbon equivalent of the melt, and whereby the stabilizer delays primary graphite formation during cooling of the sample to its solidification temperature to effect a stop in the sample's cooling curve at the carbide formation temperature. 2. Fremgangsmåte ifolge krav 1, karakterisert ved at det som stabilisator anvendes vismut, bor, cerium, bly, magnesium, tellur eller et mischmetall.2. Method according to claim 1, characterized in that bismuth, boron, cerium, lead, magnesium, tellurium or a mixed metal is used as stabilizer. 3. , Fremgangsmåte ifolge krav 1, karakterisert ved at stabilisatoren påfores de indre overflater i en åpen stopeform, hvoretter den smeltede stopejernsprove helles i formen slik at tilsetningen finner sted under hellingen.3. Method according to claim 1, characterized in that the stabilizer is applied to the inner surfaces in an open stop mould, after which the molten stop iron sample is poured into the mold so that the addition takes place during pouring.
NO3081/68A 1967-08-07 1968-08-06 NO123432B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US65883867A 1967-08-07 1967-08-07

Publications (1)

Publication Number Publication Date
NO123432B true NO123432B (en) 1971-11-15

Family

ID=24642916

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3081/68A NO123432B (en) 1967-08-07 1968-08-06

Country Status (13)

Country Link
US (1) US3546921A (en)
JP (1) JPS5036199B1 (en)
BE (1) BE719176A (en)
CH (1) CH530002A (en)
DE (1) DE1798004C3 (en)
DK (1) DK143916C (en)
ES (1) ES356928A1 (en)
FI (1) FI49320C (en)
FR (1) FR1579162A (en)
GB (1) GB1221129A (en)
NL (1) NL145047B (en)
NO (1) NO123432B (en)
SE (1) SE342508B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824837A (en) * 1968-11-30 1974-07-23 Nippon Kokan Kk Method of rapidly determining the solidus line of molten steel
SE350606B (en) * 1970-04-27 1972-10-30 S Baeckerud
US3774441A (en) * 1971-05-06 1973-11-27 Edelstahl Kombinet Hennigsdorf Method and apparatus for the thermal analysis of metallic melts
JPS5325274B2 (en) * 1971-10-11 1978-07-26
LU68549A1 (en) * 1973-10-02 1975-06-16
US3891834A (en) * 1974-05-22 1975-06-24 Ford Motor Co Cooling curve computer
BE835749A (en) * 1975-11-20 1976-03-16 Electro Nite IMPROVED DEVICE FOR MEASURING SOLID TEMPERATURES OF CAST IRON, STEEL AND THIRD-PARTY
US4008604A (en) * 1976-04-07 1977-02-22 Deere & Company Determination of carbon analysis in irons
FR2380552A1 (en) * 1977-02-09 1978-09-08 Electro Nite Sampling nodular or vermicular cast iron - by cooling curve or emission spectrometry after addn. of tellurium and a magnesium and/or cerium binding agent
DE2739159C3 (en) * 1976-09-09 1980-03-13 Electro-Nite, N.V., Houthalen (Belgien) Process for the preparation of samples of spherulitic or worm line-shaped cast iron
DE3006281C2 (en) * 1980-02-20 1981-09-24 Electro-Nite, N.V., Houthalen Procedure for taking samples from molten pig iron
US4274284A (en) * 1980-04-14 1981-06-23 Leeds & Northrup Company Expandable phase change detector device
US4515485A (en) * 1983-01-21 1985-05-07 Electro-Nite Co. Molten metal sample cup
GB8802619D0 (en) * 1988-02-05 1988-03-02 British Cast Iron Res Ass Method of determining magnesium content of magnesium-treated cast iron
US5057149A (en) * 1990-01-05 1991-10-15 Electronite International, N.V. Method and apparatus for introducing uniform quantities of a material into a metallurgical sample
WO1991018285A1 (en) * 1990-05-16 1991-11-28 Metec Corporation Method of judging carbon equivalent, carbon content, and silicon content of cast iron and estimating physical and mechanical properties thereof, and cooling curve measuring cup used for said method
SE469712B (en) * 1990-10-15 1993-08-30 Sintercast Ltd PROCEDURES FOR PREPARING THE IRON WITH COMPACT GRAPHITE
US5503475A (en) * 1992-10-23 1996-04-02 Metec Corporation Method for determining the carbon equivalent, carbon content and silicon content of molten cast iron
US5447080A (en) * 1993-05-26 1995-09-05 Midwest Instrument Co., Inc. Additive for molten metal sampler
US5948350A (en) * 1998-02-11 1999-09-07 Midwest Instrument Co., Inc. Device for dispensing additive in molten metal sample mold
US6155122A (en) * 1998-04-07 2000-12-05 Midwest Instruments Co., Inc. Additive for molten metal sampler
JPH11304736A (en) * 1998-04-23 1999-11-05 Nippon Saburansu Probe Engineering:Kk Method for improving thermal analysis of spherical graphite cast iron
US20100000303A1 (en) * 2006-09-29 2010-01-07 Anant Kashinath Kakatkar Apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
DE102011055950B4 (en) 2011-12-01 2020-03-26 Fritz Winter Eisengiesserei Gmbh & Co. Kg Sample crucible and method for thermal analysis of a casting melt sample
US10371686B2 (en) * 2012-11-15 2019-08-06 Heraeus EIectro-Nite International N.V. Detection device for molten metal
ES2856487T3 (en) * 2016-12-23 2021-09-27 Fund Azterlan Method for determining the carbon equivalent content of a cast iron alloy having a hypereutectic composition and equipment to do so

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375106A (en) * 1965-02-02 1968-03-26 American Standard Inc Determination of carbon equivalence of hypereutectic cast iron
US3415307A (en) * 1966-03-03 1968-12-10 United States Pipe Foundry Process for casting ductile iron

Also Published As

Publication number Publication date
FI49320C (en) 1975-05-12
NL6811188A (en) 1969-02-11
DK143916B (en) 1981-10-26
DE1798004A1 (en) 1972-03-02
NL145047B (en) 1975-02-17
CH530002A (en) 1972-10-31
GB1221129A (en) 1971-02-03
SE342508B (en) 1972-02-07
DE1798004C3 (en) 1974-11-21
JPS5036199B1 (en) 1975-11-21
FR1579162A (en) 1969-08-22
DE1798004B2 (en) 1974-04-18
ES356928A1 (en) 1970-02-16
US3546921A (en) 1970-12-15
BE719176A (en) 1969-01-16
FI49320B (en) 1975-01-31
DK143916C (en) 1982-04-13

Similar Documents

Publication Publication Date Title
NO123432B (en)
KR920000516B1 (en) Method for producing cast-iron and in particular cast-iron which contains vermicular graphite
US4261740A (en) Apparatus for analyzing nodular or vermicular cast iron samples
US5615730A (en) Methods for inspecting the content of structure modifying additives in molten cast iron and chilling tendency of flaky graphite cast iron
KR100218123B1 (en) Method for the production of compacted graphite cast iron
Henao et al. Phase Equilibria of “Cu 2 O”-“FeO”-CaO-MgO-Al 2 O 3 Slags at PO 2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production
TW201506373A (en) Sampler for molten iron
JPH08313464A (en) Method for determining properties of molten cast iron
Shevchenko et al. Experimental liquidus studies of the Pb-Cu-Si-O system in equilibrium with metallic Pb-Cu alloys
US4105191A (en) Crucible for the thermal analysis of aluminum alloys
US3375106A (en) Determination of carbon equivalence of hypereutectic cast iron
Liu et al. Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF 2-AlF 3-Al 2 O 3
Long et al. Structure evolution of slag films of ultrahigh-basicity mold flux during solidification
WO1999044022A1 (en) Device and process for thermal analysis of molten metals
KR100263511B1 (en) The determination of the carbon equivalent structure modified cast iron
WO1991018285A1 (en) Method of judging carbon equivalent, carbon content, and silicon content of cast iron and estimating physical and mechanical properties thereof, and cooling curve measuring cup used for said method
EP2067032B1 (en) An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
Saito et al. Influence of tellurium addition to spheroidal graphite cast iron on the number of graphite particles
Djurdjevic et al. Influence of different contents of Si and Cu on the solidification pathways of cast hypoeutectic Al-(5–9) Si-(1–4) Cu (wt.%) alloys
Ray Properties of Strontium-tin Alloys1
JP2638298B2 (en) A method for determining the carbon equivalent, carbon content and silicon content of cast iron, as well as predicting its physical and mechanical properties
Doepp et al. Contribution to the influence of chemical composition and cooling conditions on the eutectic solidification range of Fe–C–X-melts
US20040003648A1 (en) Determination of carbon and silicon contents in molten iron
Akhmetov et al. New slag-forming mixture for ladle treatment of steel
Okane et al. Interface temperature measurement of M2C and M6C eutectic carbides in the Fe–Mo–C system