DK143916B - PROCEDURE FOR THERMAL DETERMINATION OF THE CARBON EQUIVALENT OF OVERUTECTIC CASTLE - Google Patents

PROCEDURE FOR THERMAL DETERMINATION OF THE CARBON EQUIVALENT OF OVERUTECTIC CASTLE Download PDF

Info

Publication number
DK143916B
DK143916B DK380368AA DK380368A DK143916B DK 143916 B DK143916 B DK 143916B DK 380368A A DK380368A A DK 380368AA DK 380368 A DK380368 A DK 380368A DK 143916 B DK143916 B DK 143916B
Authority
DK
Denmark
Prior art keywords
sample
carbon equivalent
cast iron
temperature
carbon
Prior art date
Application number
DK380368AA
Other languages
Danish (da)
Other versions
DK143916C (en
Inventor
W T Bourke
S Harris
T C Muff
Original Assignee
Harris Muff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Muff filed Critical Harris Muff
Publication of DK143916B publication Critical patent/DK143916B/en
Application granted granted Critical
Publication of DK143916C publication Critical patent/DK143916C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S73/00Measuring and testing
    • Y10S73/09Molten metal samplers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Metallurgy (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

1439 161439 16

Opfindelsen angår en fremgangsmåde til termisk bestemmelse af hypereutektisk støbejerns carbonækvivalent ved afkøling af en prøve af det smeltede materiale og bestemmelse af liguidus-diskontinuiteten på afkølingskurven.The invention relates to a method for thermally determining the carbon equivalent of hypereutectic cast iron by cooling a sample of the molten material and determining the liguidus discontinuity on the cooling curve.

10 Princippet for carbonækvivalentbestemmelse ved pyrometri er baseret på den nøjagtige måling af den initiale eller smeltepunktskurvens termiske diskontinuitetstemperatur, som optræder i en prøve af smeltet støbejern, når den begynder at størkne. Carbonækvivalentet (CE) kan defineres som det samlede 15 procentiske carbonindhold plus en tredjedel af det samlede procentiske siliciumindhold plus en tredjedel af de samlede procentiske phosphorindhold i en støbejernsprøve, beregnet på prøvens samlede vægt. Under omhyggeligt kontrollerede og regulerede betingelser observeres smeltepunktstemperaturen 20 (liquidustemperaturen) for hypoeutektisk støbejern, dvs, støbe jern med et carbonækvi valent på mindre end 4,35%, let.. Varmen, som frigøres, når austenitudskillelsen starter, frembringer en isotermisk diskontinuitet på afkølingskurven.10 The principle of carbon equivalent determination by pyrometry is based on the exact measurement of the initial or melting point's thermal discontinuity temperature, which occurs in a sample of molten cast iron as it begins to solidify. The carbon equivalent (CE) can be defined as the total 15 percent carbon content plus one third of the total percent silicon content plus one third of the total percent phosphorus content in a cast iron sample, based on the total weight of the sample. Under carefully controlled and regulated conditions, the melting point temperature 20 (liquidus temperature) of hypoeutectic cast iron, i.e., cast iron with a carbon equivalent of less than 4.35%, is readily observed. .

Den temperatur, ved hvilken smeltepunktskurvens termiske dis-25 kontinuitet viser sig, afhænger direkte af metallets carbon-ækvivalent og påvirkes ikke nævneværdigt af normale mængder af mangan, chrom, nikkel eller andre almindeligt forekommende forureninger. Ved nøjagtig påvisning er målingen af smeltepunktkurvens termiske diskontinuitet fuldstændigt reprodu-30 cerbar, og denne metode er langt hurtigere og lettere at gennemføre end kemisk analyse i forbindelse med støbning i praksis. I praksis forholder det sig således, at carbon-og siliciumindholdet er de to hovedvariable i støbejern, da phosphorindholdet i almindelighed er så lavt, at det er rela-35 tivt ineffektivt for et vilkårligt givet carbonækvivalent. Siliciumindholdet kan bestemmes på basis af hærdnings for·*· søg, således at der alene er carbonindholdet tilbage at bestemme. Ved bestemmelse af carbonækvivalentet udfra en 143916 2 afkølingskurve for støbejernsprøven kan carbonindholdet 5 beregnes på grundlag af dets sammenhæng med carbonækviva-lentet. Med dette kendskab til carbonindholdet vil man ved en støbning før ihældningen vide, om støbejernsblandingen opfylder de krævede betingelser.The temperature at which the melting point's thermal discontinuity appears depends directly on the carbon equivalent of the metal and is not appreciably affected by normal amounts of manganese, chromium, nickel or other commonly found contaminants. With accurate detection, the measurement of the thermal discontinuity of the melting point curve is completely reproducible, and this method is far faster and easier to perform than chemical analysis in connection with casting in practice. In practice, the carbon and silicon content are the two main variables in cast iron, since the phosphorus content is generally so low that it is relatively ineffective for any given carbon equivalent. The silicon content can be determined on the basis of cure for search, leaving only the carbon content to determine. By determining the carbon equivalent from a cooling curve of the cast iron sample, the carbon content 5 can be calculated on the basis of its relationship to the carbon equivalent. With this knowledge of the carbon content, a cast before pouring will know whether the cast-iron mixture meets the required conditions.

En velegnet ekspanderbar faseændringsdetektoranordning til 10 brug ved bestemmelse af carbonækvivalentet for smeltet støbejern er omtalt i den amerikanske patentbeskrivelse nr.A suitable expandable phase change detector device for use in determining the carbon equivalent of molten cast iron is disclosed in U.S. Pat.

3.267.732. Carbonækvivalentteknikken omfattende afkølingskurveprøven er også beskrevet i en artikel med titlen "Carbon Equivalent in Sixty Seconds", som findes i martsudgaven fra I5 1962 af Modern Castings på side 37-39. I denne artikel understreges det på side 38, at smeltepunktskurvens knæk for hyper-eutektisk jern, dvs. jern med et carbonækvivalent, som er lig med eller større end ca. 4,35%, det eutektiske punkt, ikke er klart og bestemt nok til at kunne optegnes med denne 20 prøve, og prøven er derfor begrænset til hypoeutektisk jern, dvs. jern med et carbonækvivalent på mindre end 4,3%.3267732. The carbon equivalent technique comprising the cooling curve test is also described in an article entitled "Carbon Equivalent in Sixty Seconds", which is found in the March issue of I5 1962 by Modern Castings on pages 37-39. This article emphasizes on page 38 that the melting point curve crack for hyper-eutectic iron, i.e. iron having a carbon equivalent equal to or greater than ca. 4.35%, the eutectic point, is not clear and definite enough to record with this sample, and therefore the sample is limited to hypoeutectic iron, ie. iron with a carbon equivalent of less than 4.3%.

Det er blevet foreslået at udvide afkølingskurveprøven for carbonækvivalentbestemmelse af hypereutektisk støbejern ved anvendelse af en teknik, som omfatter fortyndingen af den p c hypereutektiske jernprøve med en kendt mængde stål med lavt carbonindhold og derpå bestemme carbonækvivalentet, som det sædvanligvis sker, med afkølingskurver for hypoeutektisk jern. Efter bestemmelse af carbonækvivalentet for blandingen af stål og støbejern indføres der en korrektion til bestemmelse ^ af carbonækvivalentet i støbejernsprøven. Da ståladditivet imidlertid ikke altid smelter og blandes med prøven, reduceres carbonækvivalentet ikke i fuldt omfang, og korrektionen er unøjagtig. Selv om anvendelsen af ståltråd med lavt carbonindhold i form af spiralfjedre rumligt fordelt i bærer-35 prøven har forbedret den foregående fortyndingstekniks pålidelighed, gør det denne metode mindre attraktiv, at det 143916 3 er nødvendigt at anbringe den fine tråd med nøjagtige mellemrum i beholderen for at opnå pålidelige resultater og at tilvejebringe den rigtige korrektionsfaktor.It has been proposed to extend the cooling curve sample for carbon equivalent determination of hypereutectic cast iron using a technique which comprises diluting the p c hypereutectic iron sample with a known amount of low carbon steel and then determining the carbon equivalent, as it usually does, with cooling supercool. After determining the carbon equivalent of the steel-cast iron mixture, a correction for determining the carbon equivalent of the cast iron sample is introduced. However, since the steel additive does not always melt and mix with the sample, the carbon equivalent is not fully reduced and the correction is inaccurate. Although the use of low carbon steel wire in the form of coil springs spatially distributed in the carrier sample has improved the reliability of the preceding dilution technique, it makes this method less attractive that it is necessary to place the fine wire at precise intervals in the container for to obtain reliable results and to provide the correct correction factor.

Den foreliggende opfindelse gør det muligt at anvende carbon-5 ækvivalentteknikken også til hypereutektisk jern op til kish-punktet, dvs. den temperatur, ved hvilken frit grafit dannes og udskilles af smeltet hypereutektisk støbejern, medes det afkøles, uden at gribe til en fortyndingsteknik, som ændrer støbejernsprøvens carbonaekvivalent fra smeltens.The present invention makes it possible to apply the carbon equivalent technique also to hypereutectic iron up to the kish point, i.e. the temperature at which free graphite is formed and secreted by molten hypereutectic cast is allowed to cool, without resorting to a dilution technique which alters the carbon equivalent of the cast iron sample from that of the melt.

10 Hypereutektisk støbejern har tilbøjelighed til at danne stabilt grafit, når der afkøles fra smelten til cementits størkningstemperatur, gennem dannelsen af ustabilt jernaarbid, som øjeblikkeligt dekomponeres til jern og carbon (grafit). Dette frembringer komplekse varmevirkninger, som resulterer i en 15 dårligt defineret diskontinuitet på afkølingskurven. Dette elimineres ved fremgangsmåden ifølge den foreliggende opfindelse , som er kendetegnet ved, at en carbidstabilisator tilsættes til den smeltede prøve, hvilken stabilisator retarderer primærgrafit-dannelsen under afkølingen af prøven 20 til dens størkningstemperatur og fremmer en diskontinuitet ved liquidus-temperaturen.Hypereutectic cast iron tends to form stable graphite as it cools from the melt to the solidification temperature of the cementite, through the formation of unstable iron ore which is immediately decomposed into iron and carbon (graphite). This produces complex heat effects which result in a poorly defined discontinuity on the cooling curve. This is eliminated by the process of the present invention, characterized in that a carbide stabilizer is added to the molten sample which retards the primary graphite formation during cooling of sample 20 to its solidification temperature and promotes a discontinuity at the liquidus temperature.

Alle stoffer, som er i stand til at retardere grafitdannelsen under afkøling af den hypereutektiske støbejernsprøve til 25 størkningstemperaturen heraf, og som ikke påvirker carbon- ækvivalentet for den hypereutektiske støbejernssmelte, hvormed den blandes (for såvidt at den ikke ændrer carbonækvi-valenten hos prøven fra smeltens) kan anvendes som stabilisator i forbindelse med den foreliggende opfindelse. Sta-50 bilisatorer, som udmærker sig ved en kraftig carbidstabili-serende virkning, er let opløselige i' og dispergerbare i den smeltede jernprøve og vil frembringe en ensartet pålidelig termisk diskontinuitetstemperatur, når jerncarbid-omdan-nelsen finder sted.All substances capable of retarding graphite formation upon cooling of the hypereutectic cast iron sample to its solidification temperature, and which do not affect the carbon equivalent of the hypereutectic cast iron melt with which it is mixed (so far as it does not change the carbon equivalent of the sample from melt) can be used as a stabilizer in connection with the present invention. Stabilizers which are characterized by a strong carbide stabilizing effect are readily soluble in and dispersible in the molten iron sample and will produce a uniformly reliable thermal discontinuity temperature when the iron carbide conversion takes place.

35 143916 435 143916 4

Stabilisatorer, som har den førnævnte egenskaber, er vismut, bor,cerium, bly,magnium og tellur. Sådanne stabilisatorer skal ikke nødvendigvis kombineres med den smeltede hyper-eutektiske støbejernsprøve i form af et grundstof, men kan 5 tilsættes i form af en forbindelse eller i blandinger med andre stoffer, som ikke ændrer støbejernsprøvens carbonækvi-valent fra smeltens. F.eks. kan bor tilsættes i form af fer-robor (FeB). Cerium kan tilsættes i form af misch-metal (en blanding af sjældne jordartsforbindelser, atomtal 57-71, i 10 metalform). Magnium kan tilsættes i form af kobber-magnium (Cu-Mg), idet magnium udgør ca. 15 vægt%. Forskellige kombinationer eller blandinger af de foregående additiver har også vist sig velegnede til frembringelse af initiale termiske diskontinuitetstemperaturer ved afkøling af prøver af hyper-15 eutektisk støbejern. Følgende blandinger har f.eks. alle tilvejebragt gunstige initiale termiske diskontinuitets-temperaturer: en blanding af tellur, bor og misch-metal; en.blanding af bor og misch-metal; en blanding af bly og misch-metal og en blanding af vismut og bor.Stabilizers having the aforementioned properties are bismuth, boron, cerium, lead, magnium and tellurium. Such stabilizers need not necessarily be combined with the molten hyper-eutectic cast iron sample in the form of an element, but may be added in the form of a compound or in mixtures with other substances which do not change the carbon equivalent of the cast iron sample from the melt. Eg. boron can be added in the form of ferro-robor (FeB). Cerium can be added in the form of misch metal (a mixture of rare earth compounds, atomic numbers 57-71, in 10 metal form). Magnesium can be added in the form of copper magnesium (Cu-Mg), with magnesium being approx. 15% by weight. Various combinations or mixtures of the foregoing additives have also been found to be suitable for generating initial thermal discontinuity temperatures by cooling samples of hyper-eutectic cast iron. The following mixtures have e.g. all provided favorable initial thermal discontinuity temperatures: a mixture of tellurium, boron and misch metal; a mixture of boron and misch metal; a mixture of lead and misch-metal and a mixture of bismuth and boron.

2Q Grafitfremkaldende stoffer, dvs. stoffer, som fremmer grafit dannelse under afkøling af den hypereutektiske støbejernsprøve, bør undgås i forbindelse med opfindelsen. F.eks. er et sådant stof som ferrosilicium (FeSi) uegnet, da det ikke alene bevirker grafitdannelse, men også ændrer støbejerns-25 prøvens carbonækvivalent fra smeltens.2Q Graphite-inducing substances, ie substances which promote graphite formation during the cooling of the hypereutectic cast iron sample should be avoided in connection with the invention. Eg. is such a substance as ferrosilicon (FeSi) unsuitable as it not only causes graphite formation but also changes the carbon equivalent of the cast iron sample from that of the melt.

Den i forbindelse med opfindelsen anvendte stabilisatormængde kan variere indenfor vide grænser afhængig af, hvilken stabilisator, der anvendes, prøvens carbonindhold og mængden og arten af andre bestanddele i den smeltede prøve.The amount of stabilizer used in the present invention may vary within wide limits depending on the stabilizer used, the carbon content of the sample and the amount and nature of other constituents of the molten sample.

30 Tilfredsstillende kurver kan opnås ved afkøling af prøver af støbej em indeholdende så lidt som 0,05 vægt% (beregnet på prøvens vægt) af stabilisatoren. Stabilisatormængden anvendes fortrinsvis i den minimale mængde, som er nødvendig til at opnå den ønskede retardering af primærgrafit-dannelse og 35 ledsagende diskontinuitet i afkølingskurven ved carbiddan- nelsestemperaturen. Selv om man med held har anvendt så store stabilisatormængder som 0,4%, foretrækkes mindre mængder i almindelighed.Satisfactory curves can be obtained by cooling samples of cast containing as little as 0.05% by weight (based on sample weight) of the stabilizer. The amount of stabilizer is preferably used in the minimum amount needed to achieve the desired retardation of primary graphite formation and accompanying discontinuity in the cooling curve at the carbide formation temperature. Although successfully stabilized amounts of as much as 0.4% have been used, smaller amounts are generally preferred.

5 1439165 143916

Tilsætningen af stabilisatorerne til smeltede støbejernsprøver ifølge opfindelsen kan gennemføres på enhver hensigtsmæssig måde, sålænge den smeltede prøves temperatur, på det tidspunkt stabilisatoren tilsættes, er tilstrækkeligt 5 høj til at muliggøre fremkomsten af den ønskede afkølingskurve. Stabilisatoren kan f.eks. tilsættes i pille- eller partikelform til den smeltede prøve umiddelbart efter, at prøven er blevet hældt op. Stabilisatoren kan alternativt tilsættes til beholderen, før den smeltede prøve tilføres.The addition of the stabilizers to molten cast iron samples according to the invention can be carried out in any convenient way, as long as the temperature of the molten sample, at the time the stabilizer is added, is sufficiently high to allow the desired cooling curve to emerge. The stabilizer can e.g. added in pill or particle form to the molten sample immediately after the sample has been poured. Alternatively, the stabilizer may be added to the container before the molten sample is applied.

10 Andre metoder til kombinering af stabilisatoren med prøven vil være indlysende for fagfolk.Other methods of combining the stabilizer with the sample will be apparent to those skilled in the art.

Den foreliggende opfindelse illustreres yderligere ved hjælp af følgende tegninger, hvor fig. 1 er en afkølingskurve for en hypereutektisk støbejerns-15 prøve frembragt i overensstemmelse med den foreliggende opfindelse, fig. 2 er et mikrofotografi af mikrostrukturen x500 af den picrolætsede prøve med den i fig. 1 viste afkølingskurve, fig. 3 er en afkølingskurve for en hypereutektisk støbejerns-20 prøve med samme sammensætning som prøven i fig. 1, men hældt på sædvanlig måde uden et additiv, fig. 4 er et mikrofotografi af mikrostrukturen x500 af den picrolætsede prøve fra fig. 3, og fig. 5 er en kurve, som viser sammenhængen mellem procentisk 25 carbonækvivalent for hypereutektisk støbejern og initial termisk diskontinuitetstemperatur under anvendelse af carbid-stabiliserende additiver ifølge den foreliggende opfindelse.The present invention is further illustrated by the following drawings, in which: 1 is a cooling curve for a hypereutectic cast iron sample produced in accordance with the present invention; FIG. 2 is a photomicrograph of the microstructure x500 of the picrolet sample using the one shown in FIG. 1, FIG. 3 is a cooling curve for a hypereutectic cast iron sample of the same composition as the sample of FIG. 1, but poured in the usual manner without an additive; 4 is a photomicrograph of the microstructure x500 of the picrolet sample of FIG. 3, and FIG. Figure 5 is a graph showing the relationship between percent carbon equivalent of hypereutectic cast iron and initial thermal discontinuity temperature using carbide stabilizing additives of the present invention.

Under henvisning til fig. 1 illustreres der en afkølingskurve for en hypereutektisk støbejernsprøve opnået ifølge den fore-30 liggende opfindelse ved, at prøven i flydende tilstand kombineres med en stabilisator, som er i stand til at retardere 6 1439 16 primærgrafit-dannelse under afkøling af prøven til størkningstemperaturen. Den hypereutektiske støbejernsprøve i fig. 1 havde en sammensætning på 4,12 vægt% carbon, 1,62 vægt% silicium og 0,076 vægt% phosphor. Denne sammensætning gav et 5 carbonækvivalent (CE) på 4,69% [CE = %C + 1/3 (%Si + %P)I.Referring to FIG. 1, a cooling curve of a hypereutectic cast iron sample obtained according to the present invention is illustrated by combining the sample in liquid state with a stabilizer capable of retarding primary graphite formation during cooling of the sample to the set temperature. The hypereutectic cast iron test of FIG. 1 had a composition of 4.12% by weight carbon, 1.62% by weight silicon and 0.076% by weight phosphorus. This composition gave a carbon equivalent (CE) of 4.69% [CE =% C + 1/3 (% Si +% P) I.

Prøven blev hældt i en faseændringsdetektorapparat af den i et førnævnte amerikanske patentskrift nr. 3.267.732 beskrevne type. Et sådant detektorapparat består af en lille skål med et rumfang på ca. 10 kubik-inch eller mindre. Et termoelement 10 af chromel-alumel-tråde er ført ud gennem skålens væg og er således udformet, at elementets varmeloddested er fuldstændigt omgivet af prøven, der er hældt i skålen, og nedenunder eventuelle hulrum, som er opstået på grund af afkøling.Termoelementet er forbundet til et hensigtsmæssigt kurveregistre-15 ringsapparat, der optegner afkølingskurven for prøven, efter hånden som temperaturen falder. Den elektriske forbindelse mellem detektorens termoelement og temperaturmålekredsløbet i registreringsapparatet er udført ved at indsætte detektorens kontakter i tilsvarende kontakter i et stativ, som er 20 indrettet til at bære detektoren i vandret stilling til op tagelse af prøven.The sample was poured into a phase change detector apparatus of the type described in the aforementioned U.S. Patent No. 3,267,732. Such a detector apparatus consists of a small bowl with a volume of approx. 10 cubic inches or less. A chromel-alumel wire thermocouple 10 is passed out through the wall of the bowl and is designed so that the element's heat point is completely enclosed by the sample poured into the bowl and underneath any cavities created by cooling. connected to an appropriate curve recording apparatus which records the cooling curve of the sample as the temperature drops. The electrical connection between the detector thermocouple and the temperature measuring circuit in the recording apparatus is made by inserting the detector contacts into corresponding contacts in a rack arranged to carry the detector in a horizontal position for recording the sample.

Ved opnåelse af afkølingskurven på fig. 1 blev cerium i form af en 1 g's tablet af misch-metal anbragt i skålen, før den smeltede prøve blev hældt deri. Prøven havde en vægt på ca.In obtaining the cooling curve of FIG. 1, cerium in the form of a 1 g misch metal tablet was placed in the bowl before the molten sample was poured therein. The sample had a weight of approx.

25 500 g. Som angivet ovenfor kan stabilisatormængden variere indenfor vide grænser. Der er f.eks. blevet frembragt tilfredsstillende kurver ved tilsætningen af så lidt som 1/4 g misch-metal og så meget som 2 g til en 500 g smeltet prøve af hypereutektisk støbejern indeholdende 4,2% C og 1,5% Si.As indicated above, the amount of stabilizer may vary within wide limits. There are e.g. have been produced satisfactory curves by the addition of as little as 1/4 g of misch metal and as much as 2 g to a 500 g molten sample of hypereutectic cast iron containing 4.2% C and 1.5% Si.

30 Under henvisning til fig. 1 kan det ses, at når den smeltede prøve af hypereutektisk støbejern blev hældt i skålen, bevægede registreringsapparatets pen sig opad fra punkt A til punkt B, indtil den virkelige temperatur i prøvens centrum var nået. På dette punkt startede registreringsapparatet med 35 at optegne afkølingsmønstret. Liquiduskurven eller den ini- 143916 7 tiale termiske diskontinuitetstemperatur viste sig som et lodret segment, som viste, at en sådan temperatur ved C på kurven var 2200°F. Den initiale termiske diskontinuitetstemperatur nås sædvanligvis på ca. 20-40 sekunder afhængig af over-5 hedning, og denne temperatur kan derpå omdannes til carbon-ækvivalent ved anvendelse af forudbestemte data for carbon-ækvivalentprocent kontra temperatur. En kurve baseret på sådanne forudbestemte data er vist i fig. 5. Fra denne kurve kan det ses, at en prøve af hypereutektisk støbejern med en 10 initial termisk diskontinuitetstemperatur på 2200°F har et carbonækvivalent på 4,7%. Dette svarer nøje til carbonækvi-valentet på 4,69%, som er resultatet af en kemisk analyse af prøven.30 Referring to FIG. 1, it can be seen that when the molten sample of hypereutectic cast iron was poured into the bowl, the pen of the recorder moved upward from point A to point B until the actual temperature at the center of the sample was reached. At this point, the recorder started with recording the cooling pattern. The liquid curve or initial thermal discontinuity temperature appeared as a vertical segment showing that such a temperature at C of the curve was 2200 ° F. The initial thermal discontinuity temperature is usually reached at approx. 20-40 seconds depending on superheat and this temperature can then be converted to carbon equivalent using predetermined carbon equivalent percent versus temperature data. A graph based on such predetermined data is shown in FIG. 5. From this curve, it can be seen that a sample of hypereutectic cast iron with a 10 initial thermal discontinuity temperature of 2200 ° F has a carbon equivalent of 4.7%. This corresponds exactly to the carbon equivalent of 4.69% which results from a chemical analysis of the sample.

Fig. 2 er et mikrofotograf! af mikrostrukturen af den picrol-15 ætsede prøve af hypereutektisk støbejern med den i fig. 1 viste afkølingskurve. Den i fig. 2 viste mikrostruktur er forstørret 500 gange.FIG. 2 is a photographer! of the microstructure of the picrol-15 etched sample of hypereutectic cast iron with that of FIG. 1 shows the cooling curve. The FIG. 2 microstructure is enlarged 500 times.

Under henvisning til fig. 3 kan det nævnes, at der her illustreres en afkølingskurve for en hypereutektisk støbejerns-20 prøve med samme sammensætning og hældt fra samme portion som prøven i fig. 1, men hældt i en skål med en carbonækvivalent-detektor uden tilsætningen af en stabilisator. Denne prøve blev hældt sideløbende med prøven i fig. 1, men den opnåede afkølingskurve for prøven, som ikke indeholdt stabilisatoren, 25 fremviste, som det fremgår af fig. 3, ikke en nyttig termisk diskontinuitet over den eutektiske temperaturdiskontinuitet.Referring to FIG. 3, it is illustrated here that a cooling curve is illustrated here for a hypereutectic cast iron sample of the same composition and poured from the same portion as the sample of FIG. 1, but poured into a bowl with a carbon equivalent detector without the addition of a stabilizer. This sample was poured in parallel with the sample of FIG. 1, but the obtained cooling curve for the sample, which did not contain the stabilizer, 25, as shown in FIG. 3, not a useful thermal discontinuity over the eutectic temperature discontinuity.

Det var således ikke muligt at bestemme carbonækvivalentet på grundlag af afkølingskurven i fig. 3, selv om denne prøve bestod af det samme jern og derfor havde samme carbonækvi-30 valent og samme sammensætning som den prøve, som blev anvendt til at frembringe afkølingskurven i fig. 1.Thus, it was not possible to determine the carbon equivalent on the basis of the cooling curve of FIG. 3, although this sample consisted of the same iron and therefore had the same carbon equivalent and the same composition as the sample used to produce the cooling curve of FIG. First

I fig. 4 vises et mikrofotografi af mikrostrukturen af den picrolætsede prøve af hypereutektisk støbejern, som frembragte afkølingskurven i fig. 3. Den deri viste mikrostruktur er 35 forstørret 500 gange. De ormlignende områder er grafit- 143916 8 flager, og de er lange og massive i fig. 4 i modsætning til de korte og fine grafitkorn i fig. 2, hvilket viser misch-metaladditivets virkning med hensyn til hæmning eller retardering af dannelse og/eller vækst af grafit under afkøling 5 af prøven til størkningstemperaturen.In FIG. 4 shows a photomicrograph of the microstructure of the picrolyzed sample of hypereutectic cast iron which produced the cooling curve of FIG. 3. The microstructure shown therein is enlarged 500 times. The worm-like regions are graphite flakes, and they are long and solid in FIG. 4 in contrast to the short and fine graphite grains of FIG. 2, showing the effect of the misch metal additive on inhibiting or retarding the formation and / or growth of graphite during cooling 5 of the sample to the solidification temperature.

Den initiale termiske diskontinuitet i afkølingskurven for hypereutektisk støbejern, som er vist ved C i fig. 1, kan frembringes med forskellige stabiliserende additiver, som er i stand til at retardere primærgrafit-dannelse under afkø-10 ling af prøven til størkningstemperaturen. Der er blevet anvendt en række stabilisatorer til at frembringe termiske diskontinuitetstemperaturer i prøver af hypereutektisk støbejern med et procentisk carbonækvivalent varierende fra det eutektiske punkt ved 4,35% indtil ca 4,95%. De procentiske 15 carbonækvivalenter for disse forskellige prøver blev bestemt ved hjælp af kemiske analyser. Ved at afsætte de termiske diskontinuitetstemperaturer overfor prøvernes procentiske carbonækvivalent fremkom kurven i fig. 5.The initial thermal discontinuity in the cooling curve for hypereutectic cast iron shown at C in FIG. 1, can be produced with various stabilizing additives which are capable of retarding primary graphite formation during cooling of the sample to the set temperature. A number of stabilizers have been used to produce thermal discontinuity temperatures in samples of hypereutectic cast iron with a percentage carbon equivalent varying from the eutectic point at 4.35% to about 4.95%. The percent 15 carbon equivalents for these different samples were determined by chemical analysis. By plotting the thermal discontinuity temperatures against the percent carbon equivalent of the samples, the curve of FIG. 5th

De i den følgende tabel anførte data viser carbonækvivalentet 20 for hypereutektisk støbejern bestemt udfra de sammenhørende data i fig. 5 og under anvendelse af carbidstabiliserende additiyer til sammenligning med det procentiske carbonækvivalent bestemt ved kemisk analyse.The data set forth in the following table shows the carbon equivalent 20 for hypereutectic cast iron determined from the associated data of FIG. 5 and using carbide stabilizing additives for comparison with the percent carbon equivalent determined by chemical analysis.

9 1439169 143916

Termisk dis- % Carbonækvivalent kontinuitets- På grundlag Ved kemisk temp. °F af indbyrdes analyseThermal dis-% Carbon equivalent continuity Based on Chemical temp. ° F of mutual analysis

Stabilisatortilsætning _ sammenhæng _ 5 Tellur + Bor + mischmetal 2315 4,84 4,79Stabilizer addition _ coherence _ 5 Tellurium + Boron + mischmetal 2315 4.84 4.79

Bor + misch-metal 2323 4,85 4,85Boron + misch-metal 2323 4.85 4.85

Bly + misch-metal 2280 4,80 4,80Lead + misch-metal 2280 4.80 4.80

Bor 2210 4,71 4,70 10 Misch-metal 2210 4,71 4,72Boron 2210 4.71 4.70 10 Misch-metal 2210 4.71 4.72

Misch-metal 2200 4,70 4,68Misch-metal 2200 4.70 4.68

Bor + misch-metal 2217 4,72 4,65Boron + misch-metal 2217 4.72 4.65

Misch-metal 2192 4,69 4,51Misch-metal 2192 4.69 4.51

Bor + misch-metal 2123 4,58 4,51 15 Vismut 2360 4,89 4,77Boron + misch-metal 2123 4.58 4.51 15 Bismuth 2360 4.89 4.77

Misch-metal 2340 4,86 4,80Misch-metal 2340 4.86 4.80

Bor 2323 4,85 4,68Bor 2323 4.85 4.68

Misch-metal 2341 4,87 4,68Misch-metal 2341 4.87 4.68

Vismut + bor 2310 4,83 4,68 20 ved sammenligning viser det sig, at det procentiske carbonækvivalent bestemt udfra den initiale termiske diskontinuitetstemperatur frembragt i det hypereutektiske støbejern ifølge den foreliggende opfindelsen ligger helt indenfor de anvendelige grænser. I virkeligheden har det vist sig, 25 at denne metode til bestemmelse af det procentiske carbonækvivalent er lettere at realisere end kemisk analyse, da resultaterne af kemiske analyser af samme støbejernsprøve hyppigt vil variere fra et laboratorium til et andet.Bismuth + boron 2310 4.83 4.68 20 by comparison, it turns out that the percent carbon equivalent determined from the initial thermal discontinuity temperature produced in the hypereutectic cast iron of the present invention is well within the applicable limits. In fact, it has been found that this method of determining the percent carbon equivalent is easier to realize than chemical analysis, as the results of chemical analyzes of the same cast iron sample will frequently vary from one laboratory to another.

Selv om der ved beskrivelsen af den foreliggende opfindelse 30 specielt er blevet refereret til det ekspanderbare faseæn-dringsdetektorapparat af den i det førnævnte amerikanske patentskrift nr. 3.267.732 omtalte type, kan ethvert passende faseændringsdetektorapparat naturligvis anvendes. Sådanne detektorapparater vil normalt have en lille skål, som er 35 åben, således at den smeltede støbejernsprøve kan hældes deri, og have et temperaturfølsomt organ, som er ført ind i skålen og er anbragt under prøvens overflade, således at det kan føle temperaturændringen i prøven, efterhånden somWhile the specification of the present invention 30 specifically refers to the expandable phase change detector apparatus of the type disclosed in the aforementioned U.S. Patent No. 3,267,732, any suitable phase change detector apparatus can of course be used. Such detector apparatus will normally have a small bowl which is open so that the molten cast iron sample can be poured therein, and have a temperature sensitive means which is inserted into the bowl and placed below the surface of the sample so that it can sense the temperature change in the sample. , as

DK380368A 1967-08-07 1968-08-07 PROCEDURE FOR THERMAL DETERMINATION OF CARBON EQUIVALENT OF OVERUTECTIC CASTLE DK143916C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65883867A 1967-08-07 1967-08-07
US65883867 1967-08-07

Publications (2)

Publication Number Publication Date
DK143916B true DK143916B (en) 1981-10-26
DK143916C DK143916C (en) 1982-04-13

Family

ID=24642916

Family Applications (1)

Application Number Title Priority Date Filing Date
DK380368A DK143916C (en) 1967-08-07 1968-08-07 PROCEDURE FOR THERMAL DETERMINATION OF CARBON EQUIVALENT OF OVERUTECTIC CASTLE

Country Status (13)

Country Link
US (1) US3546921A (en)
JP (1) JPS5036199B1 (en)
BE (1) BE719176A (en)
CH (1) CH530002A (en)
DE (1) DE1798004C3 (en)
DK (1) DK143916C (en)
ES (1) ES356928A1 (en)
FI (1) FI49320C (en)
FR (1) FR1579162A (en)
GB (1) GB1221129A (en)
NL (1) NL145047B (en)
NO (1) NO123432B (en)
SE (1) SE342508B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824837A (en) * 1968-11-30 1974-07-23 Nippon Kokan Kk Method of rapidly determining the solidus line of molten steel
SE350606B (en) * 1970-04-27 1972-10-30 S Baeckerud
US3774441A (en) * 1971-05-06 1973-11-27 Edelstahl Kombinet Hennigsdorf Method and apparatus for the thermal analysis of metallic melts
JPS5325274B2 (en) * 1971-10-11 1978-07-26
LU68549A1 (en) * 1973-10-02 1975-06-16
US3891834A (en) * 1974-05-22 1975-06-24 Ford Motor Co Cooling curve computer
BE835749A (en) * 1975-11-20 1976-03-16 Electro Nite IMPROVED DEVICE FOR MEASURING SOLID TEMPERATURES OF CAST IRON, STEEL AND THIRD-PARTY
US4008604A (en) * 1976-04-07 1977-02-22 Deere & Company Determination of carbon analysis in irons
DE2739159C3 (en) * 1976-09-09 1980-03-13 Electro-Nite, N.V., Houthalen (Belgien) Process for the preparation of samples of spherulitic or worm line-shaped cast iron
FR2380552A1 (en) * 1977-02-09 1978-09-08 Electro Nite Sampling nodular or vermicular cast iron - by cooling curve or emission spectrometry after addn. of tellurium and a magnesium and/or cerium binding agent
DE3006281C2 (en) * 1980-02-20 1981-09-24 Electro-Nite, N.V., Houthalen Procedure for taking samples from molten pig iron
US4274284A (en) * 1980-04-14 1981-06-23 Leeds & Northrup Company Expandable phase change detector device
US4515485A (en) * 1983-01-21 1985-05-07 Electro-Nite Co. Molten metal sample cup
GB8802619D0 (en) * 1988-02-05 1988-03-02 British Cast Iron Res Ass Method of determining magnesium content of magnesium-treated cast iron
US5057149A (en) * 1990-01-05 1991-10-15 Electronite International, N.V. Method and apparatus for introducing uniform quantities of a material into a metallurgical sample
AU664534B2 (en) * 1990-05-16 1995-11-23 Metec Corporation Method of determining the carbon equivalent, carbon content and silicon content of molten cast iron
SE469712B (en) * 1990-10-15 1993-08-30 Sintercast Ltd PROCEDURES FOR PREPARING THE IRON WITH COMPACT GRAPHITE
US5503475A (en) * 1992-10-23 1996-04-02 Metec Corporation Method for determining the carbon equivalent, carbon content and silicon content of molten cast iron
US5447080A (en) * 1993-05-26 1995-09-05 Midwest Instrument Co., Inc. Additive for molten metal sampler
US5948350A (en) * 1998-02-11 1999-09-07 Midwest Instrument Co., Inc. Device for dispensing additive in molten metal sample mold
US6155122A (en) * 1998-04-07 2000-12-05 Midwest Instruments Co., Inc. Additive for molten metal sampler
JPH11304736A (en) * 1998-04-23 1999-11-05 Nippon Saburansu Probe Engineering:Kk Method for improving thermal analysis of spherical graphite cast iron
MY146981A (en) * 2006-09-29 2012-10-15 Kakatkar Anant Kashinath An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal.
DE102011055950B4 (en) 2011-12-01 2020-03-26 Fritz Winter Eisengiesserei Gmbh & Co. Kg Sample crucible and method for thermal analysis of a casting melt sample
US10371686B2 (en) * 2012-11-15 2019-08-06 Heraeus EIectro-Nite International N.V. Detection device for molten metal
ES2856487T3 (en) * 2016-12-23 2021-09-27 Fund Azterlan Method for determining the carbon equivalent content of a cast iron alloy having a hypereutectic composition and equipment to do so

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375106A (en) * 1965-02-02 1968-03-26 American Standard Inc Determination of carbon equivalence of hypereutectic cast iron
US3415307A (en) * 1966-03-03 1968-12-10 United States Pipe Foundry Process for casting ductile iron

Also Published As

Publication number Publication date
FI49320C (en) 1975-05-12
GB1221129A (en) 1971-02-03
ES356928A1 (en) 1970-02-16
SE342508B (en) 1972-02-07
JPS5036199B1 (en) 1975-11-21
NO123432B (en) 1971-11-15
NL6811188A (en) 1969-02-11
FI49320B (en) 1975-01-31
DE1798004C3 (en) 1974-11-21
DE1798004B2 (en) 1974-04-18
US3546921A (en) 1970-12-15
CH530002A (en) 1972-10-31
DK143916C (en) 1982-04-13
NL145047B (en) 1975-02-17
DE1798004A1 (en) 1972-03-02
FR1579162A (en) 1969-08-22
BE719176A (en) 1969-01-16

Similar Documents

Publication Publication Date Title
DK143916B (en) PROCEDURE FOR THERMAL DETERMINATION OF THE CARBON EQUIVALENT OF OVERUTECTIC CASTLE
US4667725A (en) Method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
Gündüz et al. Directional solidification of aluminium–copper alloys
Farahany et al. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy: Effect of silicon modifier/refiner and solidification conditions on the nucleation and growth of dendrites
Easton et al. Effect of alloy composition on the dendrite arm spacing of multicomponent aluminum alloys
Veldman et al. Dendrite coherency of Al-Si-Cu alloys
US5615730A (en) Methods for inspecting the content of structure modifying additives in molten cast iron and chilling tendency of flaky graphite cast iron
Yavari et al. Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis
RU2105071C1 (en) Method for producing cast iron containing compact graphite
TW201506373A (en) Sampler for molten iron
Nafisi et al. Semi solid metal processing: The fraction solid dilemma
US4105191A (en) Crucible for the thermal analysis of aluminum alloys
US3375106A (en) Determination of carbon equivalence of hypereutectic cast iron
Ishida The reaction of solid iron with molten tin
JP2584590B2 (en) Determination of carbon equivalent in microstructure-improved cast iron
EP2067032B1 (en) An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
Connolly et al. Limitations on metal fixed points caused by trace impurities
Khatibi et al. Solidification and microstructure characterizations of eutectic aluminum‐silicon casting alloy with the addition of tin
Mackay et al. Quantification of magnesium in 356 alloy via thermal analysis
JP2638298B2 (en) A method for determining the carbon equivalent, carbon content and silicon content of cast iron, as well as predicting its physical and mechanical properties
JP3286839B2 (en) Analytical method for carbon and silicon contents of molten cast iron and pig iron.
Nafisi et al. Impact of Mg addition on solidification behaviour of Al–7% Si alloy
Campbell et al. THE SYSTEM ALUMINUM–ANTIMONY–BISMUTH
Dabalà et al. THE CHARACTERISTIC PARAMETERS OF THERMAL ANALYSIS AND THEIR EFFECT ON SOLIDIFICATION OF CAST IRONS
JPH10206358A (en) Chilling tendency evaluating method for molten metal and substantially unchilled cast iron using chilling tendency evaluating method for molten metal

Legal Events

Date Code Title Description
PBP Patent lapsed