NO123000B - - Google Patents
Download PDFInfo
- Publication number
- NO123000B NO123000B NO467368A NO467368A NO123000B NO 123000 B NO123000 B NO 123000B NO 467368 A NO467368 A NO 467368A NO 467368 A NO467368 A NO 467368A NO 123000 B NO123000 B NO 123000B
- Authority
- NO
- Norway
- Prior art keywords
- aluminum alloy
- content
- aluminum
- zinc
- alloy according
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910000838 Al alloy Inorganic materials 0.000 claims description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 239000011777 magnesium Substances 0.000 claims description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- -1 aluminum - zinc - tin Chemical compound 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/12—Electrodes characterised by the material
- C23F13/14—Material for sacrificial anodes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Printing Plates And Materials Therefor (AREA)
- Conductive Materials (AREA)
Description
Aluminiumlegering for fremstilling av offeranoder. Aluminum alloy for the production of sacrificial anodes.
Foreliggende oppfinnelse angår en aluminiumlegering for anvendelse som materiale for fremstilling av offeranoder. Av slike anoder kreves det hoyt driftspotensial og hoy effektivitet målt som elektrisk utbytte- per enhet forbrukt metallmasse. The present invention relates to an aluminum alloy for use as material for the production of sacrificial anodes. Such anodes require high operating potential and high efficiency measured as electrical yield per unit of metal mass consumed.
Mange vanlige legeringer som anvendes for fremstilling av anoder, f.eks. aluminium - sink - tinnlegeringer, krever en varme-behandling etter stopingen for de kan anvendes. Det ville være øko-nomisk og teknisk meget fordelaktig hvis man kunne fremstille offeranoder med hoy kapasitet og tilfredsstillende driftsbetingelser uten en nodvendig ettervarmebehandling. Many common alloys used for the manufacture of anodes, e.g. aluminum - zinc - tin alloys, require a heat treatment after stopping before they can be used. It would be economically and technically very advantageous if sacrificial anodes with high capacity and satisfactory operating conditions could be produced without a necessary post-heat treatment.
Man har funnet at ved å tilsette magnesium i passende mengder til en aluminium - sink - indiumlegering, så vil man få tilveiebragt et tilfredsstillende stopeprodukt. It has been found that by adding magnesium in suitable quantities to an aluminium-zinc-indium alloy, a satisfactory stopping product will be provided.
Ifolge foreliggende oppfinnelse er det således tilveiebragt en aluminiumlegering for bruk som materiale for fremstilling av offeranoder, kjennetegnet ved at den består av 1 - 15 % sink, 0.4 - 10 % magnesium, 0.005 - 0.1 % indium, eventuelt 0.005 - 0.07 % titan, eventuelt 0.1 - 0.5 % tinn, eventuelt 0.005 - 0.017 % gallium og resten aluminium med en renhet på minst 99»8 % > idet legeringen inneholder mindre enn 0.2 % av hvert av elementene silisium og jern som forurensninger. According to the present invention, an aluminum alloy is thus provided for use as a material for the production of sacrificial anodes, characterized in that it consists of 1 - 15% zinc, 0.4 - 10% magnesium, 0.005 - 0.1% indium, optionally 0.005 - 0.07% titanium, optionally 0.1 - 0.5% tin, possibly 0.005 - 0.017% gallium and the rest aluminum with a purity of at least 99»8% > as the alloy contains less than 0.2% of each of the elements silicon and iron as impurities.
Mengdene av urenheter som silisium og jern bor være under 0. 2%. Sinkinnholdet er fortrinnsvis mellom 2 og 10 %, og fordelaktig mellom 2.5 og 8 %. Tndiuminnholdet er fortrinnsvis mellom 0.01 og 0.05 %, mest fordelaktig mellom 0.03 og 0.04$. Magnesiuminnholdet er fortrinnsvis mellom 0.4 og 1 %, mest fordelaktig mellom 0.6 og 0.8 %, spesielt når det er begrensninger med hensyn til brannfarlige gnist-dannelser.• - Når gallium-anvendes foretrekkes det i en mengde på 0.01$. Titan som hensiktsmessig kan anvendes i legeringen virker som et korn-raffineringsmiddel, og en foretrukken mengde er 0.01 - 0.04 %. The amounts of impurities such as silicon and iron should be below 0.2%. The zinc content is preferably between 2 and 10%, and advantageously between 2.5 and 8%. The tindium content is preferably between 0.01 and 0.05%, most advantageously between 0.03 and 0.04%. The magnesium content is preferably between 0.4 and 1%, most advantageously between 0.6 and 0.8%, especially when there are restrictions with regard to flammable spark formations.• - When gallium is used, it is preferred in an amount of 0.01$. Titanium, which can suitably be used in the alloy, acts as a grain-refining agent, and a preferred amount is 0.01 - 0.04%.
T foreliggende beskrivelse er alle prosentsatser per vekt. In this description, all percentages are by weight.
Noen aluminiumanoder ble fremstilt og provet på folgende måte : Aluminium ble smeltet og oppvarmet til en temperatur på 710°C. Sink, indium (og i visse tilfeller også tinn) ble tilsatt i den nød-vendige mengde, og denne operasjon ble fulgt av en avgassing. Magnesium ble deretter tilsatt i de angitte mengder, og for å minimalisere oksydasjonseffektene ble tilsetningene gjort under et lag av fluss-middel. Smeiten ble deretter omrort mens temperaturen ble holdt mellom 710° og 730°C. Stopingen ble deretter utfort ved hjelp av former hvis temperatur varierte fra 100° - 250°C. Some aluminum anodes were produced and tested in the following way: Aluminum was melted and heated to a temperature of 710°C. Zinc, indium (and in certain cases also tin) were added in the necessary quantity, and this operation was followed by degassing. Magnesium was then added in the indicated amounts, and to minimize the oxidation effects, the additions were made under a layer of flux. The melt was then stirred while the temperature was maintained between 710° and 730°C. The stuffing was then carried out using molds whose temperature varied from 100° - 250°C.
1.25 cm lange stykker ble skåret av storre prøvestykker med en diameter på 2.5 cm og elektriske forbindelser ble festet ved hjelp av en gjenget aluminiumstav som ble skrudd inn i den ovre del av stykket. De sagede-overflater ble blokkert ved hjelp av et blokker-ingsmedium, og de veiede prover ble så montert konsentrisk i stål-tromler med en diameter på 22 cm og en hoyde på 30 cm, og som inneholdt ca. 11 liter naturlig sjovann. Forsiktig omroring ble anvendt under proven, og elektrolytten i tanken ble skiftet regelmassig. Provene ble utfort ved laboratorietemperaturer. 1.25 cm long pieces were cut from larger test pieces with a diameter of 2.5 cm and electrical connections were attached by means of a threaded aluminum rod which was screwed into the upper part of the piece. The sawn surfaces were blocked using a blocking medium, and the weighed samples were then mounted concentrically in steel drums with a diameter of 22 cm and a height of 30 cm, and which contained approx. 11 liters of natural spring water. Careful stirring was used during the test, and the electrolyte in the tank was changed regularly. The tests were carried out at laboratory temperatures.
Strømtilførselen til anoden ble begrenset til en anodetett-het på 1.55 mA/cm ved hjelp av en variabel motstand i den ytre krets. Potensialfallet over en meget noyaktig kalibrert motstand (også i den ytre krets) ble anvendt for å måle stromtilforselen, og de oppnådde resultater ble avlest automatisk hver fjerde time under proven. Den totale stromtilforsel til anoden kunne derfor beregnes. The current supply to the anode was limited to an anode density of 1.55 mA/cm by means of a variable resistance in the outer circuit. The potential drop across a very precisely calibrated resistance (also in the outer circuit) was used to measure the current supply, and the results obtained were read automatically every four hours during the test. The total current supply to the anode could therefore be calculated.
Prøveperioden varierte fra 4-0 til 60 dager, og i lopet av dette tidsrom var ca. ^ >0fo av proven forbrukt. Etter at prøvestykkene var fjernet fra tanken, ble de renset i 1:1 salpetersyre (for å fjerne korrosjonsprodukter), og de ble så veiet etter torking. The trial period varied from 4-0 to 60 days, and during this period approx. ^ >0fo of the sample consumed. After the specimens were removed from the tank, they were cleaned in 1:1 nitric acid (to remove corrosion products) and then weighed after drying.
Det teoretiske utbytte for det angitte vekttap for provene ble beregnet ved å anvende en elektrokjemisk ekvivalent til den spe-sielle legering som ble provet (det ble f.eks. tatt hensyn til sinkinnholdet i legeringen), og effektiviteten ble beregnet som prosent i forhold til det teoretiske utbytte. The theoretical yield for the indicated weight loss for the sample was calculated by applying an electrochemical equivalent to the special alloy being sampled (e.g. the zinc content of the alloy was taken into account), and the efficiency was calculated as a percentage in relation to the theoretical yield.
Potensialene ble målt med regelmessige mellomrom under hele proven ved å anvende en mettet kalomelelektrode i kontakt med den opp-løselige aluminiumanode eller på yttersiden av eventuelle korrosjonsprodukter som måtte være tilstede på proveoverflaten. Det oppgitte potensial, er det potensial som ble målt på siste provedag. The potentials were measured at regular intervals throughout the test by using a saturated calomel electrode in contact with the soluble aluminum anode or on the outside of any corrosion products that might be present on the test surface. The stated potential is the potential that was measured on the last test day.
Eksempler på sammensetningen og egenskaper for anoder fremstilt av legeringer ifolge foreliggende oppfinnelse, er angitt i tabell 1. Examples of the composition and properties of anodes made from alloys according to the present invention are given in table 1.
Det fremgår av tabellen at når magnesiuminnholdet går under 0.4 % (sammensetning I), så faller driftspotensialet til -1000 mV, og den resulterende anode var langt mindre tilfredsstillende enn de med hoyere magnesiuminnhold. It appears from the table that when the magnesium content goes below 0.4% (composition I), the operating potential drops to -1000 mV, and the resulting anode was far less satisfactory than those with higher magnesium content.
Videre eksempler på sammensetninger og egenskaper for anoder fremstilt fra legeringer ifolge foreliggende oppfinnelse er angitt i tabell II. I disse eksempler er kobberinnholdet i hvert tilfelle funnet å være mindre enn 0.005 %, og silisium og jerninnholdene er angitt i tabellen. Further examples of compositions and properties for anodes produced from alloys according to the present invention are given in table II. In these examples, the copper content in each case is found to be less than 0.005%, and the silicon and iron contents are indicated in the table.
Man har undersokt virkningen av å anvende forskjellige typer stopeteknikk på de elektrokjemiske egenskaper for legeringer ifolge foreliggende oppfinnelse. Disse undersøkelser omfattet variasjoner i temperaturen av det flytende metall, variasjoner med hensyn til temperatur av formen og variasjoner med hensyn til avkjolningsteknikk. Det ble anvendt tre forskjellige typer avkjolingsteknikk. Den forste var en "'standard fremgangsmåte", og omfattet, at metallet ble stopt i en form og når det var tilstrekkelig stivnet, så ble det fjernet fra formen og ble hensatt til avkjolning. Den annen teknikk er betegnet "kaldtvannsbråkjoling", og omfattet at metallet ble stopt i en form og når det var tilstrekkelig stivnet, ble fjernet fra formen og brå-kjolt i kaldt vann. Den tredje teknikk er betegnet "meget langsom avkjoling i formen", og omfattet at metallet ble stopt i en form og ble avkjolt i formen til romtemperatur. Den siste teknikk ga langsom avkjolningshastighet og meget gode resultater, noe som fremgår av tabell III nedenfor. Den anvendte legering i dette tilfelle inneholdt 0.68 % magnesium, 4.01 % sink, O.O38 % indium, 0.012 % gallium, 0.12 % silisium, 0.07 % jern og mindre enn 0.005 % kobber og hvor resten var aluminium. The effect of using different types of stopping techniques on the electrochemical properties of alloys according to the present invention has been investigated. These investigations included variations in the temperature of the liquid metal, variations with respect to the temperature of the mold and variations with respect to cooling technique. Three different types of cooling technique were used. The first was a "'standard procedure'", and involved the metal being stopped in a mold and when it was sufficiently solidified, it was removed from the mold and set aside to cool. The other technique is termed "cold water quenching", and involved the metal being stopped in a mold and, when sufficiently solidified, being removed from the mold and quenched in cold water. The third technique is termed "very slow cooling in the mould", and involved the metal being stopped in a mold and being cooled in the mold to room temperature. The latter technique gave slow cooling rates and very good results, as shown in Table III below. The alloy used in this case contained 0.68% magnesium, 4.01% zinc, 0.038% indium, 0.012% gallium, 0.12% silicon, 0.07% iron and less than 0.005% copper with the remainder being aluminium.
Effekten av å tilsette kornraffineringselementet titan til legeringer ifolge foreliggende oppfinnelse, ble undersokt, og de oppnådde resultater er angitt i tabell IV. Disse resultater indikerer at man oppnår, gunstige effekter med en tilsetning av et kornraffiner-ingselement, fortrinnsvis titan i mengde varierende fra 0.005 til 0.7 %, mer spesielt i området fra 0.01 til 0.04 %. I hver av de legeringer som er vist i tabell IV, så var kobberinnholdet mindre enn 0.01 %. The effect of adding the grain refining element titanium to alloys according to the present invention was investigated, and the results obtained are set out in Table IV. These results indicate that beneficial effects are obtained with the addition of a grain refining element, preferably titanium in an amount varying from 0.005 to 0.7%, more particularly in the range from 0.01 to 0.04%. In each of the alloys shown in Table IV, the copper content was less than 0.01%.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB5354767A GB1221659A (en) | 1967-11-24 | 1967-11-24 | Aluminium base alloys and anodes |
Publications (1)
Publication Number | Publication Date |
---|---|
NO123000B true NO123000B (en) | 1971-09-13 |
Family
ID=10468190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO467368A NO123000B (en) | 1967-11-24 | 1968-11-23 |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS4840164B1 (en) |
DE (1) | DE1810635C2 (en) |
FR (1) | FR1592795A (en) |
GB (1) | GB1221659A (en) |
MY (1) | MY7100225A (en) |
NL (1) | NL168273C (en) |
NO (1) | NO123000B (en) |
SE (1) | SE343333B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233815A (en) * | 1975-09-10 | 1977-03-15 | Nakagawa Boshoku Kogyo Kk | Aluminum alloy for galvanic anode |
DE3305612A1 (en) * | 1983-02-18 | 1984-08-23 | Grillo-Werke Ag, 4100 Duisburg | ALVINUM ALLOY GALVANIC SACRED ANODE |
US4631172A (en) * | 1984-05-08 | 1986-12-23 | Nadagawa Corrosion Protecting Co., Ltd. | Aluminum alloys for galvanic anode |
GB8704251D0 (en) * | 1987-02-24 | 1987-04-01 | Alcan Int Ltd | Welding aluminium alloys |
NZ224999A (en) * | 1987-06-16 | 1990-10-26 | Comalco Alu | Aluminium alloy suitable for sacrificial anodes |
RU2444093C1 (en) * | 2010-08-03 | 2012-02-27 | Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) | Anode for chemical source of current, method to manufacture anode, chemical source of current |
CN115637434B (en) * | 2022-10-20 | 2024-10-01 | 常州大学 | Aluminum sacrificial anode alloy and preparation method thereof |
-
1967
- 1967-11-24 GB GB5354767A patent/GB1221659A/en not_active Expired
-
1968
- 1968-11-22 FR FR1592795D patent/FR1592795A/fr not_active Expired
- 1968-11-22 JP JP43085192A patent/JPS4840164B1/ja active Pending
- 1968-11-22 SE SE1594068A patent/SE343333B/xx unknown
- 1968-11-23 DE DE19681810635 patent/DE1810635C2/en not_active Expired
- 1968-11-23 NO NO467368A patent/NO123000B/no unknown
- 1968-11-25 NL NL6816805A patent/NL168273C/en not_active IP Right Cessation
-
1971
- 1971-12-30 MY MY225/71A patent/MY7100225A/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE1810635A1 (en) | 1969-07-10 |
NL168273B (en) | 1981-10-16 |
SE343333B (en) | 1972-03-06 |
DE1810635C2 (en) | 1983-06-01 |
GB1221659A (en) | 1971-02-03 |
NL6816805A (en) | 1969-05-28 |
MY7100225A (en) | 1971-12-31 |
JPS4840164B1 (en) | 1973-11-29 |
FR1592795A (en) | 1970-05-19 |
NL168273C (en) | 1982-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3180728A (en) | Aluminum-tin composition | |
US3974055A (en) | Aluminum alloy anode composition | |
NO123000B (en) | ||
CN107227421B (en) | Magnesium lithium alloy and preparation method thereof | |
CN104532089B (en) | Anticorrosive alloy composition and device, preparation and application thereof | |
CN106119630B (en) | It is a kind of for aluminium alloy of seawater corrosion resistance tubing and preparation method thereof | |
Zong et al. | Effects of Li on Microstructures, Mechanical, and Biocorrosion Properties of Biodegradable Mg94‐xZn2Y4Lix Alloys with Long Period Stacking Ordered Phase | |
US3616420A (en) | Aluminium base alloys and anodes | |
US3892565A (en) | Magnesium alloy for die casting | |
Danielik et al. | Solubility of aluminum in cryolite-based melts | |
CN108893657A (en) | A kind of high conductivity ternary aluminum alloy foil and its manufacturing method adding rare earth La | |
CN105463473B (en) | Aluminum alloy sacrificial anode for water storage type water heater | |
NO142580B (en) | SUSTAINABLE MAGNESIUM ALLOY AND PROCEDURES IN THE PREPARATION OF THIS | |
Richards et al. | Solid Thallium Amalgams and the Electrode Potential of Pure Thallium | |
CN107779642A (en) | A kind of preparation method of almag | |
NO127628B (en) | ||
CN107523721A (en) | A kind of heat exchanger water-cooling system aluminum alloy anode and preparation method thereof | |
CN1924098A (en) | Aluminium-zinc-indium ternary aluminum alloy sacrificial anode | |
CN106834806A (en) | A kind of anti-corrosion kirsite and preparation method thereof | |
Ray | Properties of Strontium-tin Alloys1 | |
CN108179292B (en) | Treatment process of aluminum alloy profile for photovoltaic module bracket | |
CN106011532B (en) | Drinking water transmission & distribution special environment protection brass alloys and preparation method thereof | |
JPS61157699A (en) | Nickel anode material for electroplating | |
CN110964947A (en) | Zinc alloy sacrificial anode material for reinforced concrete structure in chloride corrosion environment | |
Haarberg et al. | Mass transfer reactions near the cathode during aluminium electrolysis |