NO123000B - - Google Patents

Download PDF

Info

Publication number
NO123000B
NO123000B NO467368A NO467368A NO123000B NO 123000 B NO123000 B NO 123000B NO 467368 A NO467368 A NO 467368A NO 467368 A NO467368 A NO 467368A NO 123000 B NO123000 B NO 123000B
Authority
NO
Norway
Prior art keywords
aluminum alloy
content
aluminum
zinc
alloy according
Prior art date
Application number
NO467368A
Other languages
Norwegian (no)
Inventor
T Broughton
Original Assignee
British Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Aluminium Co Ltd filed Critical British Aluminium Co Ltd
Publication of NO123000B publication Critical patent/NO123000B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Conductive Materials (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

Aluminiumlegering for fremstilling av offeranoder. Aluminum alloy for the production of sacrificial anodes.

Foreliggende oppfinnelse angår en aluminiumlegering for anvendelse som materiale for fremstilling av offeranoder. Av slike anoder kreves det hoyt driftspotensial og hoy effektivitet målt som elektrisk utbytte- per enhet forbrukt metallmasse. The present invention relates to an aluminum alloy for use as material for the production of sacrificial anodes. Such anodes require high operating potential and high efficiency measured as electrical yield per unit of metal mass consumed.

Mange vanlige legeringer som anvendes for fremstilling av anoder, f.eks. aluminium - sink - tinnlegeringer, krever en varme-behandling etter stopingen for de kan anvendes. Det ville være øko-nomisk og teknisk meget fordelaktig hvis man kunne fremstille offeranoder med hoy kapasitet og tilfredsstillende driftsbetingelser uten en nodvendig ettervarmebehandling. Many common alloys used for the manufacture of anodes, e.g. aluminum - zinc - tin alloys, require a heat treatment after stopping before they can be used. It would be economically and technically very advantageous if sacrificial anodes with high capacity and satisfactory operating conditions could be produced without a necessary post-heat treatment.

Man har funnet at ved å tilsette magnesium i passende mengder til en aluminium - sink - indiumlegering, så vil man få tilveiebragt et tilfredsstillende stopeprodukt. It has been found that by adding magnesium in suitable quantities to an aluminium-zinc-indium alloy, a satisfactory stopping product will be provided.

Ifolge foreliggende oppfinnelse er det således tilveiebragt en aluminiumlegering for bruk som materiale for fremstilling av offeranoder, kjennetegnet ved at den består av 1 - 15 % sink, 0.4 - 10 % magnesium, 0.005 - 0.1 % indium, eventuelt 0.005 - 0.07 % titan, eventuelt 0.1 - 0.5 % tinn, eventuelt 0.005 - 0.017 % gallium og resten aluminium med en renhet på minst 99»8 % > idet legeringen inneholder mindre enn 0.2 % av hvert av elementene silisium og jern som forurensninger. According to the present invention, an aluminum alloy is thus provided for use as a material for the production of sacrificial anodes, characterized in that it consists of 1 - 15% zinc, 0.4 - 10% magnesium, 0.005 - 0.1% indium, optionally 0.005 - 0.07% titanium, optionally 0.1 - 0.5% tin, possibly 0.005 - 0.017% gallium and the rest aluminum with a purity of at least 99»8% > as the alloy contains less than 0.2% of each of the elements silicon and iron as impurities.

Mengdene av urenheter som silisium og jern bor være under 0. 2%. Sinkinnholdet er fortrinnsvis mellom 2 og 10 %, og fordelaktig mellom 2.5 og 8 %. Tndiuminnholdet er fortrinnsvis mellom 0.01 og 0.05 %, mest fordelaktig mellom 0.03 og 0.04$. Magnesiuminnholdet er fortrinnsvis mellom 0.4 og 1 %, mest fordelaktig mellom 0.6 og 0.8 %, spesielt når det er begrensninger med hensyn til brannfarlige gnist-dannelser.• - Når gallium-anvendes foretrekkes det i en mengde på 0.01$. Titan som hensiktsmessig kan anvendes i legeringen virker som et korn-raffineringsmiddel, og en foretrukken mengde er 0.01 - 0.04 %. The amounts of impurities such as silicon and iron should be below 0.2%. The zinc content is preferably between 2 and 10%, and advantageously between 2.5 and 8%. The tindium content is preferably between 0.01 and 0.05%, most advantageously between 0.03 and 0.04%. The magnesium content is preferably between 0.4 and 1%, most advantageously between 0.6 and 0.8%, especially when there are restrictions with regard to flammable spark formations.• - When gallium is used, it is preferred in an amount of 0.01$. Titanium, which can suitably be used in the alloy, acts as a grain-refining agent, and a preferred amount is 0.01 - 0.04%.

T foreliggende beskrivelse er alle prosentsatser per vekt. In this description, all percentages are by weight.

Noen aluminiumanoder ble fremstilt og provet på folgende måte : Aluminium ble smeltet og oppvarmet til en temperatur på 710°C. Sink, indium (og i visse tilfeller også tinn) ble tilsatt i den nød-vendige mengde, og denne operasjon ble fulgt av en avgassing. Magnesium ble deretter tilsatt i de angitte mengder, og for å minimalisere oksydasjonseffektene ble tilsetningene gjort under et lag av fluss-middel. Smeiten ble deretter omrort mens temperaturen ble holdt mellom 710° og 730°C. Stopingen ble deretter utfort ved hjelp av former hvis temperatur varierte fra 100° - 250°C. Some aluminum anodes were produced and tested in the following way: Aluminum was melted and heated to a temperature of 710°C. Zinc, indium (and in certain cases also tin) were added in the necessary quantity, and this operation was followed by degassing. Magnesium was then added in the indicated amounts, and to minimize the oxidation effects, the additions were made under a layer of flux. The melt was then stirred while the temperature was maintained between 710° and 730°C. The stuffing was then carried out using molds whose temperature varied from 100° - 250°C.

1.25 cm lange stykker ble skåret av storre prøvestykker med en diameter på 2.5 cm og elektriske forbindelser ble festet ved hjelp av en gjenget aluminiumstav som ble skrudd inn i den ovre del av stykket. De sagede-overflater ble blokkert ved hjelp av et blokker-ingsmedium, og de veiede prover ble så montert konsentrisk i stål-tromler med en diameter på 22 cm og en hoyde på 30 cm, og som inneholdt ca. 11 liter naturlig sjovann. Forsiktig omroring ble anvendt under proven, og elektrolytten i tanken ble skiftet regelmassig. Provene ble utfort ved laboratorietemperaturer. 1.25 cm long pieces were cut from larger test pieces with a diameter of 2.5 cm and electrical connections were attached by means of a threaded aluminum rod which was screwed into the upper part of the piece. The sawn surfaces were blocked using a blocking medium, and the weighed samples were then mounted concentrically in steel drums with a diameter of 22 cm and a height of 30 cm, and which contained approx. 11 liters of natural spring water. Careful stirring was used during the test, and the electrolyte in the tank was changed regularly. The tests were carried out at laboratory temperatures.

Strømtilførselen til anoden ble begrenset til en anodetett-het på 1.55 mA/cm ved hjelp av en variabel motstand i den ytre krets. Potensialfallet over en meget noyaktig kalibrert motstand (også i den ytre krets) ble anvendt for å måle stromtilforselen, og de oppnådde resultater ble avlest automatisk hver fjerde time under proven. Den totale stromtilforsel til anoden kunne derfor beregnes. The current supply to the anode was limited to an anode density of 1.55 mA/cm by means of a variable resistance in the outer circuit. The potential drop across a very precisely calibrated resistance (also in the outer circuit) was used to measure the current supply, and the results obtained were read automatically every four hours during the test. The total current supply to the anode could therefore be calculated.

Prøveperioden varierte fra 4-0 til 60 dager, og i lopet av dette tidsrom var ca. ^ >0fo av proven forbrukt. Etter at prøvestykkene var fjernet fra tanken, ble de renset i 1:1 salpetersyre (for å fjerne korrosjonsprodukter), og de ble så veiet etter torking. The trial period varied from 4-0 to 60 days, and during this period approx. ^ >0fo of the sample consumed. After the specimens were removed from the tank, they were cleaned in 1:1 nitric acid (to remove corrosion products) and then weighed after drying.

Det teoretiske utbytte for det angitte vekttap for provene ble beregnet ved å anvende en elektrokjemisk ekvivalent til den spe-sielle legering som ble provet (det ble f.eks. tatt hensyn til sinkinnholdet i legeringen), og effektiviteten ble beregnet som prosent i forhold til det teoretiske utbytte. The theoretical yield for the indicated weight loss for the sample was calculated by applying an electrochemical equivalent to the special alloy being sampled (e.g. the zinc content of the alloy was taken into account), and the efficiency was calculated as a percentage in relation to the theoretical yield.

Potensialene ble målt med regelmessige mellomrom under hele proven ved å anvende en mettet kalomelelektrode i kontakt med den opp-løselige aluminiumanode eller på yttersiden av eventuelle korrosjonsprodukter som måtte være tilstede på proveoverflaten. Det oppgitte potensial, er det potensial som ble målt på siste provedag. The potentials were measured at regular intervals throughout the test by using a saturated calomel electrode in contact with the soluble aluminum anode or on the outside of any corrosion products that might be present on the test surface. The stated potential is the potential that was measured on the last test day.

Eksempler på sammensetningen og egenskaper for anoder fremstilt av legeringer ifolge foreliggende oppfinnelse, er angitt i tabell 1. Examples of the composition and properties of anodes made from alloys according to the present invention are given in table 1.

Det fremgår av tabellen at når magnesiuminnholdet går under 0.4 % (sammensetning I), så faller driftspotensialet til -1000 mV, og den resulterende anode var langt mindre tilfredsstillende enn de med hoyere magnesiuminnhold. It appears from the table that when the magnesium content goes below 0.4% (composition I), the operating potential drops to -1000 mV, and the resulting anode was far less satisfactory than those with higher magnesium content.

Videre eksempler på sammensetninger og egenskaper for anoder fremstilt fra legeringer ifolge foreliggende oppfinnelse er angitt i tabell II. I disse eksempler er kobberinnholdet i hvert tilfelle funnet å være mindre enn 0.005 %, og silisium og jerninnholdene er angitt i tabellen. Further examples of compositions and properties for anodes produced from alloys according to the present invention are given in table II. In these examples, the copper content in each case is found to be less than 0.005%, and the silicon and iron contents are indicated in the table.

Man har undersokt virkningen av å anvende forskjellige typer stopeteknikk på de elektrokjemiske egenskaper for legeringer ifolge foreliggende oppfinnelse. Disse undersøkelser omfattet variasjoner i temperaturen av det flytende metall, variasjoner med hensyn til temperatur av formen og variasjoner med hensyn til avkjolningsteknikk. Det ble anvendt tre forskjellige typer avkjolingsteknikk. Den forste var en "'standard fremgangsmåte", og omfattet, at metallet ble stopt i en form og når det var tilstrekkelig stivnet, så ble det fjernet fra formen og ble hensatt til avkjolning. Den annen teknikk er betegnet "kaldtvannsbråkjoling", og omfattet at metallet ble stopt i en form og når det var tilstrekkelig stivnet, ble fjernet fra formen og brå-kjolt i kaldt vann. Den tredje teknikk er betegnet "meget langsom avkjoling i formen", og omfattet at metallet ble stopt i en form og ble avkjolt i formen til romtemperatur. Den siste teknikk ga langsom avkjolningshastighet og meget gode resultater, noe som fremgår av tabell III nedenfor. Den anvendte legering i dette tilfelle inneholdt 0.68 % magnesium, 4.01 % sink, O.O38 % indium, 0.012 % gallium, 0.12 % silisium, 0.07 % jern og mindre enn 0.005 % kobber og hvor resten var aluminium. The effect of using different types of stopping techniques on the electrochemical properties of alloys according to the present invention has been investigated. These investigations included variations in the temperature of the liquid metal, variations with respect to the temperature of the mold and variations with respect to cooling technique. Three different types of cooling technique were used. The first was a "'standard procedure'", and involved the metal being stopped in a mold and when it was sufficiently solidified, it was removed from the mold and set aside to cool. The other technique is termed "cold water quenching", and involved the metal being stopped in a mold and, when sufficiently solidified, being removed from the mold and quenched in cold water. The third technique is termed "very slow cooling in the mould", and involved the metal being stopped in a mold and being cooled in the mold to room temperature. The latter technique gave slow cooling rates and very good results, as shown in Table III below. The alloy used in this case contained 0.68% magnesium, 4.01% zinc, 0.038% indium, 0.012% gallium, 0.12% silicon, 0.07% iron and less than 0.005% copper with the remainder being aluminium.

Effekten av å tilsette kornraffineringselementet titan til legeringer ifolge foreliggende oppfinnelse, ble undersokt, og de oppnådde resultater er angitt i tabell IV. Disse resultater indikerer at man oppnår, gunstige effekter med en tilsetning av et kornraffiner-ingselement, fortrinnsvis titan i mengde varierende fra 0.005 til 0.7 %, mer spesielt i området fra 0.01 til 0.04 %. I hver av de legeringer som er vist i tabell IV, så var kobberinnholdet mindre enn 0.01 %. The effect of adding the grain refining element titanium to alloys according to the present invention was investigated, and the results obtained are set out in Table IV. These results indicate that beneficial effects are obtained with the addition of a grain refining element, preferably titanium in an amount varying from 0.005 to 0.7%, more particularly in the range from 0.01 to 0.04%. In each of the alloys shown in Table IV, the copper content was less than 0.01%.

Claims (6)

1. Aluminiumlegering for anvendelse som materiale for fremstilling av offeranoder, karakterisert ved at den består av 1 - 15 % sink, 0.4 - 10 % magnesium, 0.005 - 0.1 % indium, eventuelt 0.005 - 0.07 % titan, eventuelt 0.1 - 0.5 % tinn, eventuelt 0.005 - 0.017 % gallium og resten aluminium med en renhet på minst 99>8 %, idet legeringen inneholder mindre enn 0.2 % av hvert av elementene silisium og jern som forurensninger.1. Aluminum alloy for use as material for the production of sacrificial anodes, characterized in that it consists of 1 - 15% zinc, 0.4 - 10% magnesium, 0.005 - 0.1% indium, optionally 0.005 - 0.07% titanium, optionally 0.1 - 0.5% tin, possibly 0.005 - 0.017% gallium and the rest aluminum with a purity of at least 99>8%, the alloy containing less than 0.2% of each of the elements silicon and iron as impurities. 2. Aluminiumlegering ifolge krav 1, karakterisert ved at sinkinnholdet er 2 - 10 %, fortrinnsvis 2.5 - 8 %.2. Aluminum alloy according to claim 1, characterized in that the zinc content is 2 - 10%, preferably 2.5 - 8%. 3. Aluminiumlegering ifolge krav 1 eller 2, karakterisert ved at indiuminnholdet er 0.01 - 0.05 %, fortrinnsvis 0.03 - 0.04 %.3. Aluminum alloy according to claim 1 or 2, characterized in that the indium content is 0.01 - 0.05%, preferably 0.03 - 0.04%. 4. Aluminiumlegering ifolge hvilket som helst av de foregående krav, karakterisert ved at magnesiuminnholdet er 0.4 - 1 %, fortrinnsvis 0.6 - 0.8 %.4. Aluminum alloy according to any of the preceding claims, characterized in that the magnesium content is 0.4 - 1%, preferably 0.6 - 0.8%. 5. Aluminiumlegering ifolge hvilket som helst av de foregående krav, karakterisert ved at galliuminnholdet er ca. 0.01 %.5. Aluminum alloy according to any of the preceding claims, characterized in that the gallium content is approx. 0.01%. 6. Aluminiumlegering ifolge hvilket som helst av de foregående krav, karakterisert ved at den inneholder 0.01 - 0.04 % titan.6. Aluminum alloy according to any one of the preceding claims, characterized in that it contains 0.01 - 0.04% titanium.
NO467368A 1967-11-24 1968-11-23 NO123000B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5354767A GB1221659A (en) 1967-11-24 1967-11-24 Aluminium base alloys and anodes

Publications (1)

Publication Number Publication Date
NO123000B true NO123000B (en) 1971-09-13

Family

ID=10468190

Family Applications (1)

Application Number Title Priority Date Filing Date
NO467368A NO123000B (en) 1967-11-24 1968-11-23

Country Status (8)

Country Link
JP (1) JPS4840164B1 (en)
DE (1) DE1810635C2 (en)
FR (1) FR1592795A (en)
GB (1) GB1221659A (en)
MY (1) MY7100225A (en)
NL (1) NL168273C (en)
NO (1) NO123000B (en)
SE (1) SE343333B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233815A (en) * 1975-09-10 1977-03-15 Nakagawa Boshoku Kogyo Kk Aluminum alloy for galvanic anode
DE3305612A1 (en) * 1983-02-18 1984-08-23 Grillo-Werke Ag, 4100 Duisburg ALVINUM ALLOY GALVANIC SACRED ANODE
US4631172A (en) * 1984-05-08 1986-12-23 Nadagawa Corrosion Protecting Co., Ltd. Aluminum alloys for galvanic anode
GB8704251D0 (en) * 1987-02-24 1987-04-01 Alcan Int Ltd Welding aluminium alloys
NZ224999A (en) * 1987-06-16 1990-10-26 Comalco Alu Aluminium alloy suitable for sacrificial anodes
RU2444093C1 (en) * 2010-08-03 2012-02-27 Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) Anode for chemical source of current, method to manufacture anode, chemical source of current
CN115637434A (en) * 2022-10-20 2023-01-24 常州大学 Aluminum sacrificial anode alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS4840164B1 (en) 1973-11-29
NL6816805A (en) 1969-05-28
NL168273B (en) 1981-10-16
NL168273C (en) 1982-03-16
SE343333B (en) 1972-03-06
GB1221659A (en) 1971-02-03
DE1810635C2 (en) 1983-06-01
MY7100225A (en) 1971-12-31
FR1592795A (en) 1970-05-19
DE1810635A1 (en) 1969-07-10

Similar Documents

Publication Publication Date Title
US3180728A (en) Aluminum-tin composition
US3974055A (en) Aluminum alloy anode composition
NO123000B (en)
CN107227421B (en) Magnesium lithium alloy and preparation method thereof
CN106119630B (en) It is a kind of for aluminium alloy of seawater corrosion resistance tubing and preparation method thereof
Zong et al. Effects of Li on Microstructures, Mechanical, and Biocorrosion Properties of Biodegradable Mg94‐xZn2Y4Lix Alloys with Long Period Stacking Ordered Phase
US3616420A (en) Aluminium base alloys and anodes
US3892565A (en) Magnesium alloy for die casting
Danielik et al. Solubility of aluminum in cryolite-based melts
CN108893657A (en) A kind of high conductivity ternary aluminum alloy foil and its manufacturing method adding rare earth La
CN105463473B (en) Aluminum alloy sacrificial anode for water storage type water heater
NO142580B (en) SUSTAINABLE MAGNESIUM ALLOY AND PROCEDURES IN THE PREPARATION OF THIS
Richards et al. Solid Thallium Amalgams and the Electrode Potential of Pure Thallium
CN107779642A (en) A kind of preparation method of almag
NO127628B (en)
CN107523721A (en) A kind of heat exchanger water-cooling system aluminum alloy anode and preparation method thereof
CN1924098A (en) Aluminium-zinc-indium ternary aluminum alloy sacrificial anode
CN106834806A (en) A kind of anti-corrosion kirsite and preparation method thereof
Ray Properties of Strontium-tin Alloys1
CN108179292B (en) Treatment process of aluminum alloy profile for photovoltaic module bracket
CN106011532B (en) Drinking water transmission & distribution special environment protection brass alloys and preparation method thereof
JPS61157699A (en) Nickel anode material for electroplating
CN110964947A (en) Zinc alloy sacrificial anode material for reinforced concrete structure in chloride corrosion environment
Haarberg et al. Mass transfer reactions near the cathode during aluminium electrolysis
US3664832A (en) Lead alloy