NO122117B - - Google Patents

Download PDF

Info

Publication number
NO122117B
NO122117B NO3985/68A NO398568A NO122117B NO 122117 B NO122117 B NO 122117B NO 3985/68 A NO3985/68 A NO 3985/68A NO 398568 A NO398568 A NO 398568A NO 122117 B NO122117 B NO 122117B
Authority
NO
Norway
Prior art keywords
concrete
pipe
sleeper
concrete bodies
bodies
Prior art date
Application number
NO3985/68A
Other languages
Norwegian (no)
Inventor
C Jones
J Amero
Original Assignee
Norton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norton Co filed Critical Norton Co
Publication of NO122117B publication Critical patent/NO122117B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

Betongsville. Concrete rest.

For å få frem en enhetlig betongsville, som kan brukes under alle forhold, er mange forsøk gjort. En stor mangel ved en betongsville er dens store tyngde. Som be-kjent er alle betongsviller eller betong-konstruksjoner i alminnelighet ganske stive og er ikke særlig bøyelige. For å oppnå en bøyelig sville er mange forsøk gjort, med mer eller mindre vellykket resultat. Således er der eksempelvis fremstillet betongsville med forspent eller etterspent armering og med smalere midtdel. Disse betingsviller har visse fordeler som ansees meget viktige fra flere synspunkter. At mangler forefinnes har vist seg tydelig, særlig ved fremstillingen når en slik midtdel har mindre dimensjoner. Når svillen utsettes for bøyning skjer den i denne smalere del. Alle sprekker oppstår her, hvilke igjen lukkes under påvirkning av den under strekkspenning satte armering. En avgjort mangel ved disse sviller er at de to endedeler ikke kan dreie seg i forhold til hverandre. Dessuten finnes der betongsviller som er fremstillet med to armerte eller uarmerte betonglegemer holdt sammen med et armeringsjern som er innstøpt gjennom betong-legemer. En slik armering er naturligvis ikke satt under spenning men jernet er spenningsløst. En betongsville utført med denne konstruksjon kan uten ulempe bøye seg på midten i større eller mindre grad avhengig av armeringens tverrsnitt. Det er innlysende at en slik betongsville kan gjøres ganske bøyelig samtidig som den får liten vekt. Men dessuten er det ønskelig at betongklossene skal kunne dreie seg noe i forhold til hverandre. Denne dreining forekommer når paknin-gen under svillene forandres, eksempelvis ved setninger eller teleforskyvninger i banelegemet og i den tid belastning skjer. In order to produce a uniform concrete sleeper, which can be used in all conditions, many attempts have been made. A major shortcoming of a concrete sleeper is its great weight. As is known, all concrete sleepers or concrete constructions are generally quite rigid and are not very flexible. Many attempts have been made to achieve a flexible sleeper, with more or less successful results. Thus, for example, concrete sleepers with prestressed or poststressed reinforcement and with a narrower middle part have been produced. These conditional sleeps have certain advantages which are considered very important from several points of view. The fact that there are defects has been shown clearly, especially in the manufacture when such a central part has smaller dimensions. When the sleeper is subjected to bending, it happens in this narrower part. All cracks occur here, which in turn close under the influence of the reinforcement placed under tensile stress. A definite shortcoming of these sleepers is that the two end parts cannot rotate in relation to each other. There are also concrete sleepers that are made with two reinforced or unreinforced concrete bodies held together with a rebar that is embedded through the concrete bodies. Such reinforcement is naturally not under tension, but the iron is de-energized. A concrete sleeper made with this construction can without inconvenience bend in the middle to a greater or lesser extent depending on the cross-section of the reinforcement. It is obvious that such a concrete sleeper can be made quite pliable while at the same time gaining little weight. But it is also desirable that the concrete blocks should be able to rotate somewhat in relation to each other. This rotation occurs when the packing under the sleepers is changed, for example during settlements or teledisplacements in the track body and during the time loading occurs.

Den foreliggende oppfinnelse går ut på en betongsville av helt særegen konstruksjon, hvor de tidligere omtalte betongsvil-lers fordelaktige egenskaper er bibeholdt samtidig som de mangler disse sviller har, ikke er tilstede. Betongsvillen består av to betong-legemer som holdes sammen av et eller flere under strekkspenning værende armeringsstål med endeforankringer i betong-legemenes lengst fra hverandre værende endedeler. Betonglegemene holdes fra hverandre av en avstivning utført av minst ett metallrør som omslutter armeringsstå-let og er fyllt med en for formålet hensiktsmessig masse f. eks. betong, sand eller lik-nende. Massen e,r avpasset til å oppta en del av trykk-kraften, hvilket medfører radielt utadrettet mot rørets (rørenes) inn-side rettede trykk-krefter som er egnet til å øke dets motstand mot deformasjon. På denne måte blir betong-legemer utsatt for trykk-krefter som virker mellom arme-ringsstålenes endeforankringer og den trykk-kraft-opptagende avstivnings ender. Når midtdelen som i dette tilfelle forsynes med rør, lettes fremstillingen av forskjel-lig lange sviller, da samme form kan an-vendes for forskjellige lengder, idet bare en forkortning av avstanden mellom form-halvdelene behøver å foretas. De i svillen The present invention is based on a concrete sleeper of a completely unique construction, where the previously mentioned concrete sleepers' advantageous properties are retained while the shortcomings of these sleepers are not present. The concrete sleeper consists of two concrete bodies held together by one or more reinforcing steel under tensile stress with end anchorages in the end parts of the concrete bodies furthest from each other. The concrete bodies are held apart by a bracing made of at least one metal tube which encloses the reinforcing steel and is filled with a suitable mass for the purpose, e.g. concrete, sand or similar. The mass is adapted to absorb part of the pressure force, which causes pressure forces directed radially outwards towards the inside of the pipe(s) which are suitable for increasing its resistance to deformation. In this way, concrete bodies are exposed to pressure forces that act between the end anchorages of the reinforcing steel and the pressure-force-absorbing bracing ends. When the middle part, which in this case is supplied with pipes, the production of sleepers of different lengths is facilitated, as the same mold can be used for different lengths, as only a shortening of the distance between the mold halves needs to be made. Those in sleep

inngående rør kan være utført av form-ettergivende materialer. For å beskytte incoming pipes can be made of form-retaining materials. To protect

røret mot rustdannelse kan dette uten ulempe forsynes med galvanisering eller the pipe against rust formation, this can be provided without inconvenience with galvanization or

undergå en annen rustbeskyttende behand-ling. undergo another rust protection treatment.

Ved en fordelaktig utførelsesform er rørets eller rørenes ender utpresset til større dimensjoner. Herved fåes en større berøringsflate mellom betongen og røren-dene og dermed en forbedret innfestning. In an advantageous embodiment, the ends of the pipe or pipes are extruded to larger dimensions. This results in a larger contact surface between the concrete and the pipe ends and thus an improved attachment.

Ytterligere for oppfinnelsen særegne egenskaper skal i det følgende forklares under hensvisning til den på tegningen som eksempel viste utførelsesform. Further properties peculiar to the invention shall be explained in the following with reference to the embodiment shown in the drawing as an example.

Fig. 1 viser betongsvillen sett fra siden med den høyre side sett i snitt. Fig. 2 viser svillen sett ovenfra, mens fig. 3 viser et tverrsnitt gjennom betongsvillen. Fig. 1 shows the concrete sleeper seen from the side with the right side seen in section. Fig. 2 shows the sleeper seen from above, while fig. 3 shows a cross section through the concrete sleeper.

Ved den på tegningen viste utførelses-form består betongsvillen av to betonglegemer 1, som er forbundet med hverandre ved et påstøpt rør 2. Betongsvillen er ar-mert med en rett gjennom den gående armeringsstang 3. Denne armering er også ført gjennom røret, som er fylt med en for øyemedet egnet masse. Armeringen er i sine ender forsynt med en forankring 4, som innstøpes samtidig med fremstillingen av svillen. Den ene ende forsynes med en utsparing av sådan størrelse, at ét strekkorgan kan plaseres på armeringens ene ende, for innføring av spenninger i armeringen. Disse spenninger overføres av forankringene til svillen. Ved denne anord-ning vil såvel betongen som røret med den i dette innførte masse utsettes for forspenning. Den her beskrevne sville får en hittil ukjent fjæring, dels ved at røret er forspent, dels ved at den i rørets ifylte masse under sammenspresningen vil fremkalle radielt rettede krefter, som hindrer rørets deformering. At radielt rettede krefter finnes er en fordel, da røret på grunn herav kan utføres av mykere gods eller legering, og eventuelt kan passende plastrør anven-des. Svillen er forsynt med hull 5 for an-bringelse av festedelene. In the embodiment shown in the drawing, the concrete sleeper consists of two concrete bodies 1, which are connected to each other by a cast-on pipe 2. The concrete sleeper is reinforced with a straight through reinforcing bar 3. This reinforcement is also passed through the pipe, which is filled with a mass suitable for the purpose. The reinforcement is provided at its ends with an anchorage 4, which is cast in at the same time as the sleeper is manufactured. One end is provided with a recess of such a size that one tension member can be placed on one end of the reinforcement, for the introduction of stresses in the reinforcement. These stresses are transferred by the anchorages to the sleeper. With this device, both the concrete and the pipe with the mass introduced into it will be subjected to prestressing. The sleeper described here receives a hitherto unknown suspension, partly because the pipe is prestressed, partly because it will induce radially directed forces in the pipe's filled mass during compression, which prevent the pipe from deforming. The fact that there are radially directed forces is an advantage, as because of this the pipe can be made of softer material or alloy, and possibly suitable plastic pipes can be used. The sleeper is provided with holes 5 for attaching the fastening parts.

Ved tilvirkningen av betongsvillen fyl-les røret med masse etterat armeringen er ført gjennom det. Mellomdelen legges der-etter i støpeformen og støpningen av be-tonglegeme utføres etterat armeringen og avstandsorganene er innlagt på sine rette plasser. Når betonglegemene har fått til-strekkelig styrke innføres spenningene i armeringen hensiktsmessig i to eller flere omganger. Etter den endelige strekning av armeringsjernene vil såvel betongen som røret være utsatt for forspenning og da den i røret innførte masse er utsatt for sam-menpresning vil denne masse ekspandere i radiell retning. During the manufacture of the concrete sleeper, the pipe is filled with mass after the reinforcement has been passed through it. The intermediate part is then placed in the mold and the casting of the concrete body is carried out after the reinforcement and spacers have been placed in their correct places. When the concrete bodies have gained sufficient strength, the stresses are appropriately introduced into the reinforcement in two or more rounds. After the final stretch of the reinforcing bars, both the concrete and the pipe will be exposed to prestress and as the mass introduced into the pipe is subjected to compression, this mass will expand in the radial direction.

Oppfinnelsen er naturligvis ikke be-grenset til den viste og beskrevne utførel-sesform, da meget betydelige endringer kan forekomme innen rammen for oppfinnel-sestanken. Således er beskyttelsen ikke bundet til en viss utførelse av røret eller dets innstøpning i betonglegemene. Dessuten kan trykkskiver innlegges ved endene på røret. The invention is of course not limited to the embodiment shown and described, as very significant changes can occur within the framework of the inventive idea. Thus, the protection is not tied to a certain design of the pipe or its embedment in the concrete bodies. In addition, pressure washers can be inserted at the ends of the pipe.

Claims (2)

1. Betongsville bestående av to betonglegemer (1) som holdes sammen av et eller flere under strekkspenning værende armeringsstål (3) med endeforankringer i betonglegemenes lengst fra hverandre værende endedeler, karakterisert ved at betonglegemene holdes fra hverandre av en trykk-kraft-opptagende avstivning utført av minst ett metallrør (2) omsluttende ar-meringsstålet og fyllt med en for øyemedet egnet masse som er avpasset til å oppta en del av trykk-kraften, hvilket medfører radielt utadrettede mot rørets (rørenes) inn-side rettede trykk-krefter som øker dets motstand mot deformering ved betong-le-gemenes belastning eller stillingsendring.1. Concrete sleeper consisting of two concrete bodies (1) held together by one or more reinforcing steel (3) under tensile stress with end anchorages in the end parts of the concrete bodies furthest apart, characterized by the fact that the concrete bodies are held apart by a pressure-force-absorbing bracing carried out of at least one metal tube (2) enclosing the reinforcing steel and filled with a material suitable for the purpose which is adapted to absorb part of the pressure force, which results in pressure forces directed radially outwards towards the inside of the pipe(s) which increase its resistance to deformation when the concrete bodies are loaded or changed in position. 2. Betongsville ifølge påstand 1, karakterisert ved at rørets eller rørenes ender er utpresset til større dimensjoner.2. Concrete sleeper according to claim 1, characterized in that the ends of the pipe or pipes are extruded to larger dimensions.
NO3985/68A 1967-10-12 1968-10-08 NO122117B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67493567A 1967-10-12 1967-10-12
US67655267A 1967-10-19 1967-10-19
US70430468A 1968-02-09 1968-02-09

Publications (1)

Publication Number Publication Date
NO122117B true NO122117B (en) 1971-05-18

Family

ID=27418293

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3985/68A NO122117B (en) 1967-10-12 1968-10-08

Country Status (7)

Country Link
JP (1) JPS5136240B1 (en)
BE (1) BE722179A (en)
FR (1) FR96002E (en)
GB (1) GB1248936A (en)
NL (1) NL6814619A (en)
NO (1) NO122117B (en)
SE (1) SE343286B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8609865D0 (en) * 1986-04-23 1986-05-29 Courtaulds Plc Composite articles
EP2208767A3 (en) * 2009-01-12 2010-08-18 crenox GmbH Method for polishing with the help of polish containing titanium
JP4989792B2 (en) * 2010-11-01 2012-08-01 昭和電工株式会社 Method for producing alumina sintered body, alumina sintered body, abrasive grains, and grindstone

Also Published As

Publication number Publication date
DE1802682B2 (en) 1976-07-08
BE722179A (en) 1969-04-11
SE343286B (en) 1972-03-06
GB1248936A (en) 1971-10-06
NL6814619A (en) 1969-04-15
DE1802682A1 (en) 1969-08-07
JPS5136240B1 (en) 1976-10-07
FR96002E (en) 1972-05-19

Similar Documents

Publication Publication Date Title
US2781658A (en) Post-stressed concrete structure
US2371882A (en) Tensioning and anchoring of cables in concrete or similar structures
US3501920A (en) Reinforced concrete poles,piles and the like
US903909A (en) Reinforced concrete construction.
US2185749A (en) Means of reinforcing concrete
Lee et al. Steel strap confined high strength concrete under uniaxial cyclic compression
US2751660A (en) Method of pre-stressing reinforced concrete structural elements
US3948010A (en) Reinforcing device for an element of prestressed concrete
NO122117B (en)
US2080074A (en) Piece of reenforced concrete
US2172703A (en) E freyssinet
US2455153A (en) Composite structural member
CN106639347B (en) Two dimension prestressing semicircle steel plate is online without damaged reinforced concrete cylinder method
NO119916B (en)
US2035662A (en) Structure for transmitting loads
US3111965A (en) Prestressed concrete structure and method of making the same
US2571578A (en) Hollow article of concrete and the like
US1781699A (en) Reenforced concrete pipe
US1497142A (en) Building stave
US701377A (en) Concrete column.
Alsayed Confinement of reinforced concrete columns by rectangular ties and steel fibres
GB691323A (en) Improvements in or relating to the manufacture of poles, beams and the like of concrete and similar material
US980479A (en) Building construction.
JPS5825806B2 (en) Concrete piles and columns using high-strength spiral reinforcement
US611909A (en) hennebique