NO121604B - - Google Patents

Download PDF

Info

Publication number
NO121604B
NO121604B NO15809165A NO15809165A NO121604B NO 121604 B NO121604 B NO 121604B NO 15809165 A NO15809165 A NO 15809165A NO 15809165 A NO15809165 A NO 15809165A NO 121604 B NO121604 B NO 121604B
Authority
NO
Norway
Prior art keywords
reaction
olefins
hydroperoxide
catalyst
epoxidation
Prior art date
Application number
NO15809165A
Other languages
Norwegian (no)
Inventor
J Kollar
Original Assignee
Halcon International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halcon International Inc filed Critical Halcon International Inc
Publication of NO121604B publication Critical patent/NO121604B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte for fremstilling av epoksyforbindelser. Process for the production of epoxy compounds.

Nærværende oppfinnelse vedrorer en forbedret fremgangsmåte for å utfore epoksydasjonen av olefiner med 6-30 karbonatomer under anvendelse av organiske hydroperoksyder. The present invention relates to an improved process for carrying out the epoxidation of olefins with 6-30 carbon atoms using organic hydroperoxides.

Det generelle felt av epoksydasjonen av olefiner til oksiran-forbindelser har lenge beskjeftiget fagmannen på det kjemiske; The general field of the epoxidation of olefins to oxirane compounds has long occupied those skilled in the chemical industry;

området. the area.

Det er kjent at olefiner har sterkt varierende reaksjonsdyktig-het avhengig av molekylenes storrelse og struktur. F.eks. D. Swern diskuterer en relativ reaksjonsvillighet for olefiner ved epoksydasjonen i J.A.C.S.62.(side 1697-98) (I9V7). De typiske generelle sammenlignbare reaksjonsdyktigheter hos olefiner ved epoksydasjon er: It is known that olefins have greatly varying reactivity depending on the size and structure of the molecules. E.g. D. Swern discusses a relative reactivity of olefins in the epoxidation in J.A.C.S.62.(pages 1697-98) (I9V7). The typical general comparable reactivities of olefins in epoxidation are:

Fra dette vil det fremgå at etylen og deretter olefiner som propylen er de vanskeligste av alle olefiner å epoksydere, mens olefiner som cykloheksen og oleinsyreester er letter å epoksydere. From this it will appear that ethylene and then olefins such as propylene are the most difficult of all olefins to epoxidise, while olefins such as cyclohexene and oleic acid ester are easier to epoxidise.

Tidligere arbeider har vist at etylen kan omdannes til etylenoksyd ved partiell oksydasjon i dampfase med molekyloksygen over en solvkatalysator, og det er denne metode som anvendes i det vesentlige ved all kommersiell produksjon av etylenoksyd. U.S.-patent nr. 2.693.^7^ er illustrerende for disse med hell gjorte anstrengelser for å fremstille etylenoksyd. Previous work has shown that ethylene can be converted to ethylene oxide by partial oxidation in the vapor phase with molecular oxygen over a sol catalyst, and it is this method that is used essentially in all commercial production of ethylene oxide. U.S. Patent No. 2,693,73 is illustrative of these successful efforts to produce ethylene oxide.

Imidlertid er den katalytiske oksydasjon i dampfase med molekyl-ært oksygen ikke anvendelig på de ovrige olefiner. However, the catalytic oxidation in the vapor phase with molecular oxygen is not applicable to the other olefins.

En vei som har vist seg gangbar for så vidt som den er brukbar for virkelig fremstilling av i det minste begrensede utbytter av propylenoksyd og andre oksyder er persyremetoden. Denne metode omfatter dannelsen av persyre slik som pereddiksyre ved reaksjon mellom hydrogenperoksyd og organisk syre og epoksydasjonen av et olefin med persyre. Ulempene ved persyremetoden er også slik at vesentlig bruk av metoden i teknisk målestokk utelukkes. Persyrene som sådanne er ytterst hasardiose å behandle og gir grunn til alvorlige arbeidsproblemer. Reaksjons-komponentene er dyre, korroderende og ikke regenererbare inntil hydrogenperoksydet tapes som vann. Sammensetningen av persyre-epoksydasjonsblandingen inneholder kjemikalier (H^O, AcOH og B^SO^) som er sterkt reaksjonsvillige med epoksydproduktene og leder således til mange biprodukter f.eks. glykol, glykolmono-ester, glykoldiest er, hvilket senker den totale effektivitet. Disse problemer blir langt alvorligere med de mindre reaksjonsvillige olefiner, særlig propylen. A route which has proved feasible in so far as it is usable for the actual production of at least limited yields of propylene oxide and other oxides is the peracid method. This method includes the formation of peracids such as peracetic acid by reaction between hydrogen peroxide and organic acid and the epoxidation of an olefin with peracids. The disadvantages of the peracid method are also such that significant use of the method on a technical scale is excluded. Peracids as such are extremely dangerous to treat and give rise to serious work problems. The reaction components are expensive, corrosive and cannot be regenerated until the hydrogen peroxide is lost as water. The composition of the peracid epoxidation mixture contains chemicals (H^O, AcOH and B^SO^) which are highly reactive with the epoxide products and thus lead to many by-products, e.g. glycol, glycol mono-ester, glycol diest are, which lowers the overall efficiency. These problems become far more serious with the less reactive olefins, especially propylene.

De foran nevnte arbeidsmetoder viser seg mindre enn tilfreds-stillende og forskere har undersokt mulige andre veier. Forsok er blitt gjort for å anvende hydrogenperoksyd i epoksydasjoner. Hydrogenperoksyd har lenge vært kjent som et hydroksylerings-middel for å omdanne forbindelser som er olefinisk, umettede til oc-p-dihydroksyforbindelser. Osmiuratetraoksyd har tradisjonelt vært anvendt som katalysator for å forårsake hydroksylering av olefiner med hydrogenperoksyd. MnO^har også vært brukt. Nyere arbeider har vist at forskjellige mindre reaksjonsvillige katalysatorer slik som wolfram og molybdenoksyd oker hydroksylering-en av olefiner. Se U.S.-patenter 2.613.223 og 2. 75h.32?. The work methods mentioned above prove to be less than satisfactory and researchers have investigated possible other ways. Attempts have been made to use hydrogen peroxide in epoxidations. Hydrogen peroxide has long been known as a hydroxylating agent to convert compounds that are olefinically unsaturated to oc-p-dihydroxy compounds. Osmiurate tetraoxide has traditionally been used as a catalyst to cause hydroxylation of olefins with hydrogen peroxide. MnO^ has also been used. Recent work has shown that various less reactive catalysts such as tungsten and molybdenum oxide increase the hydroxylation of olefins. See U.S. Patents 2,613,223 and 2. 75h.32?.

Hverken osmium eller mangan i noen kjemisk form har vist noen katalytisk effekt ved de foreliggende arbeider ved epoksydasjon av olefiner, uansett reaksjonsvillighet med hydrogenperoksyder. Neither osmium nor manganese in any chemical form has shown any catalytic effect in the present work on the epoxidation of olefins, regardless of their reactivity with hydrogen peroxides.

Således kan det sees at hydroksyleringsreaksjonen ikke tilsvarer en epoksydasjon, og glykolproduktet som resulterer fra hydroks-yleringen lar seg ikke praktisk omdanne til epoksyd. Thus, it can be seen that the hydroxylation reaction does not correspond to an epoxidation, and the glycol product resulting from the hydroxylation cannot be practically converted to epoxide.

Senere arbeider av en av oppfinnerene i U.S.-patent nr. 2.75^.325 som inneholdt i U.S.-patent nr. 2.786.8^ har angitt at epoksyder kunne dannes ved reaksjon av olefiner med hydrogenperoksyd, forutsatt at reaksjonsblandingen ikke blir utsatt for en temperatur over 100°C, inntil all katalysator var blitt skilt fra eller forutsatt, hvor et hydroksyolefin omsettes, at et noytralt salt av en wolframsyre brukes. Se U.S.-patent nr. 2.833-788. Hydrogenperoksyd har den klare ulempe av hoy pris og ikke-regenererbarhet så vel som vanndannelsen som forårsaker produkttap. Later work by one of the inventors in U.S. Patent No. 2,75,325 contained in U.S. Patent No. 2,786,8^ indicated that epoxides could be formed by reaction of olefins with hydrogen peroxide, provided the reaction mixture is not exposed to a temperature above 100°C, until all catalyst had been separated or provided, where a hydroxyolefin is reacted, that a neutral salt of a tungstic acid is used. See U.S. Patent No. 2,833-788. Hydrogen peroxide has the clear disadvantage of high price and non-regenerability as well as the formation of water which causes product loss.

Nye arbeider med substituerte olefiner som har storre reaksjonsvillighet, har omtalt epoksydas jonen av <x-(3-etylenske ketoner og aldehyder med organiske hydroperoksyder ved omhyggelig kontroll-erte pH-betingelser. Se U.S.-patent nr. 3-013.02<1>+ og nr. 3.062.8^-1. Recent work with substituted olefins having greater reactivity has addressed the epoxidase of <x-(3-ethylenic ketones and aldehydes with organic hydroperoxides under carefully controlled pH conditions. See U.S. Patent No. 3-013.02<1>+ and No. 3.062.8^-1.

Noen eldre arbeider ble også utfort med hydroperoksyd. I et arbeid av Hawkins ble beskrevet epoksydasjonen av mer reaksjons-dyktige olefiner med hoy molekylær vekt, men med lavt utbytte med organisk hydroperoksyd i nærvær av vanadiumpentoksydkataly-sator. Hawkins var i stand til å oppnå et utbytte på 36$ cyklo-heksenoksyd fra cykloheksen og kumenhydroperoksyd. Med mindre reaksjonsvillig okten-1 ble et utbytte på bare lh% oppnådd. Etter å ha funnet katalysatorene som anvendes i nærværende krav har William F. Brill og N. Indictor vist at med mindre reaksjonsvillig hydroperoksyd slik som t-butylhydroperoksyd kan epoksydet av cykloheksen oppnås med et 32$ utbytte og okten-1 i et 10% utbytte i fullstendig fravær av katalysator. Some older works were also carried out with hydroperoxide. In a work by Hawkins, the epoxidation of more reactive olefins with a high molecular weight, but with a low yield, with organic hydroperoxide in the presence of a vanadium pentoxide catalyst was described. Hawkins was able to obtain a 36% yield of cyclohexene oxide from cyclohexene and cumene hydroperoxide. With less reactive octene-1, a yield of only 1h% was obtained. After finding the catalysts used in the present claims, William F. Brill and N. Indictor have shown that with less reactive hydroperoxide such as t-butyl hydroperoxide, the epoxide of the cyclohexene can be obtained in a 32% yield and the octene-1 in a 10% yield in complete absence of catalyst.

Disse kjennsgjerninger viser behovet på det kjemiske område for mer effektive katalysatorer for anvendelse ved epoksydasjon av olefiner med hydroperoksyder. These facts show the need in the chemical field for more efficient catalysts for use in the epoxidation of olefins with hydroperoxides.

Bri;ken av hydroperoksyder ved epoksydas jonen av olefiner gir meget viktige og avgjorte fordeler overfor bruken av persyre eller hydrogenperoksyd. Hydroperoksyder er relativt billige og behagelige og sikre å behandle. Dessuten kan hydroperoksyder lettere oppnås og holdes i vannfri form og reduserer således den potentiale utvinning av epoksyd og reduserer renseproblemene. Slik som det også senere vil bli anfort kan hydroperoksydet også ofte omdannes til et derivat som er resultatet av epoksydasjonen fra hvilket hydroperoksyd også lett kan regenereres og som i seg selv lett kan omdannes til andre verdifulle produkter. Foreliggende oppfinnelse angår således en fremgangsmåte til fremstilling av olefinepoksyder ved oksydasjon av olefiner med 6 til 30 karbonatomer med et organisk hydroperoksyd, fortrinnsvis tertiært butylperoksyd, idet reaksjonen fortrinnsvis foregår i et flytende reaksjonsmedium som omfatter et opplosningsmiddel som i alt vesentlig er vann- og syrefritt og i hvilket katalysator og reaksjonskomponenter er opplost, ved en temperatur mellom -20 og 200°C og et trykk som medforer at reaksjonsmediet er flytende, og fremgangsmåten erkarakterisert vedat reaksjonen utfores i nærvær av karbonylforbindelser eller organometallforbindelser av molybden, vanadium og wolfram som har en opploselighet i metanol ved romtemperatur på minst 0,1 g/liter, eller blandinger av disse som katalysator. The use of hydroperoxides in the epoxidation of olefins provides very important and definite advantages over the use of peracid or hydrogen peroxide. Hydroperoxides are relatively cheap and comfortable and safe to treat. Moreover, hydroperoxides can be more easily obtained and kept in anhydrous form and thus reduce the potential extraction of epoxide and reduce the cleaning problems. As will also be stated later, the hydroperoxide can also often be converted into a derivative which is the result of the epoxidation from which the hydroperoxide can also be easily regenerated and which itself can easily be converted into other valuable products. The present invention thus relates to a method for the production of olefin epoxides by oxidizing olefins with 6 to 30 carbon atoms with an organic hydroperoxide, preferably tertiary butyl peroxide, the reaction preferably taking place in a liquid reaction medium which comprises a solvent which is essentially water- and acid-free and in which the catalyst and reaction components are dissolved, at a temperature between -20 and 200°C and a pressure which results in the reaction medium being liquid, and the method is characterized by the reaction being carried out in the presence of carbonyl compounds or organometallic compounds of molybdenum, vanadium and tungsten which have a solubility in methanol at room temperature of at least 0.1 g/litre, or mixtures of these as catalyst.

I overensstemmelse med nærværende oppfinnelse bringes forbind-elsen som skal epoksyderes i kontakt med et flytende epoksyderende organiske hydroperoksyd som inneholder en katalytisk mengde av en opploselig forbindelse av ett eller flere av de foran nevnte metaller ved epoksyderingsreaksjonsbetingelsene. Under slike betingelser fortsetter epoksyderingsreaksjonen jevnt med hoy selektivitetsgrad til det onskede epoksyprodukt. In accordance with the present invention, the compound to be epoxidized is brought into contact with a liquid epoxidizing organic hydroperoxide containing a catalytic amount of a soluble compound of one or more of the aforementioned metals under the epoxidation reaction conditions. Under such conditions, the epoxidation reaction proceeds smoothly with a high degree of selectivity to the desired epoxy product.

Temperaturer som kan anvendes ved nærværende oppfinnelse kan variere utstrakt avhengig av reaksjonsdyktigheten og andre egen-skaper for de ovrige reaksjonskomponenter. Temperaturer innenfor området ca. -20 til 200°C, særlig 0 - l50°C, og fortrinnsvis 20 Temperatures that can be used in the present invention can vary widely depending on the reactivity and other properties of the other reaction components. Temperatures within the range approx. -20 to 200°C, especially 0 - 150°C, and preferably 20

- 100°C kan brukes. Reaksjonen utfores ved trykkbetingelser - 100°C can be used. The reaction is carried out under pressure conditions

tilstrekkelig til å opprettholde en flytende reaksjonsfase. Skjont subatmosfæriske trykk kan brukes, er trykk vanligvis innenfor områo det fra atmosfærisk til 70 kg/cm 2 mest onsket. sufficient to maintain a liquid reaction phase. Although subatmospheric pressures can be used, pressures in the range of atmospheric to 70 kg/cm 2 are generally most desired.

Det organiske hydroperoksyd som kan anvendes i nærværende opp-, finnelse har den generelle formel R - 0 - 0 - H, hvor R er et substituert eller usubstituert organisk radikal med 3-20 karbonatomer. Illustrerende for spesifikke forbindelser er kumenhydroperoksyd, tertiært butylhydroperoksyd, cykloheksanon-peroksyd (cykloheksanhydroperoksyd med en hydroksylgruppe på karbonatomet til hvilket hydroksyperoksygruppen er bundet), metyletylketonperoksyd, metylcykloheksanhydroperoksyd. En anvendelig hydroperoksydforbindelse for anvendelse ved oppfinnelsen er det peroksydiske produkt som dannes ved molekylaroksy-genoksydasjon av cykloheksanol i flytende fase. The organic hydroperoxide that can be used in the present invention has the general formula R - 0 - 0 - H, where R is a substituted or unsubstituted organic radical with 3-20 carbon atoms. Illustrative of specific compounds are cumene hydroperoxide, tertiary butyl hydroperoxide, cyclohexanone peroxide (cyclohexane hydroperoxide with a hydroxyl group on the carbon atom to which the hydroxyperoxy group is attached), methyl ethyl ketone peroxide, methyl cyclohexane hydroperoxide. A useful hydroperoxide compound for use in the invention is the peroxidic product which is formed by molecular oxygen oxidation of cyclohexanol in the liquid phase.

For gunstig utforelse av oppfinnelsen må katalytiske komponenter anvendes i form av en forbindelse eller blanding som opprinnelig er opploselig i reaksjonsmediet. Skjont opploseligheten vil i noen grad avhenge av det spesielle reaksjonsmedium som anvendes, kan det egnede opploselige stoff som anvendes ifolge oppfinnelsen mere spesielt defineres som hydrokarbonopploselig, organo-metalliske forbindelser eller karbonylforbindelser av molybden, vanadium og wolfram som har en opploselighet i metanol ved romtemperatur på minst 0,1 g/liter. Illustrerende opploselige former for katalytiske materialer er naftenatene, stearatene, oktoatene,' karbonylene. Forskjellige chelater, assosiasjons-forbindelser og enolsalter, slik som f.eks. acetoacetonater, kan også brukes. Spesifikke og foretrukne katalytiske forbindelser for anvendelse ved oppfinnelsen er naftenatene og karbonylet av molybden, vanadium og wolfram. For a favorable implementation of the invention, catalytic components must be used in the form of a compound or mixture which is initially soluble in the reaction medium. Although the solubility will depend to some extent on the particular reaction medium used, the suitable soluble substance used according to the invention can be more specifically defined as hydrocarbon-soluble, organo-metallic compounds or carbonyl compounds of molybdenum, vanadium and tungsten which have a solubility in methanol at room temperature of at least 0.1 g/litre. Illustrative soluble forms of catalytic materials are the naphthenates, the stearates, the octoates, the carbonyls. Various chelates, association compounds and enol salts, such as e.g. acetoacetonates, can also be used. Specific and preferred catalytic compounds for use in the invention are the naphthenates and the carbonyl of molybdenum, vanadium and tungsten.

Mengden av katalysator som anvendes vil generelt være minst 0,01 millimol metall pr. mol peroksyforbindelser. Fortrinnsvis skal fra 0,02 til ^-0 millimol, særlig 0, h - h millimol, anvendes. The amount of catalyst used will generally be at least 0.01 millimoles of metal per moles of peroxy compounds. Preferably from 0.02 to ^-0 millimoles, especially 0.h - h millimoles, should be used.

Reaksjonstiden vil variere avhengig av den onskede omdannelse. Meget korte reaksjonstider av størrelsesorden 1 minutt kan brukes hvor lave omdannelser og/eller meget reaksjonsvillige materialer anvendes. Normalt anvendes reaksjonstider fra 10 minutter til 10 timer og vanligvis fra 20 minutter til 3 timer. The reaction time will vary depending on the desired conversion. Very short reaction times of the order of 1 minute can be used where low conversions and/or very reactive materials are used. Normally, reaction times from 10 minutes to 10 hours and usually from 20 minutes to 3 hours are used.

Olefinene som epoksyderes i overensstemmelse med denne fremgangsmåte er de som har 6-30 karbonatomer. Illustrerende olefiner er metylpentenene, de normale heksenene, oktenene, dodecenene, cykloheksen, metylcykloheksen, vinyltoluen, vinylcykloheksen, fenylcykloheksenene. Olefiner som har halogen, oksygen, svovel og lignende substituenter kan brukes. Slike substituerte olefiner illustreres av cykloheksenol, metyloleat. Generelt kan alle olefiniske materialer som har 6-30 karbonatomer som epoksyderes ved tidligere anvendte kjente metoder epoksyderes i overensstemmelse med nærværende fremgangsmåte. The olefins which are epoxidized in accordance with this method are those having 6-30 carbon atoms. Illustrative olefins are the methylpentenes, the normal hexenes, the octenes, the dodecenes, the cyclohexene, the methylcyclohexene, the vinyltoluene, the vinylcyclohexene, the phenylcyclohexenes. Olefins having halogen, oxygen, sulfur and similar substituents can be used. Such substituted olefins are exemplified by cyclohexenol, methyl oleate. In general, all olefinic materials having 6-30 carbon atoms that are epoxidized by previously used known methods can be epoxidized in accordance with the present method.

Reaksjonen utfores fortrinnsvis i nærvær av et opplosningsmiddel. Opplosningsmidlet skulle være slik at alle komponentene, inklu-sive katalysatoren, er opploselige. Blandt de egnede stoffer finnes hydrokarboner, som kan være alifatiske, nafteniske eller aromatiske, og de oksyderte derivater av disse hydrokarboner. Alkoholder, ketoner, etere og estere er særlig fordelaktige, og nærværet av alkoholiske eller ketoniske stoffer er ofte anvendelse selv når hovedopplosningsmidlet er et hydrokarbonmateriale. Cykloheksanol, t-butylalkohol og aceton er særlig anvendelige. The reaction is preferably carried out in the presence of a solvent. The solvent should be such that all the components, including the catalyst, are soluble. Among the suitable substances are hydrocarbons, which can be aliphatic, naphthenic or aromatic, and the oxidized derivatives of these hydrocarbons. Alcohols, ketones, ethers and esters are particularly advantageous, and the presence of alcoholic or ketone substances is often useful even when the main solvent is a hydrocarbon material. Cyclohexanol, t-butyl alcohol and acetone are particularly useful.

Ved nærværende oppfinnelse er der fremskaffet en ny epoksyder-ingsprosess. Hvor man tidligere har vært begrenset til anvendelse av epoksyderende midler, slik som persyrer, er det her funnet at organiske hydroperoksyder også med fordel kan anvendes i fremstillingen av verdifulle epoksy-forbindelser. With the present invention, a new epoxidation process has been provided. Where in the past one has been limited to the use of epoxidizing agents, such as peracids, it has been found here that organic hydroperoxides can also be used with advantage in the production of valuable epoxy compounds.

Fremgangsmåten etter oppfinnelsen utfores fortrinnsvis i et flytende reaksjonsmedium som omfatter ét opplosningsmiddel som i alt vesentlig er vann- og syrefritt. The method according to the invention is preferably carried out in a liquid reaction medium which comprises a solvent which is essentially water- and acid-free.

De folgende eksempler illustrerer fremgangsmåten etter oppfinnelsen. The following examples illustrate the method according to the invention.

Eksempel 1 Example 1

Det innfores i en reaktor utstyrt med omrorer 11 g 63$'s etyl-benzenhydroperoksyd i etylbenzen, 29,6 g metyloleat, 0,1 g naftenatopplosning som inneholder 5$ Mo. Reaksjonsblandingen oppvarmes til 80°C og omsettes under omroring i 3 timer ved et trykk mellom 7 og ^2 kg/cm . Hydroperoksydomdannelsen er 83,80$ og selektiviteten er storre enn 89$ basert på mol metyloleatep-oksyd som dannes pr. mol omsatt hydroperoksyd. 11 g of 63% ethylbenzene hydroperoxide in ethylbenzene, 29.6 g of methyl oleate, 0.1 g of naphthenic solution containing 5% Mo are introduced into a reactor equipped with stirrers. The reaction mixture is heated to 80°C and reacted with stirring for 3 hours at a pressure between 7 and 2 kg/cm . The hydroperoxide conversion is 83.80$ and the selectivity is greater than 89$ based on moles of methyl oleatep oxide formed per moles of hydroperoxide reacted.

Eksempel 2 Example 2

Ved å folge eksempel 1 bortsett fra å bruke ^, 6 g av hydroper- oksydopplosningen og 10,8 g <+-vinylcykloheksen, med en temperatur på 20 - 50°C, og 1 times reaksjonstid, er hydroperoksydomdannelsen 87,7$ og selektiviteten er tilnærmet 100$ basert på mol ^-vinylcykloheksenepoksyd som dannes pr. mol omsatt hydroperoksyd. By following Example 1 except using ^.6 g of the hydroperoxide solution and 10.8 g of <+-vinyl cyclohexene, with a temperature of 20 - 50°C, and a 1 hour reaction time, the hydroperoxide conversion is 87.7$ and the selectivity is approximately 100$ based on mol of ^-vinylcyclohexene epoxide which is formed per moles of hydroperoxide reacted.

På lignende måte epoksyderes okten-1 eller dodecen-1 eller heksadecen-1. In a similar way, octene-1 or dodecene-1 or hexadecene-1 is epoxidized.

Claims (1)

Fremgangsmåte til fremstilling av olefinepoksyder ved oksydasjon av olefiner med 6 til 30 karbonatomer med et organisk hydroperoksyd, fortrinnsvis tertiært butylperoksyd, idet reaksjonen fortrinnsvis foregår i et flytende reaksjonsmedium som omfatter et opplosningsmiddel som i alt vesentlig er vann- og syrefritt og i hvilket katalysator og reaksjonskomponenter er opplost, ved en temperatur mellom -20 og 200°C og et trykk som medforer at reaksjonsmediet er flytende,karakterisertved at reaksjonen utfores i nærvær av karbonylforbindelser eller organometallforbindelser av molybden, vanadium og wolfram som har en opploselighet i metanol ved romtemperatur på minst 0,1 g/liter, eller blandinger av disse som katalysator.Process for the production of olefin epoxides by oxidation of olefins with 6 to 30 carbon atoms with an organic hydroperoxide, preferably tertiary butyl peroxide, the reaction preferably taking place in a liquid reaction medium comprising a solvent which is essentially water- and acid-free and in which catalyst and reaction components is dissolved, at a temperature between -20 and 200°C and a pressure which results in the reaction medium being liquid, characterized in that the reaction is carried out in the presence of carbonyl compounds or organometallic compounds of molybdenum, vanadium and tungsten which have a solubility in methanol at room temperature of at least 0 ,1 g/litre, or mixtures of these as a catalyst.
NO15809165A 1964-05-25 1965-05-14 NO121604B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37010764A 1964-05-25 1964-05-25

Publications (1)

Publication Number Publication Date
NO121604B true NO121604B (en) 1971-03-22

Family

ID=23458249

Family Applications (1)

Application Number Title Priority Date Filing Date
NO15809165A NO121604B (en) 1964-05-25 1965-05-14

Country Status (9)

Country Link
BE (1) BE663859A (en)
DE (1) DE1518993B2 (en)
ES (1) ES313404A2 (en)
FR (1) FR87941E (en)
GB (1) GB1114901A (en)
LU (1) LU48623A1 (en)
NL (1) NL6506244A (en)
NO (1) NO121604B (en)
SE (1) SE342223B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1359467A (en) * 1970-06-20 1974-07-10 Dunlop Holdings Ltd Pneumatic tyre and wheel rim assemblies
GB1359468A (en) * 1970-06-20 1974-07-10 Dunlop Holdings Ltd Pneumatic tyres and wheel rim assemblies
NL7606706A (en) * 1975-07-10 1977-01-12 Halcon International Inc METHOD FOR THE PREPARATION OF HYDROPEROXIDES.

Also Published As

Publication number Publication date
NL6506244A (en) 1965-11-26
FR87941E (en) 1966-11-04
BE663859A (en) 1965-11-16
ES313404A2 (en) 1965-07-16
DE1518993A1 (en) 1969-10-09
LU48623A1 (en) 1966-11-17
SE342223B (en) 1972-01-31
DE1518993B2 (en) 1978-01-12
GB1114901A (en) 1968-05-22

Similar Documents

Publication Publication Date Title
US5214168A (en) Integrated process for epoxide production
Clerici et al. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite
US5262550A (en) Epoxidation process using titanium-rich silicalite catalysts
US4314088A (en) Hydroxylation of olefins
US4303586A (en) Catalytic epoxidation of olefins
US3337646A (en) Hydrogenation of cumyl alcohol to cumene
US5093506A (en) Removal of acidic contaminants from tertiary butyl hydroperoxide
US4157346A (en) Catalytic epoxidation of alkylene compounds
US2414385A (en) Hydroxylation of unsaturated organic compounds containing an alcohol or ether group
JP2002502390A (en) Alkene epoxidation
US3337635A (en) Method of producing ketols from hydrocarbons
NO160403B (en) SYNERGISTIC ANTIMICROBIAL PREPARATION.
US3860662A (en) Process for treating the product mixture from the epoxidation of olefinic hydrocarbons
US3832363A (en) Method of epoxidizing olefinic compounds using an oxyboron catalyst
IL27188A (en) Oxidation of ethylbenzene to ethylbenzene hydroperoxide and epoxidation of olefins by reaction with ethylbenzene hydroperoxide
NO121604B (en)
US5151530A (en) Treatment of tertiary butyl hydroperoxide distillation fraction to remove acidic contaminants
US3475498A (en) Process for preparing ethyl benzene hydroperoxide
US5103027A (en) Olefin expoxidation using an oxorhenium porphyrin complex catalyst and an organic hydroperoxide
US6303828B1 (en) Process for selective catalytic oxidation of olefins to aldehydes, ketones with cleavage of C=C bonds
US5118822A (en) Olefin epoxidation using a perrhenate catalyst and an organic hydroperoxide
US3654317A (en) Epoxidation process
NO119737B (en)
US3716563A (en) Preparation of epoxide compounds by epoxidizing olefins with preformed organoperoxyboron compounds
DE1468025C3 (en) Process for the preparation of epoxy compounds