NO120941B - - Google Patents
Download PDFInfo
- Publication number
- NO120941B NO120941B NO169365A NO16936567A NO120941B NO 120941 B NO120941 B NO 120941B NO 169365 A NO169365 A NO 169365A NO 16936567 A NO16936567 A NO 16936567A NO 120941 B NO120941 B NO 120941B
- Authority
- NO
- Norway
- Prior art keywords
- pressure
- gas
- stream
- natural gas
- refrigerant
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims description 43
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 28
- 239000003507 refrigerant Substances 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 14
- 239000003345 natural gas Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims description 7
- 239000003949 liquefied natural gas Substances 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims 2
- 238000009833 condensation Methods 0.000 claims 2
- 238000009835 boiling Methods 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical group FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/06—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0097—Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0232—Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0238—Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
- F25J1/0255—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/02—Mixing or blending of fluids to yield a certain product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
Fremgangsmåte for regulering av brennverdien 'avProcedure for regulating the calorific value 'of
naturgass som skal tilføres til et fordelingssystem. natural gas to be supplied to a distribution system.
Foreliggende oppfinnelse angår overføring av naturgass til flytende form, lagring av den kondenserte gass og levering av gassen i gassform. Det er kjent å kondensere naturgass for lagring, men det oppstår visse problemer på grunn av den blandede sammensetning som naturgass oftest har, idet den inneholder en forholdsvis stor del metan sammen med lignen-de mengder nitrogen og hydrokarboner med høy molekylvekt. Når den flytendegjorte naturgass overføres til gassform for å leveres til forbrukeren, har komponentene med lavest kokepunkt tilbøyelighet til først å fordampe, og da disse har en lavere brennverdi, vil brennverdien av den leverte gass ha tilbøyelig- het til å variere med tiden.Foreliggende oppfinnelse går ut på en fremgangsmåte til regulering av brennverdien av den fra et lagringssted leverte naturgass. The present invention relates to the transfer of natural gas to liquid form, storage of the condensed gas and delivery of the gas in gaseous form. It is known to condense natural gas for storage, but certain problems arise due to the mixed composition that natural gas usually has, as it contains a relatively large proportion of methane together with similar amounts of nitrogen and hydrocarbons of high molecular weight. When the liquefied natural gas is transferred to gaseous form to be delivered to the consumer, the components with the lowest boiling point tend to evaporate first, and as these have a lower calorific value, the calorific value of the delivered gas will tend to vary with time. Present invention concerns a method for regulating the calorific value of the natural gas delivered from a storage location.
Oppfinnelsen angår generelt samme problemer som er behandlet i US patent nr. 3.285.719, men medfører visse for-deler sammenlignet med den her beskrevne fremgangsmåte, i det vesentlige bestående i økt operasjonseffektivitet og lavere kapitalinvestering. Dette er muliggjort ved å skille ut tyngre hydrokarboner fra rågassen efter at den er kondensert til flytende form og mens den ennå befinner seg under høyt trykk, The invention generally concerns the same problems that are dealt with in US patent no. 3,285,719, but entails certain advantages compared to the method described here, essentially consisting in increased operational efficiency and lower capital investment. This is made possible by separating heavier hydrocarbons from the raw gas after it has been condensed into liquid form and while it is still under high pressure,
i det vesentlige basert på en reduksjon av trykket av den flytendegjorte gass for å frembringe den ønskede separering. essentially based on a reduction of the pressure of the liquefied gas to produce the desired separation.
I overensstemmelse hermed går foreliggende oppfinnelse ut på en fremgangsmåte for regulering av brennverdien av naturgass som inneholder forskjellige hydrokarbonbestanddeler, til et fordelingssystem med en ønsket brennverdi og omfattende overføring av en hovedstrøm naturgass til flytende form ved høyt trykk, reduksjon av trykket av den flytendegjorte gass til lavt lagringstrykk og lagring av gassen ved dette lave trykk. In accordance with this, the present invention focuses on a method for regulating the calorific value of natural gas containing different hydrocarbon constituents, to a distribution system with a desired calorific value and extensive transfer of a main stream of natural gas to liquid form at high pressure, reduction of the pressure of the liquefied gas to low storage pressure and storage of the gas at this low pressure.
Det karakteristiske for fremgangsmåten består i kombinasjonen av følgende trekk: a) Tilførsel av hovedstrømmen av naturgass ved et trykk over atmosfærisk trykk og vesentlig over det normale trykk i The characteristic of the method consists in the combination of the following features: a) Supply of the main stream of natural gas at a pressure above atmospheric pressure and substantially above the normal pressure in
fordelingssystemet,the distribution system,
b) fjernelse av en mindre del av det nevnte flytende naturgass ved høyt" trykk og reduksjon av trykket for å frembringe bråfordampede gasser og en tyngre fraksjon av flytendegjorte hydrokarboner, c) fornyet overføring av den nevnte tyngre fraksjon til gass og tilførsel av denne gass til fordelingssystemet i en b) removal of a smaller part of said liquefied natural gas at high pressure and reduction of the pressure to produce flash vaporized gases and a heavier fraction of liquefied hydrocarbons, c) renewed transfer of said heavier fraction to gas and supply of this gas to the distribution system in one
mengde tilstrekkelig til å tilveiebringe den ønskede brennverdi av utløpsgass-strømmen. amount sufficient to provide the desired calorific value of the exhaust gas stream.
En foretrukken utførelsesform for oppfinnelsen skalA preferred embodiment of the invention shall
i det følgende beskrives under henvisning til tegningen hvis eneste figur er en sterkt forenklet, skjematisk illustrasjon . som viser prinsippet for oppfinnelsen. in what follows is described with reference to the drawing whose only figure is a greatly simplified, schematic illustration. which shows the principle of the invention.
Ifølge tegningen tilføres rågassen gjennom en hoved- gassledning (2) ved et passende høyt trykk i et omrade pa fra 28 til 7o kg/cm 2 , f.eks. 44,6 kg/cm 2, og ved en temperatur på 32°C. Efter å ha passert gjennom en vanlig avvanningsenhet According to the drawing, the raw gas is supplied through a main gas line (2) at a suitable high pressure in a range of from 28 to 7o kg/cm 2 , e.g. 44.6 kg/cm 2 , and at a temperature of 32°C. After passing through a conventional dewatering unit
(3) for å fjerne fuktighet, kjøles gassen uten reduksjon av trykket i tre varmevekslertrinn (5, 6 og 7) Det anvendte kjølemiddel skal være i stand til å kjøle den behandlede rågass ved et trykk på 44,6 kg/cm<2>fra 32°C til -87°C, hvilken kjøling trer i stedet for så vel propantrinnet som etylen-trinnet, som vanligvis brukes i mange kjente systemer. Et passende kjølemiddel for dette formål er Freon 13 B-l. Dette kjølemiddel leveres gjennom ledningen (8) fra lagertanken (9) til det indre av varmeveksleren (5) under kontroll av en passende bråfordamningsventil og nivåkontrollventil (11). Typiske driftsbetingelser for kjølemiddelet i varmeveksleren (5) er -6,7°C og 6,75 kg/cm<2.>Kjølemiddelet ledes derefter gjennom ledningen (12) til en annen varmeveksler i hvilken passende arbeidsbetingelser vil være -40 o C og 2,2 kg/cm 2. Kjølemiddelet ledes derefter gjennom ledningen (13) til varmeveksler (7), hvor det kan opprettholdes ved en temperatur på -87,2°C og et trykk på 0,19 kg/cm<2.>Fordampet kjølemiddel fra varmevekslerne (5, 6 og 7) ledes tilbake gjennom ledningene (15, 16 og 17) til en kjølemiddelkompressor (18), mens dampen fra varmeveksleren (7) ledes gjennom varmevekslerne (5 og 6), og dampen fra varmeveksleren (6) ledes gjennom varmeveksleren (5) for ytterligere utveksling av varmeenergi for derved å øke virkningsgraden. (3) to remove moisture, the gas is cooled without reducing the pressure in three heat exchanger stages (5, 6 and 7) The refrigerant used must be able to cool the treated raw gas at a pressure of 44.6 kg/cm<2> from 32°C to -87°C, which cooling takes the place of both the propane stage and the ethylene stage, which are usually used in many known systems. A suitable refrigerant for this purpose is Freon 13 B-l. This refrigerant is supplied through the line (8) from the storage tank (9) to the interior of the heat exchanger (5) under the control of a suitable flash valve and level control valve (11). Typical operating conditions for the refrigerant in the heat exchanger (5) are -6.7°C and 6.75 kg/cm<2.>The refrigerant is then led through the line (12) to another heat exchanger in which suitable working conditions will be -40 o C and 2.2 kg/cm 2. The coolant is then led through line (13) to heat exchanger (7), where it can be maintained at a temperature of -87.2°C and a pressure of 0.19 kg/cm<2.> Evaporated refrigerant from the heat exchangers (5, 6 and 7) is led back through the lines (15, 16 and 17) to a refrigerant compressor (18), while the vapor from the heat exchanger (7) is led through the heat exchangers (5 and 6), and the vapor from the heat exchanger ( 6) is led through the heat exchanger (5) for further exchange of heat energy to thereby increase efficiency.
Reduksjonen av temperatur og trykk i varmevekslerneThe reduction of temperature and pressure in the heat exchangers
(6 og 7) innstilles ved passende innstilling av reduksjons-ventilene (21 og 22) på velkjent måte. (6 and 7) are set by suitably setting the reduction valves (21 and 22) in a well-known manner.
Gass-strømmen som trer ut fra varmeveksleren (7) ,The gas flow that emerges from the heat exchanger (7),
har fremdeles tilnærmet sitt opprinnelige trykk på 44,6 kg/cm , men har nå en temperatur på -87,2°C. En mindre del av denne gass avgrenes gjennom ledningen (23) og reduseres med hensyn til trykket ventilen (24) under kontroll av en nivåregulator (26) for i bråfordampningskokeren (27) å frembringe fordampede gasser som inneholder de tyngre kokende komponenter som føres tilbake gjennom ledningen (28) og likeledes en tyngre fraksjon av flytende hydrokarboner som blir tilbake i kokeren under et still approximates its original pressure of 44.6 kg/cm, but now has a temperature of -87.2°C. A smaller part of this gas is branched off through the line (23) and is reduced with regard to the pressure of the valve (24) under the control of a level regulator (26) in order to produce in the flash boiler (27) vaporized gases containing the heavier boiling components which are fed back through the line (28) and likewise a heavier fraction of liquid hydrocarbons that remain in the boiler during a
trykk på 43,6 kg/cm<2>og en temperatur på -68,9°C. Denne del tappes ut gjennom ledningen (29) og tilføres gjennom ventil (31) og ledningene (32 og 47) til utløpsledningen (33) til fordelingssystemet under kontroll av kalorimeteret (34) i en mengde tilstrekkelig til å tilveiebringe den ønskede brennverdi av fordelingsgassen. pressure of 43.6 kg/cm<2>and a temperature of -68.9°C. This part is drained through the line (29) and supplied through the valve (31) and the lines (32 and 47) to the outlet line (33) of the distribution system under the control of the calorimeter (34) in a quantity sufficient to provide the desired calorific value of the distribution gas.
Kjølemiddel fra varmeveksleren (6) tilføres likeledes ledningen (34) og bringes i varmeveksling med den kalde, tyngre fraksjon av kokeren (27) ved hjelp av en rørkveil (36) og føres derefter tilbake til varmeveksleren (7) gjennom ventilen (37) og ledningen (4o) under kontroll av temperatur-regulatoren (38) som på sin side kontrolleres av et termo-element (4o) -(ikke vist) anordnet i væskedelen av kokeren (27), men kan overstyres av et signal i ledningen (39) fra væskenivåregulatoren (41) som er forbundet med varmeveksleren (7) i øyemed å sikre væskenivået i varmeveksleren (7) holdes på den ønskede verdi. Coolant from the heat exchanger (6) is also supplied to the line (34) and is brought into heat exchange with the cold, heavier fraction of the boiler (27) by means of a tube coil (36) and is then returned to the heat exchanger (7) through the valve (37) and the line (4o) under the control of the temperature regulator (38) which in turn is controlled by a thermo-element (4o) - (not shown) arranged in the liquid part of the boiler (27), but can be overridden by a signal in the line (39 ) from the liquid level regulator (41) which is connected to the heat exchanger (7) in order to ensure that the liquid level in the heat exchanger (7) is kept at the desired value.
.Bråfordampede gasser fra kokeren (27) føres tilbake gjennom ledningen (28) til hovedledningen (2) ved et punkt under reduksjonsventilen (42) hvorved trykket i hovedledningen reduseres fra 44,6 kg/cm 2 til tilnærmet 43,2 kg/cm 2 og kjøles ytterligere i varmeveksleren (21) ved selvkjøling i hvilket øyemed en liten mengde av gassen tas ut gjennom ledningen (2d) gjennom trykkreduksjonsventilen (43) og ledes tilbake ved et trykk på 5,6 kg/cm og en temperatur på -133,4°C gjennom ledningen (44) som derefter strekker seg gjennom varmevekslerne (5, 6 og 7) i øyemed å nyttiggjøre det gjenværende kjølepotensia 1 av gassen i denne ledning for sluttelig å strømme ut fra varmeveksleren (5) ved 44a, fremdeles med et trykk på 5,6 kg/cm<2>og en temperatur på tilnærmet -9,5°C, hvorefter den tilføres gjennom ledningen (33) i fordelingssystemet som levert gass.Rågassen fortsetter gjennom ledningen (2d) ved en temperatur på -129°C til varmeveksleren (lo) hvor på ny en mindre del av gassen tas ut gjennom de forannevnte varmevekslere i rekkefølge for å frembringe en ytterligere kjøle-effekt for sluttelig å tas ut gjennom ledningen (47a) som gass med lavt trykk på 1,25 kg/cm og en temperatur på -37,2°C for derefter å komprimeres i en kokende kompressor (48) til 5,6 kg/cm trykk og tilføres til ledningen P3) for fordeling Flash vaporized gases from the boiler (27) are fed back through the line (28) to the main line (2) at a point below the reduction valve (42), whereby the pressure in the main line is reduced from 44.6 kg/cm 2 to approximately 43.2 kg/cm 2 and is cooled further in the heat exchanger (21) by self-cooling in which a small amount of the gas is taken out through the line (2d) through the pressure reduction valve (43) and is led back at a pressure of 5.6 kg/cm and a temperature of -133, 4°C through the line (44) which then extends through the heat exchangers (5, 6 and 7) in order to utilize the remaining cooling potential 1 of the gas in this line to finally flow out of the heat exchanger (5) at 44a, still with a pressure of 5.6 kg/cm<2> and a temperature of approximately -9.5°C, after which it is fed through line (33) into the distribution system as delivered gas. The raw gas continues through line (2d) at a temperature of -129 °C to the heat exchanger (lo) where again a smaller part of the gas is taken out through d e aforementioned heat exchangers in order to produce a further cooling effect to finally be taken out through the line (47a) as gas with a low pressure of 1.25 kg/cm and a temperature of -37.2°C to then be compressed in a boiling compressor (48) to 5.6 kg/cm pressure and fed to line P3) for distribution
til forbrukerne.to consumers.
Den flytendegjorte naturgass som kommer fra varmeveksleren (lo) gjennom ledningen (2e) ved et trykk på omkring 42,3 kg/cm<2>og en temperatur på -156°C, reduseres til tilnærmet atmosfærisk trykk i reduksjonsventilen (51) og tilføres til lagertanken (52) som kan være en hvilken som helst tank med store dimensjoner eller et såkalt grunnmagasin. Den fra tanken (52) avkokende gass ved et trykk pa ° omkring l,o5 kg/cm 2 og -144,5°C komprimeres ved hjelp av en hvilken som helst passende kompressor (53) til et trykk på 1,27 kg/cm 2 og en temperatur på -143,4°C og tilføres gjennom ledningen (54) for å blandes med gassen i ledningen 47 for etterfølgende ytterligere kompresjon ved hjelp av den kokende kompressor (48) til et trykk på 5,6 kg/cm 2, ved hvilket trykk den tilføres til fordelingsledningen (33) som tidligere beskrevet. The liquefied natural gas that comes from the heat exchanger (lo) through the line (2e) at a pressure of about 42.3 kg/cm<2> and a temperature of -156°C, is reduced to approximately atmospheric pressure in the reduction valve (51) and supplied to the storage tank (52) which can be any tank with large dimensions or a so-called basic store. The deboiling gas from the tank (52) at a pressure of about 1.05 kg/cm 2 and -144.5°C is compressed by means of any suitable compressor (53) to a pressure of 1.27 kg/ cm 2 and a temperature of -143.4°C and supplied through line (54) to mix with the gas in line 47 for subsequent further compression by means of the boiling compressor (48) to a pressure of 5.6 kg/cm 2, at which pressure it is supplied to the distribution line (33) as previously described.
De som kjølemidler virkende damper i ledningeneThose acting as refrigerants vaporize in the lines
(15, 16 og 17) tilføres til suksessive trinn i en flertrinns sentrifugalkompressor (18) som representerer en annen fordel ved fremgangsmåten ifølge oppfinnelsen. Tidligere har det vært vanskelig å anvende sentrifugalkompressorer for kondenserings-hastigheter så store som det er tale om i et typisk system som oppfinnelsen kan anvendes for (5,o MMSCFD) på grunn av deres lave innløpsvolum. Ved imidlertid å anvende et kjølemiddel som Freon 13 B-l vil varmeveksleren (8) ha et damptrykk på 0,19 kg/cm 2, og med dette lave sugetrykk vil bruken av sentrifugal-kompressoren bli mulig som følge av det høye effektive innløps-volum (ACFM). Anordningen av tilførsel av de andre gass-strømmer ved de indre trinn øker volumkapasiteten av hvert trinn, hvilket er ønskelig ved bruk av sentrifugalkompressorer av denne type. Det komprimerte kjølemiddel kommer fra kompres-soren ut i ledningen (54) med et trykk på o tilnærmet 23,5 kg/cm<2>og kjøles fortrinnsvis ved hjelp av en vannkjøler (56) til en temperatur på 37,8°C, hvorefter det tilføres til en utjevnings-beholder (9) hvorfra det trekkes ut gjennom ledningen (8) som tidligere beskrevet. (15, 16 and 17) are supplied to successive stages in a multi-stage centrifugal compressor (18) which represents another advantage of the method according to the invention. In the past, it has been difficult to use centrifugal compressors for condensing rates as large as in a typical system for which the invention can be used (5.o MMSCFD) because of their low inlet volume. However, by using a refrigerant such as Freon 13 B-l, the heat exchanger (8) will have a vapor pressure of 0.19 kg/cm 2, and with this low suction pressure, the use of the centrifugal compressor will become possible as a result of the high effective inlet volume ( ACFM). The device for supplying the other gas streams at the inner stages increases the volume capacity of each stage, which is desirable when using centrifugal compressors of this type. The compressed refrigerant comes from the compressor into the line (54) with a pressure of approximately 23.5 kg/cm<2> and is preferably cooled by means of a water cooler (56) to a temperature of 37.8°C, after which it is supplied to an equalization container (9) from which it is extracted through the line (8) as previously described.
Det vil bemerkes at det forannevnte system i tillegg til å være meget effektivt med hensyn til kraftforbruk, videre muliggjør bruk av en enkel kompressor, hvilket selvfølgelig reduserer fremstillingsomkostningene for anlegget. Videre kan varmevekslerene for et større anlegg sammenbygges til en enhet omfattende varmevekslere stablet opp på hverandre og innesluttet i en omgivende mantelkonstruksjon og montert på understell for lettvint transport. Det vil således innsees at det beskrevne system er økonomisk med hensyn til omkostninger og effektivt i drift. Fjernelsen av de tyngre kokende bestanddeler mens gassen befinner seg under høyt trykk, og før den er nedkjølt, har den videre fordel at faren for at det skal oppstå problemer med rim- It will be noted that the aforementioned system, in addition to being very efficient with regard to power consumption, also enables the use of a simple compressor, which of course reduces the manufacturing costs for the plant. Furthermore, the heat exchangers for a larger plant can be assembled into a unit comprising heat exchangers stacked on top of each other and enclosed in a surrounding casing structure and mounted on a chassis for easy transport. It will thus be realized that the described system is economical with respect to costs and efficient in operation. The removal of the heavier boiling constituents while the gas is under high pressure, and before it is cooled, has the further advantage that the danger of frost problems arising
dannelse, hvilket disse tyngre bestanddeler ellers kan bevirke i varmevekslerne (21 og lo), som anvendes for nedkjøling av gass- formation, which these heavier components can otherwise cause in the heat exchangers (21 and lo), which are used for cooling gas
strømmen, reduseres. Videre vil det ytre kjølesystem lett av-current, is reduced. Furthermore, the external cooling system will easily
rimes når det er nødvendig, ved å lede varm rågass gjennom varme-rimed when necessary, by passing hot raw gas through heating
vekslerne (5, 6 og 7) og oppsamle det avrimede produkt i kokeren (27), alternativt kan metanol innføres i rågass-strømmen for fjernelse av rim og oppsamling i samme koker, og derved redusere den tid som trengs for avriming av anlegget. Det vil være inn- the exchangers (5, 6 and 7) and collect the defrosted product in the boiler (27), alternatively, methanol can be introduced into the raw gas stream to remove frost and collect it in the same boiler, thereby reducing the time needed for defrosting the plant. There will be in-
lysende at den forenklede konstruksjon ifølge oppfinnelsen er vel egnet til seriefabrikasjon med derav resulterende forminskede fremstillingsomkostninger. Når det trengs naturgass som er lag- clear that the simplified construction according to the invention is well suited for serial production with the resulting reduced manufacturing costs. When natural gas is needed which is
ret i tank (52) for å supplere den normale levering til gassfor-delingssystemet til forbrukeren, f.eks. under toppbelastninger, right in tank (52) to supplement the normal supply to the gas distribution system to the consumer, e.g. during peak loads,
pumpes den flytendegjorte gass fra lagerbeholderen for å over-the liquefied gas is pumped from the storage tank to transfer
føres til gass på kjent måte, og tilføres til fordelingssystemet uten videre behandling med hensyn til brennverdien, da den alle- is converted to gas in a known manner, and supplied to the distribution system without further treatment with regard to the calorific value, as it all-
rede har den ønskede brennverdi som følge av den foran beskrevne fremgangsmåte. rede has the desired calorific value as a result of the procedure described above.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US57306866 US3407052A (en) | 1966-08-17 | 1966-08-17 | Natural gas liquefaction with controlled b.t.u. content |
Publications (1)
Publication Number | Publication Date |
---|---|
NO120941B true NO120941B (en) | 1970-12-28 |
Family
ID=24290507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO169365A NO120941B (en) | 1966-08-17 | 1967-08-14 |
Country Status (10)
Country | Link |
---|---|
US (1) | US3407052A (en) |
AT (1) | AT275486B (en) |
BE (1) | BE702669A (en) |
CH (1) | CH525430A (en) |
DE (1) | DE1551617A1 (en) |
ES (1) | ES344074A1 (en) |
GB (1) | GB1141219A (en) |
NL (1) | NL6711190A (en) |
NO (1) | NO120941B (en) |
SE (1) | SE329182B (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1302036B (en) * | 1966-02-05 | 1969-10-16 | Messer Griesheim Gmbh | Method for breaking down a gas mixture consisting of methane and high-boiling hydrocarbons, in particular natural gas, by means of rectification |
US3527585A (en) * | 1967-12-01 | 1970-09-08 | Exxon Research Engineering Co | Method and apparatus for the control of the heating value of natural gas |
DE1939114B2 (en) * | 1969-08-01 | 1979-01-25 | Linde Ag, 6200 Wiesbaden | Liquefaction process for gases and gas mixtures, in particular for natural gas |
US3658499A (en) * | 1970-10-28 | 1972-04-25 | Chicago Bridge & Iron Co | Method of diluting liquefied gases |
US3914949A (en) * | 1971-02-19 | 1975-10-28 | Chicago Bridge & Iron Co | Method and apparatus for liquefying gases |
FR2165729B1 (en) * | 1971-12-27 | 1976-02-13 | Technigaz Fr | |
US3901673A (en) * | 1972-12-15 | 1975-08-26 | Phillips Petroleum Co | Recovery of natural gas liquids by partial condensation |
US4828591A (en) * | 1988-08-08 | 1989-05-09 | Mobil Oil Corporation | Method and apparatus for the liquefaction of natural gas |
US5359856A (en) * | 1993-10-07 | 1994-11-01 | Liquid Carbonic Corporation | Process for purifying liquid natural gas |
US5669238A (en) * | 1996-03-26 | 1997-09-23 | Phillips Petroleum Company | Heat exchanger controls for low temperature fluids |
WO1997036139A1 (en) * | 1996-03-26 | 1997-10-02 | Phillips Petroleum Company | Aromatics and/or heavies removal from a methane-based feed by condensation and stripping |
US7310971B2 (en) * | 2004-10-25 | 2007-12-25 | Conocophillips Company | LNG system employing optimized heat exchangers to provide liquid reflux stream |
US7591150B2 (en) * | 2001-05-04 | 2009-09-22 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US7594414B2 (en) * | 2001-05-04 | 2009-09-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
US7637122B2 (en) * | 2001-05-04 | 2009-12-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US7905722B1 (en) | 2002-02-08 | 2011-03-15 | Heath Rodney T | Control of an adjustable secondary air controller for a burner |
US7299655B2 (en) * | 2003-12-15 | 2007-11-27 | Bp Corporation North America Inc. | Systems and methods for vaporization of liquefied natural gas |
WO2006031362A1 (en) * | 2004-09-14 | 2006-03-23 | Exxonmobil Upstream Research Company | Method of extracting ethane from liquefied natural gas |
US20070186770A1 (en) * | 2004-09-22 | 2007-08-16 | Heath Rodney T | Natural Gas Vapor Recovery Process System |
US9353315B2 (en) * | 2004-09-22 | 2016-05-31 | Rodney T. Heath | Vapor process system |
US7266976B2 (en) * | 2004-10-25 | 2007-09-11 | Conocophillips Company | Vertical heat exchanger configuration for LNG facility |
JP5139292B2 (en) * | 2005-08-09 | 2013-02-06 | エクソンモービル アップストリーム リサーチ カンパニー | Natural gas liquefaction method for LNG |
US8028724B2 (en) * | 2007-02-12 | 2011-10-04 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank and unloading of LNG from the tank |
KR20080097141A (en) * | 2007-04-30 | 2008-11-04 | 대우조선해양 주식회사 | Floating marine structure having in-tank re-condenser and method for treating boil-off gas on the floating marine structure |
WO2008136884A1 (en) * | 2007-05-03 | 2008-11-13 | Exxonmobil Upstream Research Company | Natural gas liquefaction process |
KR100839771B1 (en) * | 2007-05-31 | 2008-06-20 | 대우조선해양 주식회사 | Apparatus for producing nitrogen equipped in a marine structure and method for producing nitrogen using the apparatus |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US8899074B2 (en) * | 2009-10-22 | 2014-12-02 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
US8555672B2 (en) | 2009-10-22 | 2013-10-15 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US8061413B2 (en) | 2007-09-13 | 2011-11-22 | Battelle Energy Alliance, Llc | Heat exchangers comprising at least one porous member positioned within a casing |
US7644676B2 (en) * | 2008-02-11 | 2010-01-12 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Storage tank containing liquefied natural gas with butane |
US8529215B2 (en) | 2008-03-06 | 2013-09-10 | Rodney T. Heath | Liquid hydrocarbon slug containing vapor recovery system |
US20100040989A1 (en) * | 2008-03-06 | 2010-02-18 | Heath Rodney T | Combustor Control |
KR20090107805A (en) * | 2008-04-10 | 2009-10-14 | 대우조선해양 주식회사 | Method and system for reducing heating value of natural gas |
US8381544B2 (en) * | 2008-07-18 | 2013-02-26 | Kellogg Brown & Root Llc | Method for liquefaction of natural gas |
US20100122542A1 (en) * | 2008-11-17 | 2010-05-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and apparatus for adjusting heating value of natural gas |
US8257508B2 (en) * | 2009-01-30 | 2012-09-04 | Conocophillips Company | Method and system for deriming cryogenic heat exchangers |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US8257509B2 (en) * | 2010-01-27 | 2012-09-04 | Conocophillips Company | Method and apparatus for deriming cryogenic equipment |
US8864887B2 (en) | 2010-09-30 | 2014-10-21 | Rodney T. Heath | High efficiency slug containing vapor recovery |
WO2013170190A1 (en) | 2012-05-10 | 2013-11-14 | Heath Rodney T | Treater combination unit |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
KR101277965B1 (en) * | 2013-02-19 | 2013-06-27 | 현대중공업 주식회사 | A fuel gas supply system of liquefied natural gas |
US9291409B1 (en) | 2013-03-15 | 2016-03-22 | Rodney T. Heath | Compressor inter-stage temperature control |
US9527786B1 (en) | 2013-03-15 | 2016-12-27 | Rodney T. Heath | Compressor equipped emissions free dehydrator |
US9932989B1 (en) | 2013-10-24 | 2018-04-03 | Rodney T. Heath | Produced liquids compressor cooler |
US9784411B2 (en) * | 2015-04-02 | 2017-10-10 | David A. Diggins | System and method for unloading compressed natural gas |
EP3332198A1 (en) * | 2015-08-06 | 2018-06-13 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for the production of liquefied natural gas |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2198098A (en) * | 1939-02-06 | 1940-04-23 | Tide Water Associated Oil Comp | High pressure gas process |
US2557171A (en) * | 1946-11-12 | 1951-06-19 | Pritchard & Co J F | Method of treating natural gas |
DE1182256B (en) * | 1957-11-25 | 1964-11-26 | Conch International Methane Limited Nassau Bahamas (Großbntan men) | Process for liquefying natural gas |
US2960837A (en) * | 1958-07-16 | 1960-11-22 | Conch Int Methane Ltd | Liquefying natural gas with low pressure refrigerants |
US2940271A (en) * | 1959-03-24 | 1960-06-14 | Fluor Corp | Low temperature fractionation of natural gas components |
NL133167C (en) * | 1963-01-08 | |||
US3194025A (en) * | 1963-01-14 | 1965-07-13 | Phillips Petroleum Co | Gas liquefactions by multiple expansion refrigeration |
US3285719A (en) * | 1963-05-23 | 1966-11-15 | Ofw xx | |
GB1054489A (en) * | 1964-07-15 |
-
1966
- 1966-08-17 US US57306866 patent/US3407052A/en not_active Expired - Lifetime
-
1967
- 1967-07-28 SE SE1096467A patent/SE329182B/xx unknown
- 1967-08-04 DE DE19671551617 patent/DE1551617A1/en active Pending
- 1967-08-08 GB GB3625267A patent/GB1141219A/en not_active Expired
- 1967-08-10 CH CH1127567A patent/CH525430A/en not_active IP Right Cessation
- 1967-08-12 ES ES344074A patent/ES344074A1/en not_active Expired
- 1967-08-14 BE BE702669D patent/BE702669A/xx unknown
- 1967-08-14 NO NO169365A patent/NO120941B/no unknown
- 1967-08-15 NL NL6711190A patent/NL6711190A/xx unknown
- 1967-08-16 AT AT752767A patent/AT275486B/en active
Also Published As
Publication number | Publication date |
---|---|
CH525430A (en) | 1972-07-15 |
ES344074A1 (en) | 1968-09-16 |
NL6711190A (en) | 1968-02-19 |
DE1551617A1 (en) | 1970-03-19 |
US3407052A (en) | 1968-10-22 |
GB1141219A (en) | 1969-01-29 |
AT275486B (en) | 1969-10-27 |
SE329182B (en) | 1970-10-05 |
BE702669A (en) | 1968-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO120941B (en) | ||
US4699642A (en) | Purification of carbon dioxide for use in brewing | |
US2082189A (en) | Method of liquefying and storing fuel gases | |
RU2304746C2 (en) | Method and device for liquefying natural gas | |
CN105509383B (en) | Refrigerant-recovery in natural gas liquefaction process | |
USRE29914E (en) | Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures | |
US3780534A (en) | Liquefaction of natural gas with product used as absorber purge | |
US5535594A (en) | Process and apparatus for cooling a fluid especially for liquifying natural gas | |
RU2170894C2 (en) | Method of separation of load in the course of stage-type cooling | |
NO833590L (en) | PLANT FOR PRODUCING GAS-NITROGEN | |
AU2008332005B2 (en) | Method and system for regulation of cooling capacity of a cooling system based on a gas expansion process. | |
US3020723A (en) | Method and apparatus for liquefaction of natural gas | |
US3690114A (en) | Refrigeration process for use in liquefication of gases | |
US2535148A (en) | Method of storing natural gas | |
US3195316A (en) | Methane liquefaction system | |
NO314960B1 (en) | Process for condensing a multicomponent natural gas stream containing at least one freeze component | |
NO164292B (en) | PROCEDURE FOR REDUCING THE NITROGEN CONTENT OF A CONTINUOUS GAS CONTAINING MAIN METHANE. | |
CN102410702A (en) | Natural gas liquefaction | |
BR112019017533A2 (en) | LIQUIDIFYING SYSTEM OF NATURAL GAS, AND, METHOD. | |
US2541569A (en) | Liquefying and regasifying natural gases | |
CN1301944C (en) | Olefin plant refrigeration system | |
JP2000512724A (en) | Removal of aromatics and / or heavys from methane-based feeds by condensation and stripping | |
CN103075869B (en) | Double-refrigerant liquefaction system and method for natural gas | |
NO161877B (en) | PROCEDURE AND DEFROSTING DEVICE. | |
CN102735020B (en) | Method for extracting helium from natural gas |