NO120941B - - Google Patents

Download PDF

Info

Publication number
NO120941B
NO120941B NO169365A NO16936567A NO120941B NO 120941 B NO120941 B NO 120941B NO 169365 A NO169365 A NO 169365A NO 16936567 A NO16936567 A NO 16936567A NO 120941 B NO120941 B NO 120941B
Authority
NO
Norway
Prior art keywords
pressure
gas
stream
natural gas
refrigerant
Prior art date
Application number
NO169365A
Other languages
Norwegian (no)
Inventor
R Proctor
C Huntress
Original Assignee
Conch Int Methane Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conch Int Methane Ltd filed Critical Conch Int Methane Ltd
Publication of NO120941B publication Critical patent/NO120941B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/06Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • F25J1/0255Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Fremgangsmåte for regulering av brennverdien 'avProcedure for regulating the calorific value 'of

naturgass som skal tilføres til et fordelingssystem. natural gas to be supplied to a distribution system.

Foreliggende oppfinnelse angår overføring av naturgass til flytende form, lagring av den kondenserte gass og levering av gassen i gassform. Det er kjent å kondensere naturgass for lagring, men det oppstår visse problemer på grunn av den blandede sammensetning som naturgass oftest har, idet den inneholder en forholdsvis stor del metan sammen med lignen-de mengder nitrogen og hydrokarboner med høy molekylvekt. Når den flytendegjorte naturgass overføres til gassform for å leveres til forbrukeren, har komponentene med lavest kokepunkt tilbøyelighet til først å fordampe, og da disse har en lavere brennverdi, vil brennverdien av den leverte gass ha tilbøyelig- het til å variere med tiden.Foreliggende oppfinnelse går ut på en fremgangsmåte til regulering av brennverdien av den fra et lagringssted leverte naturgass. The present invention relates to the transfer of natural gas to liquid form, storage of the condensed gas and delivery of the gas in gaseous form. It is known to condense natural gas for storage, but certain problems arise due to the mixed composition that natural gas usually has, as it contains a relatively large proportion of methane together with similar amounts of nitrogen and hydrocarbons of high molecular weight. When the liquefied natural gas is transferred to gaseous form to be delivered to the consumer, the components with the lowest boiling point tend to evaporate first, and as these have a lower calorific value, the calorific value of the delivered gas will tend to vary with time. Present invention concerns a method for regulating the calorific value of the natural gas delivered from a storage location.

Oppfinnelsen angår generelt samme problemer som er behandlet i US patent nr. 3.285.719, men medfører visse for-deler sammenlignet med den her beskrevne fremgangsmåte, i det vesentlige bestående i økt operasjonseffektivitet og lavere kapitalinvestering. Dette er muliggjort ved å skille ut tyngre hydrokarboner fra rågassen efter at den er kondensert til flytende form og mens den ennå befinner seg under høyt trykk, The invention generally concerns the same problems that are dealt with in US patent no. 3,285,719, but entails certain advantages compared to the method described here, essentially consisting in increased operational efficiency and lower capital investment. This is made possible by separating heavier hydrocarbons from the raw gas after it has been condensed into liquid form and while it is still under high pressure,

i det vesentlige basert på en reduksjon av trykket av den flytendegjorte gass for å frembringe den ønskede separering. essentially based on a reduction of the pressure of the liquefied gas to produce the desired separation.

I overensstemmelse hermed går foreliggende oppfinnelse ut på en fremgangsmåte for regulering av brennverdien av naturgass som inneholder forskjellige hydrokarbonbestanddeler, til et fordelingssystem med en ønsket brennverdi og omfattende overføring av en hovedstrøm naturgass til flytende form ved høyt trykk, reduksjon av trykket av den flytendegjorte gass til lavt lagringstrykk og lagring av gassen ved dette lave trykk. In accordance with this, the present invention focuses on a method for regulating the calorific value of natural gas containing different hydrocarbon constituents, to a distribution system with a desired calorific value and extensive transfer of a main stream of natural gas to liquid form at high pressure, reduction of the pressure of the liquefied gas to low storage pressure and storage of the gas at this low pressure.

Det karakteristiske for fremgangsmåten består i kombinasjonen av følgende trekk: a) Tilførsel av hovedstrømmen av naturgass ved et trykk over atmosfærisk trykk og vesentlig over det normale trykk i The characteristic of the method consists in the combination of the following features: a) Supply of the main stream of natural gas at a pressure above atmospheric pressure and substantially above the normal pressure in

fordelingssystemet,the distribution system,

b) fjernelse av en mindre del av det nevnte flytende naturgass ved høyt" trykk og reduksjon av trykket for å frembringe bråfordampede gasser og en tyngre fraksjon av flytendegjorte hydrokarboner, c) fornyet overføring av den nevnte tyngre fraksjon til gass og tilførsel av denne gass til fordelingssystemet i en b) removal of a smaller part of said liquefied natural gas at high pressure and reduction of the pressure to produce flash vaporized gases and a heavier fraction of liquefied hydrocarbons, c) renewed transfer of said heavier fraction to gas and supply of this gas to the distribution system in one

mengde tilstrekkelig til å tilveiebringe den ønskede brennverdi av utløpsgass-strømmen. amount sufficient to provide the desired calorific value of the exhaust gas stream.

En foretrukken utførelsesform for oppfinnelsen skalA preferred embodiment of the invention shall

i det følgende beskrives under henvisning til tegningen hvis eneste figur er en sterkt forenklet, skjematisk illustrasjon . som viser prinsippet for oppfinnelsen. in what follows is described with reference to the drawing whose only figure is a greatly simplified, schematic illustration. which shows the principle of the invention.

Ifølge tegningen tilføres rågassen gjennom en hoved- gassledning (2) ved et passende høyt trykk i et omrade pa fra 28 til 7o kg/cm 2 , f.eks. 44,6 kg/cm 2, og ved en temperatur på 32°C. Efter å ha passert gjennom en vanlig avvanningsenhet According to the drawing, the raw gas is supplied through a main gas line (2) at a suitable high pressure in a range of from 28 to 7o kg/cm 2 , e.g. 44.6 kg/cm 2 , and at a temperature of 32°C. After passing through a conventional dewatering unit

(3) for å fjerne fuktighet, kjøles gassen uten reduksjon av trykket i tre varmevekslertrinn (5, 6 og 7) Det anvendte kjølemiddel skal være i stand til å kjøle den behandlede rågass ved et trykk på 44,6 kg/cm<2>fra 32°C til -87°C, hvilken kjøling trer i stedet for så vel propantrinnet som etylen-trinnet, som vanligvis brukes i mange kjente systemer. Et passende kjølemiddel for dette formål er Freon 13 B-l. Dette kjølemiddel leveres gjennom ledningen (8) fra lagertanken (9) til det indre av varmeveksleren (5) under kontroll av en passende bråfordamningsventil og nivåkontrollventil (11). Typiske driftsbetingelser for kjølemiddelet i varmeveksleren (5) er -6,7°C og 6,75 kg/cm<2.>Kjølemiddelet ledes derefter gjennom ledningen (12) til en annen varmeveksler i hvilken passende arbeidsbetingelser vil være -40 o C og 2,2 kg/cm 2. Kjølemiddelet ledes derefter gjennom ledningen (13) til varmeveksler (7), hvor det kan opprettholdes ved en temperatur på -87,2°C og et trykk på 0,19 kg/cm<2.>Fordampet kjølemiddel fra varmevekslerne (5, 6 og 7) ledes tilbake gjennom ledningene (15, 16 og 17) til en kjølemiddelkompressor (18), mens dampen fra varmeveksleren (7) ledes gjennom varmevekslerne (5 og 6), og dampen fra varmeveksleren (6) ledes gjennom varmeveksleren (5) for ytterligere utveksling av varmeenergi for derved å øke virkningsgraden. (3) to remove moisture, the gas is cooled without reducing the pressure in three heat exchanger stages (5, 6 and 7) The refrigerant used must be able to cool the treated raw gas at a pressure of 44.6 kg/cm<2> from 32°C to -87°C, which cooling takes the place of both the propane stage and the ethylene stage, which are usually used in many known systems. A suitable refrigerant for this purpose is Freon 13 B-l. This refrigerant is supplied through the line (8) from the storage tank (9) to the interior of the heat exchanger (5) under the control of a suitable flash valve and level control valve (11). Typical operating conditions for the refrigerant in the heat exchanger (5) are -6.7°C and 6.75 kg/cm<2.>The refrigerant is then led through the line (12) to another heat exchanger in which suitable working conditions will be -40 o C and 2.2 kg/cm 2. The coolant is then led through line (13) to heat exchanger (7), where it can be maintained at a temperature of -87.2°C and a pressure of 0.19 kg/cm<2.> Evaporated refrigerant from the heat exchangers (5, 6 and 7) is led back through the lines (15, 16 and 17) to a refrigerant compressor (18), while the vapor from the heat exchanger (7) is led through the heat exchangers (5 and 6), and the vapor from the heat exchanger ( 6) is led through the heat exchanger (5) for further exchange of heat energy to thereby increase efficiency.

Reduksjonen av temperatur og trykk i varmevekslerneThe reduction of temperature and pressure in the heat exchangers

(6 og 7) innstilles ved passende innstilling av reduksjons-ventilene (21 og 22) på velkjent måte. (6 and 7) are set by suitably setting the reduction valves (21 and 22) in a well-known manner.

Gass-strømmen som trer ut fra varmeveksleren (7) ,The gas flow that emerges from the heat exchanger (7),

har fremdeles tilnærmet sitt opprinnelige trykk på 44,6 kg/cm , men har nå en temperatur på -87,2°C. En mindre del av denne gass avgrenes gjennom ledningen (23) og reduseres med hensyn til trykket ventilen (24) under kontroll av en nivåregulator (26) for i bråfordampningskokeren (27) å frembringe fordampede gasser som inneholder de tyngre kokende komponenter som føres tilbake gjennom ledningen (28) og likeledes en tyngre fraksjon av flytende hydrokarboner som blir tilbake i kokeren under et still approximates its original pressure of 44.6 kg/cm, but now has a temperature of -87.2°C. A smaller part of this gas is branched off through the line (23) and is reduced with regard to the pressure of the valve (24) under the control of a level regulator (26) in order to produce in the flash boiler (27) vaporized gases containing the heavier boiling components which are fed back through the line (28) and likewise a heavier fraction of liquid hydrocarbons that remain in the boiler during a

trykk på 43,6 kg/cm<2>og en temperatur på -68,9°C. Denne del tappes ut gjennom ledningen (29) og tilføres gjennom ventil (31) og ledningene (32 og 47) til utløpsledningen (33) til fordelingssystemet under kontroll av kalorimeteret (34) i en mengde tilstrekkelig til å tilveiebringe den ønskede brennverdi av fordelingsgassen. pressure of 43.6 kg/cm<2>and a temperature of -68.9°C. This part is drained through the line (29) and supplied through the valve (31) and the lines (32 and 47) to the outlet line (33) of the distribution system under the control of the calorimeter (34) in a quantity sufficient to provide the desired calorific value of the distribution gas.

Kjølemiddel fra varmeveksleren (6) tilføres likeledes ledningen (34) og bringes i varmeveksling med den kalde, tyngre fraksjon av kokeren (27) ved hjelp av en rørkveil (36) og føres derefter tilbake til varmeveksleren (7) gjennom ventilen (37) og ledningen (4o) under kontroll av temperatur-regulatoren (38) som på sin side kontrolleres av et termo-element (4o) -(ikke vist) anordnet i væskedelen av kokeren (27), men kan overstyres av et signal i ledningen (39) fra væskenivåregulatoren (41) som er forbundet med varmeveksleren (7) i øyemed å sikre væskenivået i varmeveksleren (7) holdes på den ønskede verdi. Coolant from the heat exchanger (6) is also supplied to the line (34) and is brought into heat exchange with the cold, heavier fraction of the boiler (27) by means of a tube coil (36) and is then returned to the heat exchanger (7) through the valve (37) and the line (4o) under the control of the temperature regulator (38) which in turn is controlled by a thermo-element (4o) - (not shown) arranged in the liquid part of the boiler (27), but can be overridden by a signal in the line (39 ) from the liquid level regulator (41) which is connected to the heat exchanger (7) in order to ensure that the liquid level in the heat exchanger (7) is kept at the desired value.

.Bråfordampede gasser fra kokeren (27) føres tilbake gjennom ledningen (28) til hovedledningen (2) ved et punkt under reduksjonsventilen (42) hvorved trykket i hovedledningen reduseres fra 44,6 kg/cm 2 til tilnærmet 43,2 kg/cm 2 og kjøles ytterligere i varmeveksleren (21) ved selvkjøling i hvilket øyemed en liten mengde av gassen tas ut gjennom ledningen (2d) gjennom trykkreduksjonsventilen (43) og ledes tilbake ved et trykk på 5,6 kg/cm og en temperatur på -133,4°C gjennom ledningen (44) som derefter strekker seg gjennom varmevekslerne (5, 6 og 7) i øyemed å nyttiggjøre det gjenværende kjølepotensia 1 av gassen i denne ledning for sluttelig å strømme ut fra varmeveksleren (5) ved 44a, fremdeles med et trykk på 5,6 kg/cm<2>og en temperatur på tilnærmet -9,5°C, hvorefter den tilføres gjennom ledningen (33) i fordelingssystemet som levert gass.Rågassen fortsetter gjennom ledningen (2d) ved en temperatur på -129°C til varmeveksleren (lo) hvor på ny en mindre del av gassen tas ut gjennom de forannevnte varmevekslere i rekkefølge for å frembringe en ytterligere kjøle-effekt for sluttelig å tas ut gjennom ledningen (47a) som gass med lavt trykk på 1,25 kg/cm og en temperatur på -37,2°C for derefter å komprimeres i en kokende kompressor (48) til 5,6 kg/cm trykk og tilføres til ledningen P3) for fordeling Flash vaporized gases from the boiler (27) are fed back through the line (28) to the main line (2) at a point below the reduction valve (42), whereby the pressure in the main line is reduced from 44.6 kg/cm 2 to approximately 43.2 kg/cm 2 and is cooled further in the heat exchanger (21) by self-cooling in which a small amount of the gas is taken out through the line (2d) through the pressure reduction valve (43) and is led back at a pressure of 5.6 kg/cm and a temperature of -133, 4°C through the line (44) which then extends through the heat exchangers (5, 6 and 7) in order to utilize the remaining cooling potential 1 of the gas in this line to finally flow out of the heat exchanger (5) at 44a, still with a pressure of 5.6 kg/cm<2> and a temperature of approximately -9.5°C, after which it is fed through line (33) into the distribution system as delivered gas. The raw gas continues through line (2d) at a temperature of -129 °C to the heat exchanger (lo) where again a smaller part of the gas is taken out through d e aforementioned heat exchangers in order to produce a further cooling effect to finally be taken out through the line (47a) as gas with a low pressure of 1.25 kg/cm and a temperature of -37.2°C to then be compressed in a boiling compressor (48) to 5.6 kg/cm pressure and fed to line P3) for distribution

til forbrukerne.to consumers.

Den flytendegjorte naturgass som kommer fra varmeveksleren (lo) gjennom ledningen (2e) ved et trykk på omkring 42,3 kg/cm<2>og en temperatur på -156°C, reduseres til tilnærmet atmosfærisk trykk i reduksjonsventilen (51) og tilføres til lagertanken (52) som kan være en hvilken som helst tank med store dimensjoner eller et såkalt grunnmagasin. Den fra tanken (52) avkokende gass ved et trykk pa ° omkring l,o5 kg/cm 2 og -144,5°C komprimeres ved hjelp av en hvilken som helst passende kompressor (53) til et trykk på 1,27 kg/cm 2 og en temperatur på -143,4°C og tilføres gjennom ledningen (54) for å blandes med gassen i ledningen 47 for etterfølgende ytterligere kompresjon ved hjelp av den kokende kompressor (48) til et trykk på 5,6 kg/cm 2, ved hvilket trykk den tilføres til fordelingsledningen (33) som tidligere beskrevet. The liquefied natural gas that comes from the heat exchanger (lo) through the line (2e) at a pressure of about 42.3 kg/cm<2> and a temperature of -156°C, is reduced to approximately atmospheric pressure in the reduction valve (51) and supplied to the storage tank (52) which can be any tank with large dimensions or a so-called basic store. The deboiling gas from the tank (52) at a pressure of about 1.05 kg/cm 2 and -144.5°C is compressed by means of any suitable compressor (53) to a pressure of 1.27 kg/ cm 2 and a temperature of -143.4°C and supplied through line (54) to mix with the gas in line 47 for subsequent further compression by means of the boiling compressor (48) to a pressure of 5.6 kg/cm 2, at which pressure it is supplied to the distribution line (33) as previously described.

De som kjølemidler virkende damper i ledningeneThose acting as refrigerants vaporize in the lines

(15, 16 og 17) tilføres til suksessive trinn i en flertrinns sentrifugalkompressor (18) som representerer en annen fordel ved fremgangsmåten ifølge oppfinnelsen. Tidligere har det vært vanskelig å anvende sentrifugalkompressorer for kondenserings-hastigheter så store som det er tale om i et typisk system som oppfinnelsen kan anvendes for (5,o MMSCFD) på grunn av deres lave innløpsvolum. Ved imidlertid å anvende et kjølemiddel som Freon 13 B-l vil varmeveksleren (8) ha et damptrykk på 0,19 kg/cm 2, og med dette lave sugetrykk vil bruken av sentrifugal-kompressoren bli mulig som følge av det høye effektive innløps-volum (ACFM). Anordningen av tilførsel av de andre gass-strømmer ved de indre trinn øker volumkapasiteten av hvert trinn, hvilket er ønskelig ved bruk av sentrifugalkompressorer av denne type. Det komprimerte kjølemiddel kommer fra kompres-soren ut i ledningen (54) med et trykk på o tilnærmet 23,5 kg/cm<2>og kjøles fortrinnsvis ved hjelp av en vannkjøler (56) til en temperatur på 37,8°C, hvorefter det tilføres til en utjevnings-beholder (9) hvorfra det trekkes ut gjennom ledningen (8) som tidligere beskrevet. (15, 16 and 17) are supplied to successive stages in a multi-stage centrifugal compressor (18) which represents another advantage of the method according to the invention. In the past, it has been difficult to use centrifugal compressors for condensing rates as large as in a typical system for which the invention can be used (5.o MMSCFD) because of their low inlet volume. However, by using a refrigerant such as Freon 13 B-l, the heat exchanger (8) will have a vapor pressure of 0.19 kg/cm 2, and with this low suction pressure, the use of the centrifugal compressor will become possible as a result of the high effective inlet volume ( ACFM). The device for supplying the other gas streams at the inner stages increases the volume capacity of each stage, which is desirable when using centrifugal compressors of this type. The compressed refrigerant comes from the compressor into the line (54) with a pressure of approximately 23.5 kg/cm<2> and is preferably cooled by means of a water cooler (56) to a temperature of 37.8°C, after which it is supplied to an equalization container (9) from which it is extracted through the line (8) as previously described.

Det vil bemerkes at det forannevnte system i tillegg til å være meget effektivt med hensyn til kraftforbruk, videre muliggjør bruk av en enkel kompressor, hvilket selvfølgelig reduserer fremstillingsomkostningene for anlegget. Videre kan varmevekslerene for et større anlegg sammenbygges til en enhet omfattende varmevekslere stablet opp på hverandre og innesluttet i en omgivende mantelkonstruksjon og montert på understell for lettvint transport. Det vil således innsees at det beskrevne system er økonomisk med hensyn til omkostninger og effektivt i drift. Fjernelsen av de tyngre kokende bestanddeler mens gassen befinner seg under høyt trykk, og før den er nedkjølt, har den videre fordel at faren for at det skal oppstå problemer med rim- It will be noted that the aforementioned system, in addition to being very efficient with regard to power consumption, also enables the use of a simple compressor, which of course reduces the manufacturing costs for the plant. Furthermore, the heat exchangers for a larger plant can be assembled into a unit comprising heat exchangers stacked on top of each other and enclosed in a surrounding casing structure and mounted on a chassis for easy transport. It will thus be realized that the described system is economical with respect to costs and efficient in operation. The removal of the heavier boiling constituents while the gas is under high pressure, and before it is cooled, has the further advantage that the danger of frost problems arising

dannelse, hvilket disse tyngre bestanddeler ellers kan bevirke i varmevekslerne (21 og lo), som anvendes for nedkjøling av gass- formation, which these heavier components can otherwise cause in the heat exchangers (21 and lo), which are used for cooling gas

strømmen, reduseres. Videre vil det ytre kjølesystem lett av-current, is reduced. Furthermore, the external cooling system will easily

rimes når det er nødvendig, ved å lede varm rågass gjennom varme-rimed when necessary, by passing hot raw gas through heating

vekslerne (5, 6 og 7) og oppsamle det avrimede produkt i kokeren (27), alternativt kan metanol innføres i rågass-strømmen for fjernelse av rim og oppsamling i samme koker, og derved redusere den tid som trengs for avriming av anlegget. Det vil være inn- the exchangers (5, 6 and 7) and collect the defrosted product in the boiler (27), alternatively, methanol can be introduced into the raw gas stream to remove frost and collect it in the same boiler, thereby reducing the time needed for defrosting the plant. There will be in-

lysende at den forenklede konstruksjon ifølge oppfinnelsen er vel egnet til seriefabrikasjon med derav resulterende forminskede fremstillingsomkostninger. Når det trengs naturgass som er lag- clear that the simplified construction according to the invention is well suited for serial production with the resulting reduced manufacturing costs. When natural gas is needed which is

ret i tank (52) for å supplere den normale levering til gassfor-delingssystemet til forbrukeren, f.eks. under toppbelastninger, right in tank (52) to supplement the normal supply to the gas distribution system to the consumer, e.g. during peak loads,

pumpes den flytendegjorte gass fra lagerbeholderen for å over-the liquefied gas is pumped from the storage tank to transfer

føres til gass på kjent måte, og tilføres til fordelingssystemet uten videre behandling med hensyn til brennverdien, da den alle- is converted to gas in a known manner, and supplied to the distribution system without further treatment with regard to the calorific value, as it all-

rede har den ønskede brennverdi som følge av den foran beskrevne fremgangsmåte. rede has the desired calorific value as a result of the procedure described above.

Claims (3)

1. Fremgangsmåte for regulering av brennverdien av naturgass som inneholder forskjellige hydrokarbonbestanddeler og som skal tilføres til et fordelingssystem omfattende overføring av en hovedstrøm naturgass til flytende form ved høyt trykk (5, 6 og 7), reduksjon av trykket av den flytendegjorte gass til lavt lagringstrykk og lagring av gassen ved dette lave trykk (52), karakterisert ved kombinasjonen av følgende trekk:1. Procedure for regulating the calorific value of natural gas containing various hydrocarbon constituents and which is to be supplied to a distribution system comprising the transfer of a main stream of natural gas to liquid form at high pressure (5, 6 and 7), reduction of the pressure of the liquefied gas to low storage pressure and storing the gas at this low pressure (52), characterized by the combination of the following features: a) tilførsel av hovedstrømmen av naturgass ved et trykk (2) over atmosfærisk trykk og vesentlig over det normale trykk i fordelingssystemet, b) fjernelse av en mindre del av den nevnte flytendegjorte naturgass ved høyt trykk (23) og reduksjon av trykket for å frembringe bråfordampede gasser og en tyngre fraksjon av flytendegjorte hydrokarboner (24, 27) , c) fornyet overføring av den nevnte tyngre fraksjon til gass, og tilførsel av denne gass til fordelingssystemet i en mengde tilstrekkelig til å tilveiebringe den ønskede brennverdi av utløpsgass-strømmen (32, 34). a) supply of the main flow of natural gas at a pressure (2) above atmospheric pressure and substantially above the normal pressure in the distribution system, b) removing a smaller portion of said liquefied natural gas at high pressure (23) and reducing the pressure to produce flash gases and a heavier fraction of liquefied hydrocarbons (24, 27), c) renewed transfer of the mentioned heavier fraction to gas, and supply of this gas to the distribution system in an amount sufficient to provide the desired calorific value of the outlet gas stream (32, 34). 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at a) kondenseringen av hovedgass-strømmen utføres i flere trinn, idet ett og samme kjølemiddel holdes ved lavere temperatur og trykk i hvert følgende trinn, b) en strøm av kjølemiddeldamp fra hvert trinn som følger efter det første, føres tilbake gjennom det forutgående trinn i varmevekslende forhold med disse uten vesentlig trykkendring, idet hver strøm har samme trykk som vedkommende trinn, c) de respektive kjølemiddeldampstrømmer komprimeres ved en enkelt flertrinns sentrifugalkompressor til et opprinnelig driftstrykk, idet i det minste noe av kompresjonsvarmen fjernes ved varmeveksling med et ytre kjølemiddel, og det resulterende flytende kjølemiddel tilføres ved det nevnte opprinnelige trykk for den nevnte kondensering av den tilførte hovedstrøm av naturgass. 2. Procedure as specified in claim 1, characterized in that a) the condensation of the main gas stream is carried out in several stages, with one and the same refrigerant being kept at a lower temperature and pressure in each following stage, b) a stream of refrigerant vapor from each stage that follows the first is fed back through the preceding stage in a heat-exchange relationship with these without significant pressure change, each stream having the same pressure as the relevant stage, c) the respective refrigerant vapor streams are compressed by a single multi-stage centrifugal compressor to an initial operating pressure, at least some of the heat of compression being removed by heat exchange with an external refrigerant, and the resulting liquid refrigerant is supplied at said initial pressure for said condensation of the supplied main stream of natural gas. 3. Fremgangsmåte som angitt i krav 2, karakterisert ved at selvkjøling utføres i to på hverandre følgende trinn som følger efter kjølingen med det ytre kjølemiddel, ved at en liten del LNG tappes ut fra hovedstrømmen ved hvert av de nevnte to trinn, trykket av den avtappede LNG reduseres, og gassen føres i varmevekslende forhold med hovedstrømmen i alle de forutgående trinn.3. Method as set forth in claim 2, characterized in that self-cooling is carried out in two consecutive stages that follow the cooling with the external refrigerant, by a small portion of LNG being drained from the main stream at each of the two stages mentioned, the pressure of the tapped LNG is reduced, and the gas is passed in heat-exchange conditions with the main flow in all the preceding steps.
NO169365A 1966-08-17 1967-08-14 NO120941B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57306866 US3407052A (en) 1966-08-17 1966-08-17 Natural gas liquefaction with controlled b.t.u. content

Publications (1)

Publication Number Publication Date
NO120941B true NO120941B (en) 1970-12-28

Family

ID=24290507

Family Applications (1)

Application Number Title Priority Date Filing Date
NO169365A NO120941B (en) 1966-08-17 1967-08-14

Country Status (10)

Country Link
US (1) US3407052A (en)
AT (1) AT275486B (en)
BE (1) BE702669A (en)
CH (1) CH525430A (en)
DE (1) DE1551617A1 (en)
ES (1) ES344074A1 (en)
GB (1) GB1141219A (en)
NL (1) NL6711190A (en)
NO (1) NO120941B (en)
SE (1) SE329182B (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1302036B (en) * 1966-02-05 1969-10-16 Messer Griesheim Gmbh Method for breaking down a gas mixture consisting of methane and high-boiling hydrocarbons, in particular natural gas, by means of rectification
US3527585A (en) * 1967-12-01 1970-09-08 Exxon Research Engineering Co Method and apparatus for the control of the heating value of natural gas
DE1939114B2 (en) * 1969-08-01 1979-01-25 Linde Ag, 6200 Wiesbaden Liquefaction process for gases and gas mixtures, in particular for natural gas
US3658499A (en) * 1970-10-28 1972-04-25 Chicago Bridge & Iron Co Method of diluting liquefied gases
US3914949A (en) * 1971-02-19 1975-10-28 Chicago Bridge & Iron Co Method and apparatus for liquefying gases
FR2165729B1 (en) * 1971-12-27 1976-02-13 Technigaz Fr
US3901673A (en) * 1972-12-15 1975-08-26 Phillips Petroleum Co Recovery of natural gas liquids by partial condensation
US4828591A (en) * 1988-08-08 1989-05-09 Mobil Oil Corporation Method and apparatus for the liquefaction of natural gas
US5359856A (en) * 1993-10-07 1994-11-01 Liquid Carbonic Corporation Process for purifying liquid natural gas
US5669238A (en) * 1996-03-26 1997-09-23 Phillips Petroleum Company Heat exchanger controls for low temperature fluids
WO1997036139A1 (en) * 1996-03-26 1997-10-02 Phillips Petroleum Company Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US7310971B2 (en) * 2004-10-25 2007-12-25 Conocophillips Company LNG system employing optimized heat exchangers to provide liquid reflux stream
US7591150B2 (en) * 2001-05-04 2009-09-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US20070107465A1 (en) * 2001-05-04 2007-05-17 Battelle Energy Alliance, Llc Apparatus for the liquefaction of gas and methods relating to same
US7637122B2 (en) * 2001-05-04 2009-12-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of a gas and methods relating to same
US7905722B1 (en) 2002-02-08 2011-03-15 Heath Rodney T Control of an adjustable secondary air controller for a burner
US7299655B2 (en) * 2003-12-15 2007-11-27 Bp Corporation North America Inc. Systems and methods for vaporization of liquefied natural gas
WO2006031362A1 (en) * 2004-09-14 2006-03-23 Exxonmobil Upstream Research Company Method of extracting ethane from liquefied natural gas
US20070186770A1 (en) * 2004-09-22 2007-08-16 Heath Rodney T Natural Gas Vapor Recovery Process System
US9353315B2 (en) * 2004-09-22 2016-05-31 Rodney T. Heath Vapor process system
US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
JP5139292B2 (en) * 2005-08-09 2013-02-06 エクソンモービル アップストリーム リサーチ カンパニー Natural gas liquefaction method for LNG
US8028724B2 (en) * 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank
KR20080097141A (en) * 2007-04-30 2008-11-04 대우조선해양 주식회사 Floating marine structure having in-tank re-condenser and method for treating boil-off gas on the floating marine structure
WO2008136884A1 (en) * 2007-05-03 2008-11-13 Exxonmobil Upstream Research Company Natural gas liquefaction process
KR100839771B1 (en) * 2007-05-31 2008-06-20 대우조선해양 주식회사 Apparatus for producing nitrogen equipped in a marine structure and method for producing nitrogen using the apparatus
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US8899074B2 (en) * 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US8555672B2 (en) 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
US7644676B2 (en) * 2008-02-11 2010-01-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US8529215B2 (en) 2008-03-06 2013-09-10 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US20100040989A1 (en) * 2008-03-06 2010-02-18 Heath Rodney T Combustor Control
KR20090107805A (en) * 2008-04-10 2009-10-14 대우조선해양 주식회사 Method and system for reducing heating value of natural gas
US8381544B2 (en) * 2008-07-18 2013-02-26 Kellogg Brown & Root Llc Method for liquefaction of natural gas
US20100122542A1 (en) * 2008-11-17 2010-05-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for adjusting heating value of natural gas
US8257508B2 (en) * 2009-01-30 2012-09-04 Conocophillips Company Method and system for deriming cryogenic heat exchangers
US20110094261A1 (en) * 2009-10-22 2011-04-28 Battelle Energy Alliance, Llc Natural gas liquefaction core modules, plants including same and related methods
US8257509B2 (en) * 2010-01-27 2012-09-04 Conocophillips Company Method and apparatus for deriming cryogenic equipment
US8864887B2 (en) 2010-09-30 2014-10-21 Rodney T. Heath High efficiency slug containing vapor recovery
WO2013170190A1 (en) 2012-05-10 2013-11-14 Heath Rodney T Treater combination unit
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
KR101277965B1 (en) * 2013-02-19 2013-06-27 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas
US9291409B1 (en) 2013-03-15 2016-03-22 Rodney T. Heath Compressor inter-stage temperature control
US9527786B1 (en) 2013-03-15 2016-12-27 Rodney T. Heath Compressor equipped emissions free dehydrator
US9932989B1 (en) 2013-10-24 2018-04-03 Rodney T. Heath Produced liquids compressor cooler
US9784411B2 (en) * 2015-04-02 2017-10-10 David A. Diggins System and method for unloading compressed natural gas
EP3332198A1 (en) * 2015-08-06 2018-06-13 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the production of liquefied natural gas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2198098A (en) * 1939-02-06 1940-04-23 Tide Water Associated Oil Comp High pressure gas process
US2557171A (en) * 1946-11-12 1951-06-19 Pritchard & Co J F Method of treating natural gas
DE1182256B (en) * 1957-11-25 1964-11-26 Conch International Methane Limited Nassau Bahamas (Großbntan men) Process for liquefying natural gas
US2960837A (en) * 1958-07-16 1960-11-22 Conch Int Methane Ltd Liquefying natural gas with low pressure refrigerants
US2940271A (en) * 1959-03-24 1960-06-14 Fluor Corp Low temperature fractionation of natural gas components
NL133167C (en) * 1963-01-08
US3194025A (en) * 1963-01-14 1965-07-13 Phillips Petroleum Co Gas liquefactions by multiple expansion refrigeration
US3285719A (en) * 1963-05-23 1966-11-15 Ofw xx
GB1054489A (en) * 1964-07-15

Also Published As

Publication number Publication date
CH525430A (en) 1972-07-15
ES344074A1 (en) 1968-09-16
NL6711190A (en) 1968-02-19
DE1551617A1 (en) 1970-03-19
US3407052A (en) 1968-10-22
GB1141219A (en) 1969-01-29
AT275486B (en) 1969-10-27
SE329182B (en) 1970-10-05
BE702669A (en) 1968-01-15

Similar Documents

Publication Publication Date Title
NO120941B (en)
US4699642A (en) Purification of carbon dioxide for use in brewing
US2082189A (en) Method of liquefying and storing fuel gases
RU2304746C2 (en) Method and device for liquefying natural gas
CN105509383B (en) Refrigerant-recovery in natural gas liquefaction process
USRE29914E (en) Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
US3780534A (en) Liquefaction of natural gas with product used as absorber purge
US5535594A (en) Process and apparatus for cooling a fluid especially for liquifying natural gas
RU2170894C2 (en) Method of separation of load in the course of stage-type cooling
NO833590L (en) PLANT FOR PRODUCING GAS-NITROGEN
AU2008332005B2 (en) Method and system for regulation of cooling capacity of a cooling system based on a gas expansion process.
US3020723A (en) Method and apparatus for liquefaction of natural gas
US3690114A (en) Refrigeration process for use in liquefication of gases
US2535148A (en) Method of storing natural gas
US3195316A (en) Methane liquefaction system
NO314960B1 (en) Process for condensing a multicomponent natural gas stream containing at least one freeze component
NO164292B (en) PROCEDURE FOR REDUCING THE NITROGEN CONTENT OF A CONTINUOUS GAS CONTAINING MAIN METHANE.
CN102410702A (en) Natural gas liquefaction
BR112019017533A2 (en) LIQUIDIFYING SYSTEM OF NATURAL GAS, AND, METHOD.
US2541569A (en) Liquefying and regasifying natural gases
CN1301944C (en) Olefin plant refrigeration system
JP2000512724A (en) Removal of aromatics and / or heavys from methane-based feeds by condensation and stripping
CN103075869B (en) Double-refrigerant liquefaction system and method for natural gas
NO161877B (en) PROCEDURE AND DEFROSTING DEVICE.
CN102735020B (en) Method for extracting helium from natural gas