NO120313B - - Google Patents

Download PDF

Info

Publication number
NO120313B
NO120313B NO146540A NO14654062A NO120313B NO 120313 B NO120313 B NO 120313B NO 146540 A NO146540 A NO 146540A NO 14654062 A NO14654062 A NO 14654062A NO 120313 B NO120313 B NO 120313B
Authority
NO
Norway
Prior art keywords
precious metal
metal
noble metal
activation
chloride
Prior art date
Application number
NO146540A
Other languages
Norwegian (no)
Inventor
J Robin
Original Assignee
Rhodiaceta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodiaceta filed Critical Rhodiaceta
Publication of NO120313B publication Critical patent/NO120313B/no

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/649Compounds containing carbonamide, thiocarbonamide or guanyl groups
    • D06P1/6491(Thio)urea or (cyclic) derivatives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/60General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing polyethers
    • D06P1/607Nitrogen-containing polyethers or their quaternary derivatives
    • D06P1/6076Nitrogen-containing polyethers or their quaternary derivatives addition products of amines and alkylene oxides or oxiranes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/62General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds with sulfate, sulfonate, sulfenic or sulfinic groups
    • D06P1/621Compounds without nitrogen
    • D06P1/622Sulfonic acids or their salts
    • D06P1/625Aromatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/10Material containing basic nitrogen containing amide groups using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/241Polyamides; Polyurethanes using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/245Polyamides; Polyurethanes using metallisable or mordant dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/248Polyamides; Polyurethanes using reactive dyes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Coloring (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

Fremgangsmåte til å frembringe et overspenningsnedsettende aktiveringssjikt av svampaktig edelmetall på katodeflatene ved elektrolytiske hydrogenfrembringere, Method of producing an overvoltage reducing activation layer of spongy noble metal on the cathode surfaces of electrolytic hydrogen generators,

særlig ved trykkelektrolysører. especially with pressure electrolysers.

Den overspenning som opptrer på ka-toden i elektrolysører for elektrolytisk The overvoltage that appears on the cathode in electrolyzers for electrolytic

fremstilling av hydrogen og oksygen, ned-setter som kjent elektrolysevirkningsgra-den i så sterk grad at man ved tekniske production of hydrogen and oxygen, as is known, lowers the degree of electrolysis efficiency to such an extent that one knows technically

elektrolysører med økonomisk strømbelast-ning må regne med energiforbruk på 5,2— electrolysers with an economical current load must expect an energy consumption of 5.2—

5,4 kWh/Nm<3> frembragt hydrogen. Da overspenningen stiger langsomt under konti-nuerlig drift, vil man i praksis ofte måtte 5.4 kWh/Nm<3> produced hydrogen. As the overvoltage rises slowly during continuous operation, in practice you will often have to

regne med verdier på 5,6 kW/Nm<3> (Ha) og calculate with values of 5.6 kW/Nm<3> (Ha) and

mere. more.

Det er allerede blitt foreslått å aktivere katode-flatene i elektrolytiske hydrogen-frembringere ved å foreta en mekanisk eller elektrolytisk oppruing henholdsvis på-føre krom-, tantal- eller svampjern-skikt, It has already been proposed to activate the cathode surfaces in electrolytic hydrogen generators by making a mechanical or electrolytic roughening, respectively by applying chromium, tantalum or sponge iron layers,

slik at hydrogen-overspenningen i merkbar so that the hydrogen overvoltage in noticeable

grad reduseres. Alle disse forskjellige aktiveringssjikt vil imidlertid bare utøve sin degree is reduced. However, all these different layers of activation will only do their thing

virkning i forholdsvis kort tid, slik at de effect for a relatively short time, so that they

vanlige overspenningsverdier vil innstille normal overvoltage values will set

seg allerede etter få dager — i alle tilfelle already after a few days - in any case

senest etter noen uker. at the latest after a few weeks.

Fra laboratoriet er det kjent at der It is known from the laboratory that there

ved «platinert platina», dvs. massive pla-tinakatoder som er overtrukket med «platinasort» (Platinmohr), ikke oppstår noen with "platinized platinum", i.e. massive platinum cathodes that are coated with "platinum black" (Platinmohr), no

hydrogen-overspenning. I forbindelse med hydrogen surge. In conjunction with

katoder for industrielle elektrolysører som cathodes for industrial electrolysers which

ofte har flere hundre kvadratmeter over-flate, kan det naturligvis ikke komme på often have several hundred square meters of surface area, it cannot of course come up

tale å anvende platinablikk. Bortsett fra say to use platinum tin. Except

dette foregår gassutviklingen ved de tekniske, vanligvis brukte elektrolysører som this gas evolution takes place in the technical, usually used electrolysers which

arbeider ved atmosfæretrykk og en normal works at atmospheric pressure and a normal

belastning på ca. 10 A/dm-', så voldsomt at et normalt platinasort-overtrekk i løpet av kort tid ville bli spylet bort fra katodene. load of approx. 10 A/dm-', so violently that a normal platinum black coating would be washed away from the cathodes within a short time.

Det er også kjent at aktiveringssjikt av svampaktig edelmetall på overflaten av katoder av jern for elektrolytiske hydrogen-frembringere virker overspenningsnedsettende. En ulempe ved denne fremgangsmåte til aktivering av katodeover-flatene består i at det svampaktige edel-metallsjikt når det er påført som et nedslag, ikke hefter godt nok på jernoverflaten og derfor ikke er egnet. Oppfinnelsen tar sikte på å tilveiebringe et mot-standsdyktig sjikt, hvilket oppnåes ved at det svampaktige edelmetallbelegg erholdes ved nedslag fra en vandig edelmetallsalt-oppløsning som inneholder mindre enn 5, fortrinnsvis bare 0,1 til 0,5 g edelmetall pr. liter, og at det utfelte aktiveringssjikts edelmetallinnhold er mindre enn 10 g/m-katodeflate. Man kan f. eks. tilveiebringe aktiveringssjiktet ved at man inn i det ferdigmonterte og med elektrolyt fylte apparat pumper noen liter av en alkalisk platinsalt-oppløsning, hvis konsentrasjon er slik valgt at der i apparatet oppstår en konsentrasjon på mindre enn 0,2 g Pt pr. liter elektrolyt. Selv ved meget store appa-rater som inneholder mange kubikkmeter elektrolyt, vil det greie seg med noen få gram platina. Når strømmen innkobles, vil metallisk platina slå seg ned på elektrode-flatene i meget tynne sjikt og øyeblikkelig bevirke en nedsettelse av hydrogen-overspenningen med flere tiendedels volt. Den derved oppnådde nedsettelse av apparatets driftsspenning holder seg i flere uker og lar seg senere gjenvinne flere ganger ved at man kobler ut strømmen noen timer. It is also known that activation layers of spongy noble metal on the surface of iron cathodes for electrolytic hydrogen generators have an overvoltage-reducing effect. A disadvantage of this method for activating the cathode surfaces is that the spongy noble metal layer, when applied as a deposit, does not adhere well enough to the iron surface and is therefore not suitable. The invention aims to provide a resistant layer, which is achieved by the spongy precious metal coating being obtained by precipitation from an aqueous noble metal salt solution containing less than 5, preferably only 0.1 to 0.5 g of precious metal per litres, and that the noble metal content of the precipitated activation layer is less than 10 g/m cathode surface. One can e.g. provide the activation layer by pumping a few liters of an alkaline platinum salt solution into the pre-assembled and electrolyte-filled apparatus, the concentration of which is chosen so that a concentration of less than 0.2 g Pt per liter of electrolyte. Even for very large devices containing many cubic meters of electrolyte, a few grams of platinum will do. When the current is switched on, metallic platinum will settle on the electrode surfaces in very thin layers and immediately cause a reduction of the hydrogen overvoltage by several tenths of a volt. The resulting reduction in the device's operating voltage lasts for several weeks and can later be recovered several times by switching off the power for a few hours.

Ennu gunstigere har det vist seg å beise de enkelte katoder før innmonteringen og derpå aktivere dem i et vandig bad som inneholder edelmetall i form av opp-løste klorider. De som elektroder tjenende perforerte blikk eller metallduker blir til dette formål overøst med oppløsningen i en flat skål og derpå beveget noen minutter i oppløsningen. Edelmetallet slår seg da umiddelbart ned på jernoverflaten ved ioneutveksling uten innvirkning av en ytre spenningskilde. Edelmetallet vandrer der-under inn i jernets krystallgitter, idet et jernatom går over i oppløsningen hver gang et edelmetallatom slår seg ned. Hvis den vandige klorid-oppløsning inneholder ca. 0,5 g Pt pr. liter i destillert vann, danner der seg på et platina-grunnsjikt som er fast forbundet med grunnmetallet, et godt vedheftende platinasort-overtrekk med stor og meget konstant aktivitet. Den på-førte platinamengde er her riktignok ve-sentlig høyere enn ved det ovenfor beskrevne utførelseseksempel, men holder seg dog også i dette tilfelle under 10 g Pt/m<2> ka-todeoverflate. It has been found to be even more advantageous to pickle the individual cathodes before installation and then to activate them in an aqueous bath containing precious metal in the form of dissolved chlorides. For this purpose, the perforated sheets or metal cloths serving as electrodes are poured with the solution in a flat dish and then stirred for a few minutes in the solution. The precious metal then immediately settles on the iron surface by ion exchange without the influence of an external voltage source. The noble metal migrates below into the iron's crystal lattice, as an iron atom passes into the solution every time a noble metal atom settles. If the aqueous chloride solution contains approx. 0.5 g Pt per liter in distilled water, a well-adherent platinum black coating with high and very constant activity is formed on a platinum base layer which is firmly connected to the base metal. The amount of platinum applied here is admittedly substantially higher than in the embodiment described above, but remains below 10 g Pt/m<2> cathode surface in this case as well.

Tilnærmelsesvis de samme resultater som man oppnår med rene platina-overtrekk, oppnåes også med tilsvarende palla-dium-overtrekk eller med overtrekk som består av en blanding av platina og palla-dium. Særlig hensiktsmessig har det dog vist seg å tilsette små mengder gull, for-uten et eller flere metaller av platiname-tall-gruppen (Pt, Rh, Pd, Os, Ir). Derved blir sjiktet ennu holdbarere og hydrogen-overspenningen ennu mindre. Innenfor rammen av den sist beskrevne fremgangsmåte er det da tilstrekkelig å tilsette 10— 30 % gullklorid til platina- eller palladium-kloriden for å få tilført sjiktet gullatomer. Approximately the same results as are obtained with pure platinum coatings are also obtained with corresponding palladium coatings or with coatings consisting of a mixture of platinum and palladium. However, it has proven particularly appropriate to add small amounts of gold, without one or more metals of the platinum group (Pt, Rh, Pd, Os, Ir). This makes the layer even more durable and the hydrogen overvoltage even smaller. Within the framework of the last described method, it is then sufficient to add 10-30% gold chloride to the platinum or palladium chloride in order to add layered gold atoms.

Fremgangsmåten ifødge oppfinnelsen egner seg særlig for såkalte trykkelektro-lysører, dvs. elektrolytiske vannspaltere som arbeider ved et gasstrykk på mere enn 5 atm., fortrinnsvis trykk på 20—50 atm. Ved disse trykk blir nemlig volumet av de oppstigende gassblærer så lite at blærene sammen med elektrolyten danner en mel-keaktig emulsjon som langsomt strømmer oppad og ikke lenger utøver noen erosjons-virkning på katodeoverf låtene. Også svampaktige platinasort-henh. palladiumsort-sjikt forblir ved denne arbeidsmåte årevis uforandret og fullt aktive, slik at man ved den normale flate-belastning (10—15 A/ dm<2>) oppnår en konstantblivende celle-spenning på 1,7—1,75 V. The method according to the invention is particularly suitable for so-called pressure electrolysers, i.e. electrolytic water splitters which work at a gas pressure of more than 5 atm., preferably a pressure of 20-50 atm. At these pressures, the volume of the rising gas bubbles becomes so small that the bubbles together with the electrolyte form a milky emulsion which slowly flows upwards and no longer exerts any erosive effect on the cathode surface. Also spongy platinum black henh. palladium black layer remains unchanged and fully active for years in this way of working, so that at the normal surface load (10-15 A/dm<2>) a constant cell voltage of 1.7-1.75 V is achieved.

Claims (5)

1. Fremgangsmåte til å frembringe et overspenningsnedsettende aktiveringssj ikt av svampaktig edelmetall på overflaten av katoder av jern for elektrolytiske hydrogenfrembringere, særlig trykk-elektrolysø-rer, karakterisert ved at det svampaktige edelmetallbelegg erholdes ved nedslag fra en vandig edelmetallsalt-oppløsning som inneholder mindre enn 5, fortrinnsvis bare 0,1 til 0,5 g edelmetall pr. liter, og at det utfelte aktiveringssjikts edelmetallinnhold er mindre enn 10 g/m<2> katodeflate.1. Method for producing an overvoltage-reducing activation layer of spongy noble metal on the surface of iron cathodes for electrolytic hydrogen generators, in particular pressure electrolysers, characterized in that the spongy noble metal coating is obtained by impact from an aqueous noble metal salt solution containing less than 5 , preferably only 0.1 to 0.5 g of precious metal per litres, and that the precipitated activation layer's noble metal content is less than 10 g/m<2> cathode surface. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at den ferdigmonterte og med elektrolyt fylte elektrolysør tilføres en konsentrert alkalisk edelmetall-opppøsning i en slik mengde at den derved dannede blanding av oppløsning og elektrolyt inneholder mindre enn 0,2 g edelmetall pr. liter og at elektrolysen derpå innledes, slik at edelmetallet utskiller seg på elektrodeflat-ene og der danner aktiveringssjiktet. • 2. Method according to claim 1, characterized in that the pre-assembled and electrolyte-filled electrolyser is supplied with a concentrated alkaline precious metal solution in such an amount that the resulting mixture of solution and electrolyte contains less than 0.2 g of precious metal per liter and that the electrolysis is then initiated, so that the precious metal separates on the electrode surfaces and forms the activation layer there. • 3. Fremgangsmåte ifølge påstand 1, karakterisert ved at apparatets katoder før innmonteringen beises og aktiveres i et vandig bad som inneholder edelmetallet i form av oppløste klorider, slik at edelmetallet slår seg ned på jernoverf laten ved ioneutveksling.3. Method according to claim 1, characterized in that the device's cathodes are stained and activated before installation in an aqueous bath containing the precious metal in the form of dissolved chlorides, so that the precious metal settles on the iron surface by ion exchange. 4. Fremgangsmåte ifølge påstand 3, karakterisert ved at aktiveringen foretas i et bad som inneholder kloridet av et metall av platinagruppen.4. Method according to claim 3, characterized in that the activation is carried out in a bath containing the chloride of a metal of the platinum group. 5. Fremgangsmåte ifølge påstand 3, karakterisert ved at aktiveringen foregår i et bad som inneholder kloridet av et metall av platinagruppen, blandet med gullklorid.5. Method according to claim 3, characterized in that the activation takes place in a bath containing the chloride of a metal of the platinum group, mixed with gold chloride.
NO146540A 1961-11-22 1962-11-21 NO120313B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR879739A FR1313937A (en) 1961-11-22 1961-11-22 New coloring process for polyamide-based articles

Publications (1)

Publication Number Publication Date
NO120313B true NO120313B (en) 1970-10-05

Family

ID=8767241

Family Applications (1)

Application Number Title Priority Date Filing Date
NO146540A NO120313B (en) 1961-11-22 1962-11-21

Country Status (8)

Country Link
AT (1) AT256024B (en)
DE (1) DE1444291A1 (en)
DK (1) DK105266C (en)
ES (1) ES282697A1 (en)
FR (1) FR1313937A (en)
GB (1) GB991148A (en)
NO (1) NO120313B (en)
OA (1) OA01612A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2209006B1 (en) * 1972-12-06 1976-08-20 Soprosoie Fa

Also Published As

Publication number Publication date
AT256024B (en) 1967-08-10
ES282697A1 (en) 1963-06-01
FR1313937A (en) 1963-01-04
OA01612A (en) 1969-09-20
DE1444291A1 (en) 1969-12-04
DK105266C (en) 1966-09-12
GB991148A (en) 1965-05-05

Similar Documents

Publication Publication Date Title
EP0129374B1 (en) Cathode for use in electrolytic cell
US3617462A (en) Platinum titanium hydride bipolar electrodes
US5334293A (en) Electrode comprising a coated valve metal substrate
JP2006515389A5 (en)
CN110318068B (en) Anode coating for ion-exchange membrane electrolyzer
NO142314B (en) ELECTRODE FOR ELECTROCHEMICAL PROCESSES.
JP5732111B2 (en) Method for improving the performance of nickel electrodes
JP2010507017A (en) Anode for electrolysis
NO156420B (en) CATHODS SUITABLE FOR USE BY A REACTION THAT DEVELOPES HYDROGEN, PROCEDURE FOR MANUFACTURING THEM, AND USE OF THE CATHOD.
GB855107A (en) Improvements in or relating to anodes
GB1384836A (en) Electrolytic processes
US3350294A (en) Electrodes
US4250004A (en) Process for the preparation of low overvoltage electrodes
CA1244375A (en) Production of cathode for use in electrolytic cell
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
NO120313B (en)
NO752310L (en)
JPS6356315B2 (en)
JPH06212471A (en) Method for activating cathode with catalyst
CN1104687A (en) Active low-hydrogen over-potential cathode and its manufacture
CN113699540A (en) Preparation method of disinfectant
JPS586789B2 (en) Method for preventing deterioration of palladium oxide anodes
EP0136794A2 (en) Treatment of cathodes for use in electrolytic cell
EP3891322A1 (en) Electrode for electrolytic evolution of gas
US3578572A (en) Electrodes for use in aqueous alkali metal chloride electrolytes