US3617462A - Platinum titanium hydride bipolar electrodes - Google Patents

Platinum titanium hydride bipolar electrodes Download PDF

Info

Publication number
US3617462A
US3617462A US726865A US3617462DA US3617462A US 3617462 A US3617462 A US 3617462A US 726865 A US726865 A US 726865A US 3617462D A US3617462D A US 3617462DA US 3617462 A US3617462 A US 3617462A
Authority
US
United States
Prior art keywords
cell
titanium hydride
electrode
platinum
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US726865A
Inventor
Bernard Dewitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Application granted granted Critical
Publication of US3617462A publication Critical patent/US3617462A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound

Definitions

  • Titanium hydride electrodes are disclosed for use in alkali metal chlorine and chlorate cells.
  • the electrodes disclosed are noble metal coated for use as cell anodes in chlorine and chlorate cells or as bipolar electrode elements in chlorine and chlorate cells.
  • the use of titanium hydride electrodes as cathodes in chlorine and chlorate cells is also shown.
  • the noble metal surfaces disclosed are gold, silver, platinum, palladium, iridium and ruthenium. Platinum is disclosed as the preferred noble metal surface.
  • noble metal coated electrodes having a base of titanium hydride. These electrodes may be employed as bipolar electrodes in an electrolytic cell wherein the noble metal surface is operated as an anodic surface and a titanium hydride surface is operated as a cathodic surface.
  • effective and efficient alkali metal chlorine and chlorate cell anodes can be provided utilizing an anode of titanium hydride having a noble metal surface.
  • titanium hydride may be successfully employed as a cathodic surface in the operation of alkali metal chlorine and chlorate cells without experiencing any serious electrical or chemical problems.
  • bipolar electrodes composed of a titanium hydride mass or substrate having at least one noble metal surface that the cell can be operated to produce chlorate at acceptable efficiency and with no swelling of the electrode.
  • no appreciable loss of titanium hydride particles or noble metal particles from the bipolar electrode to the cell liquor or electrolyte is noted.
  • titanium hydride has been employed as the cathode in an alkali metal chlorate cell and found to operate effectively. This electrode was also found to exhibit good corrosion resistant properties in service as a chlorate cell cathode.
  • the titanium hydride cathode may also be employed as a cathode in an alkali metal chlorine cell of the diaphragm type.
  • titanium hydride electrode with a noble metal surface as a bipolar electrode for alkali metal chlorine cell use or as the anode for an alkali metal chlorine cell of the diaphragm type or an alkali metal chlorine cell of the flowing mercury cathode type is contemplated.
  • the electrode body may take any one of several forms and still perform effectively as a bipolar electrode or a monopolar electrode.
  • the electrode when employed as a cathode in a chlorine or chlorate cell, it is typically constructed of titanium hydride. While a body of substantially solid titanium hydride is preferable in cathodic service in chlorine and chlorate cells, the cell cathode can be constructed so that only the cathodic surface is titanium hydride.
  • a base plate of metal such as steel having a titanium hydride surface affixed thereto may be utilize to provide the cathodic surface.
  • the titanium hydride has at least one electrical surface which carries as a surface a noble metal.
  • the metal is platinum but other noble metals may be utilized.
  • gold and silver is contemplated as is the use of any of the platinum group metals.
  • noble metal coating and noble metal surface utilized in the specification and claims is intended to include the noble metals hereinabove set forth in their metallic state, alloys of these noble metals and their oxides when used in relatively thin layers. Typical of the oxides intended to be embraced by these terms are the oxides disclosed in French Pat. No. 1,479,762. When oxides of noble metals are employed they may be utilized singly, in combination with other noble metal oxides or as a mixture of at least one noble metal oxide and at least one oxide of a non-noble metal, for example an oxide of titanium, tantalum, silicon or the like. Examples of various mixtures of oxides which may be employed are disclosed in French Pat. No. 1,479,762.
  • bipolar electrode elements In constructing bipolar electrode elements it is preferred to utilize a solid titanium hydride base and to plate or coat one surface thereof with the desired noble metal. Also within contemplation is the use of electrode bases which are composed of laminates of metals. Thus, an electrically conductive metal plate such as steel may have afiixed to it a layer of titanium hydride as one surface. This titanium hydride surface is then coated with the noble metal so that the bipolar electrode has a steel cathodic surface with a noble metal coated anodic surface. Electrodes of this type have the advantage of utilizing small quantities of titanium hydride thus reducing electrode cost.
  • the base be constructed of preformed titanium hydride since anolyte in such service is corrosive to metals such as steel as is the wet cell gas.
  • the electrodes of the instant invention may be shaped to provide for their use as anodes in various electrolytic alkali metal chlorine and chlorate cells.
  • they can be conveniently adapted for use as anode in conventional alkali metal chlorine cells such as the Hooker cell, in the filter press-type alkali chlorine cells as well as in the conventional flowing mercury cathode cells.
  • Typical of cells of this character are the cells described in U .5. Pat. Nos. 2,447,547; 3,247,090; 2,627,501 and 2,599,363.
  • the titanium hydride electrodes of the instant invention may be shaped for use in conventional alkali metal chlorate cells such as those shown in U.S. Pat. Nos. 3,055,821 and 3,29l,7 l4.
  • Titanium hydride may be prepared by the methods described in U.S. Pat. No. 2,401,326 and U.S. Pat. No. 2,425,711. Titanium hydride electrodes may be prepared by subjecting titanium hydride powders to the application of considerable pressure in a mold. Typically the titanium hydride powder is subjected to pressures in a mold of the desired shape of the electrodes. Pressures on the order of 50 tons per square inch or more are applied to the powder filled mold in an atmosphere of hydrogen at temperatures of 600 C. or more in a slight vacuum (400 to 600 millimeters of mercury). If desired the titanium hydride powder may be first pressed into the desired shape in a mold at pressures of from about 12 to about tons per square inch.
  • the shaped titanium hydride electrode may then be placed in an oven in a hydrogen atmosphere and sintered at temperatures of from about 600 to l,000 C. or more. After the sintering operation the electrode may be tested for the titanium hydride (Til-I content by use of X-ray diffraction analysis. If desired the electrode after analysis may be subjected to hydrogenation in an oven by surrounding the electrode with hydrogen at temperatures of about 600 to about l,l C. at pressures of 400 to 600 millimeters of mercury.
  • Another convenient method of providing the titanium hydride electrodes of the instant invention involves the direct hydrogenation of the shaped electrode.
  • the shaped electrodes composed'of metallic titanium are subjected to temperatures of 1,000 to 1,200 C. in a vacuum oven in an atmosphere of hydrogen at pressures of 400 to 600 millimeters of mercury.
  • the temperature of the heated metal bodies is reduced over a long period of time to eliminate cracking caused by rapid cooling while maintaining a hydrogen atmosphere in the oven.
  • the temperatures are reduced at rates of about 50 C. per hour once the l,000 to 1,200 C. desired temperature is reached.
  • the noble metal coatings are applied to the titanium hydride conveniently by recourse to conventional electroplating techniques.
  • the titanium hydride electrode is immersed in a plating bath containing the desired noble metal and after protecting the hydride surfaces except for the surface on which the coating is to be deposited the unprotected surface is plated by electrolysis of the platinum containing solution in the conventional manner.
  • platinum diamino nitrite solutions containing grams per liter platinum are employed to provide the platinum for deposition on the titanium hydride surface which during the plating operation forms the cathode of the electrolytic cell.
  • the anodes used may be preferably platinum though graphite has also been employed in such baths as the anode of the cell. Palladium may be plated on a titanium hydride electrode in.
  • FIG. 1 is a side view of the cell of FIG. 2 in section taken along lines l-I and,
  • FIG. 2 is an end view in cross section of a bipolar cell utilizing a bipolar titanium hydride electrode having one noble metal surface.
  • the cell box 1 is constructed of Plexiglas and provided with a cover member 3 to effectively cover the cell.
  • the cell was provided near the top of the end wall 15 withopenings 13 and 13a for removal of electrolyte from the cell. Gas is removed through openings 16 and 17 in cell top 3.
  • the electrolyte was introduced into the cell through openings 12 and 12a provided near the bottom of the end wall 15.
  • the cell 1 is positioned in a beaker 2, provided with a cover 20.
  • An electrode stem connector 11 passes through an opening 14 in cover 20 of the beaker 2, through opening 16 of cell cover 3 and was electrically connected to the cell anode 8.
  • the stem connector was connected to a power source (not shown).
  • the bipolar electrode 5 Intermediate the anode 8 and the cathode 9 of the cell is the bipolar electrode 5.
  • This electrode is circular in shape and is in the form of a washer.
  • the central portion of the electrode 5 is filled with a Plexiglas plug 7 and is held in place in the cell by a Plexiglas frame 4.
  • the titanium hydride electrode 5 has an anode surface platinum or other noble metal surface 6 which is placed facing the cell cathode 9 while the titanium hydride surface of the electrode faces the anode 8 of the cell.
  • EXAMPLE I A cell such as the cell shown in FIGS. 1 and 2 was employed to produce alkali metal chlorate by electrolysis.
  • the titanium hydride anode 5 was placed in a plating bath with one side exposed to a plating solution of platinum diamino nitrite containing 5 grams per liter platinum.
  • a platinum coating was applied to the exposed surface at a current density of 5 amps per square foot for a period of 30 minutes.
  • the titanium hydride electrode with the coated surface 6 was then placed in the cell box 1.
  • the anode 8 of the cell was a platinized titanium anode plate and the cathode 9 was a titanium sheet.
  • the anode 8 was spaced one-fourth (1/4) of an inch from the titanium hydride surface of the bipolar electrode 5 and the cathode 9 was spaced one-fourth (1/4) of an inch from the noble metal surface 6 of the bipolar electrode 5.
  • a 300 grams per liter ACS grade sodium chloride was utilized as electrolyte, and the run was conducted in a batch operation.
  • the volume of electrolyte used was 2,500 milliliters and this was placed in beaker 2 filling it to the level indicated at 21 in FIGS. 1 and 2.
  • the cell was operated at a temperature of about 38 C. and the pH of the electrolyte was 8.
  • a current of 3 amps was employed in the cell and the bipolar electrode presented in the cell 5.4 square inches of exposed area on each side of the electrode.
  • Cell voltage during the run across the cell was 6.72 at the start of the run and was 6.85 at the end of the run, which run lasted 69 hours.
  • the cell was dismantled and the bipolar electrode was inspected for swelling or other damage. No damage could be detected by visual observation.
  • EXAMPLE I The bipolar electrode from the run of example I was placed back in the. cell used in example I with the electrolyte still in place from the run of example I. The cell was again started at 3 amps current and the electrolysis continued for hours at temperatures of between 38 to 40 C. The electrolyte pH was 8.3. The cell voltage during the run was between 6.95 and 7.16 across the cell. At the end of the run a total of I59 grams of NaClO had been produced, this being the productivity of this run and the run of example I. The cell electrolyte on visual observation was clear and free of any precipitated particles. The cells bipolar electrode 5 was upon visual observation found to be undamaged.
  • EXAMPLE Ill The cell container 2 of example I was recharged with 2,500 milliliters of ACS grade sodium chloride at a concentration of 300 grams per liter.
  • the platinum coated titanium hydride bipolar electrode employed was the same electrode utilized in examples I and II.
  • the cell was connected to a source of DC current and operated at 3 amps current, a pH of 7.8 at between 38 and 40 C. The cell was operated under these conditions for a period of 240 hours.
  • the cell voltage during the run was between 6.85 and 7.24 across the cell.
  • 242 grams of sodium chlorate was produced.
  • the cell was shut down and the cell liquor examined for contamination with electrode particles. No precipitation of any kind was observed in the cell and the electrode appeared to be unchanged.
  • EXAMPLE IV The cell of example I was again run using as electrolyte a 300 grams per liter concentration of ACS grade sodium chloride.
  • the platinum coated titanium hydride bipolar electrode from the run of example III was again used.
  • 2,500 milliliters of electrolyte were added to the cell container 2.
  • the current was turned on the cell at 3 amps current flow.
  • Temperature of operation varied between 39 and 40 C.
  • the cell voltage across the cell varied between 7.01 to 7.] volts.
  • the run continued for a period of I85 hours. At shutdown no observable change had taken place in the bipolar electrode.
  • EXAMPLE V The cell of example I was again employed.
  • the cell container 2 was charged with 2,500 milliliters of ACS grade sodium chloride of a 300 grams per liter concentration.
  • the cell was equipped with the platinum-coated titanium hydride electrode from the run in example IV as the bipolar electrode 5 of the cell.
  • the cell was operated at 38 to 39 C. temperature and current of 3 amps.
  • the cell voltage during the run varied from 6.45 to 6.65 across the entire cell.
  • the cell liquor had a pH of 8.0.
  • the run was continued for 438 hours. A total of 477 grams of NaClt) was produced during the run. After shutdown the cell was examined for evidence of electrode deterioration. None was observed.
  • the bipolar electrode appeared unchanged and no precipitate of any kind was observed in the electrolyte.
  • the cell voltage reported was across the entire cell which, as will be understood by the skilled artisan, because of the bipolar electrode 5, was essentially a two cell unit.
  • the voltage of the individual cells making up the two cell unit tested was approximately one-half A) of the voltage reported.
  • a titanium hydride electrode not having any noble metal surface thereon was tested as a cathode in an alkali metal chlorate cell.
  • the titanium hydride electrode was placed in between two platinized titanium anodes and a cell electrolyte of 2,500 milliliters of ACS grade sodium chloride at 300 grams per liter concentration was employed in container 2.
  • Various temperatures were employed and cell voltage varied from between 3.75 to 4 volts. Amperage used during the runs was 3.5. The results of the several runs made under these conditions are set forth below in table I:
  • the bipolar electrode of examples I through V can be readily employed as a bipolar electrode in chlorine cell service also. As will be readily understood by the skilled art this type of operation would require a modification of the cell shown herein by the insertion of a diaphragm (typically an asbestos diaphragm) between the anodes and cathodes of the cell. Thus, for example, in the cell used in example I, a diaphragm placed between the electrode 8 and 5 and one placed between face 6 of the electrode 5 and cathode 9 will effectively convert the cell to a chlorine cell. In such a chlorine cell operation the noble metal coated bipolar titanium hydride electrode is effective and stable.
  • a diaphragm typically an asbestos diaphragm
  • a titanium hydride electrode can be used as a cathode with success.
  • the use of the hydride of titanium in such chlorine cell service is far superior to the use of the metal titanium in this instance since little or no hydrogenation of the electrode can occur.
  • these electrodes of titanium hydride carrying a noble metal coating are both effective and stable and not subject to the shortcomings of noble metal coated titanium electrodes as mentioned hereinabove.
  • a bipolar electrode useful in the electrolysis of aqueous alkali metal halides comprising a platinum coating on one side of a titanium hydride plate and a substantially solid titanium hydride surface on another side of said plate.
  • a bipolar electrode comprising a plate having substantially solid titanium hydride surface and a platinum surface in contact with a titanium hydride substrate, said substrate and said substantially solid titanium hydride surface being in an electrically communicative relationship.
  • a bipolar electrode comprising an elongated preformed substantially solid titanium hydride body affixed to an elongated platinum coated titanium body at one end of the long axis of said substantially solid titanium hydride body and said platinum coated titanium body.
  • a bipolar electrode useful in the electrolysis of aqueous alkali metal halides comprising: a substantially solid titanium hydride member and an electroconductiveplatinum coating on said substantially solid titanium hydride member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Titanium hydride electrodes are disclosed for use in alkali metal chlorine and chlorate cells. The electrodes disclosed are noble metal coated for use as cell anodes in chlorine and chlorate cells or as bipolar electrode elements in chlorine and chlorate cells. The use of titanium hydride electrodes as cathodes in chlorine and chlorate cells is also shown. The noble metal surfaces disclosed are gold, silver, platinum, palladium, iridium and ruthenium. Platinum is disclosed as the preferred noble metal surface.

Description

United States Patent Inventor Bernard Dewitt Akron, Ohio Appl. No. 726,865
Filed May 6, 1968 Patented Nov. 2, 1971 Assignee PPG Industries, Inc.
Pittsburgh, Pa.
PLATINUM TITANIUM HYDRIDE BIPOLAR ELECTRODES 4 Claims, 2 Drawing Figs.
US. Cl 204/290 F, 204/268 Int. Cl 801k 3/04 Field of Search 204/290, 268
References Cited UNITED STATES PATENTS 4/1969 Colman 204/268 Primary Examiner-John H. Mack Assistant Examiner-Sidney S. Kanter Attorney-Chisholm and Spencer ABSTRACT: Titanium hydride electrodes are disclosed for use in alkali metal chlorine and chlorate cells. The electrodes disclosed are noble metal coated for use as cell anodes in chlorine and chlorate cells or as bipolar electrode elements in chlorine and chlorate cells. The use of titanium hydride electrodes as cathodes in chlorine and chlorate cells is also shown. The noble metal surfaces disclosed are gold, silver, platinum, palladium, iridium and ruthenium. Platinum is disclosed as the preferred noble metal surface.
PLATINUM TITANIUM I-IYDRIDE BIPOLAR ELECTRODES BACKGROUND OF THE INVENTION Titanium anodes having noble metal surfaces, platinum surfaces in particular; have achieved some notoriety in recent years in the electrolytic alkali chlorine and chlorate cell fields. This interest and the research and development efforts expended on such anodes is manifested in the many patents issued on such anodes. Thus, U.S. Pat. No. 3,29l,7l4, discloses the use of such anodes in both alkali metal chlorate cells and in alkali metal chlorine cells. Bipolar electrodes as well as monopolar electrodes are disclosed having noble metal coated anodic surfaces. The use of such electrodes in monopolar cell operations is described in U.S. Pat. No. 3,055,821. The use of a platinum coated titanium anode for use in an alkali metal chlorine cell having a flowing mercury cathode is described in U.S. Pat. No. 3,271,289.
Despite the widespread interest in noble metal coated electrodes for use in alkali metal chlorine and chlorate electrolytic cells, they have not achieved any notable success in terms of being utilized on a commercial scale to any appreciable degree. One difficulty frequently attending their use as bipolar electrodes in chlorate cells for example, is the fact that the titanium substrate is found to swell frequently. This swelling of the substrate or titanium base causes deterioration of the titanium forming the body of the electrode and sloughing off of particles of the titanium electrode which result in contamination of the cell liquor. The platinum coating is also affected by any substantial swelling or distortion of the titanium base thus causing it to lose its adherence to the titanium substrate. Particles of platinum also are lost with particles of titanium as they fall from a swollen electrode into the cell electrolyte.
THE INVENTION In accordance with this invention noble metal coated electrodes are provided having a base of titanium hydride. These electrodes may be employed as bipolar electrodes in an electrolytic cell wherein the noble metal surface is operated as an anodic surface and a titanium hydride surface is operated as a cathodic surface. In a further embodiment of the invention it has been discovered that effective and efficient alkali metal chlorine and chlorate cell anodes can be provided utilizing an anode of titanium hydride having a noble metal surface. In a further embodiment of the invention it has been found that titanium hydride may be successfully employed as a cathodic surface in the operation of alkali metal chlorine and chlorate cells without experiencing any serious electrical or chemical problems.
It has been found in operating electrolytic alkali metal chlorate cells with bipolar electrodes composed of a titanium hydride mass or substrate having at least one noble metal surface that the cell can be operated to produce chlorate at acceptable efficiency and with no swelling of the electrode. In addition, no appreciable loss of titanium hydride particles or noble metal particles from the bipolar electrode to the cell liquor or electrolyte is noted. In addition, titanium hydride has been employed as the cathode in an alkali metal chlorate cell and found to operate effectively. This electrode was also found to exhibit good corrosion resistant properties in service as a chlorate cell cathode. The titanium hydride cathode may also be employed as a cathode in an alkali metal chlorine cell of the diaphragm type. Similarly the utilization of a titanium hydride electrode with a noble metal surface as a bipolar electrode for alkali metal chlorine cell use or as the anode for an alkali metal chlorine cell of the diaphragm type or an alkali metal chlorine cell of the flowing mercury cathode type is contemplated.
In accordance with this invention the electrode body may take any one of several forms and still perform effectively as a bipolar electrode or a monopolar electrode. Thus. when the electrode is employed as a cathode in a chlorine or chlorate cell, it is typically constructed of titanium hydride. While a body of substantially solid titanium hydride is preferable in cathodic service in chlorine and chlorate cells, the cell cathode can be constructed so that only the cathodic surface is titanium hydride. Thus, as a cell cathode a base plate of metal such as steel having a titanium hydride surface affixed thereto may be utilize to provide the cathodic surface.
In operations where a bipolar electrode is desired for use in alkali metal chlorate or chlorine cells, the titanium hydride has at least one electrical surface which carries as a surface a noble metal. Preferably the metal is platinum but other noble metals may be utilized. The use of gold and silver is contemplated as is the use of any of the platinum group metals. Thus in addition to platinum, it is within the contemplation of the instant invention to employ as a surface on a titanium hydride base a coating of such metals as ruthenium, rhodium, palladium, osmium, rhenium and iridium.
The terms noble metal coating and noble metal surface utilized in the specification and claims is intended to include the noble metals hereinabove set forth in their metallic state, alloys of these noble metals and their oxides when used in relatively thin layers. Typical of the oxides intended to be embraced by these terms are the oxides disclosed in French Pat. No. 1,479,762. When oxides of noble metals are employed they may be utilized singly, in combination with other noble metal oxides or as a mixture of at least one noble metal oxide and at least one oxide of a non-noble metal, for example an oxide of titanium, tantalum, silicon or the like. Examples of various mixtures of oxides which may be employed are disclosed in French Pat. No. 1,479,762.
In constructing bipolar electrode elements it is preferred to utilize a solid titanium hydride base and to plate or coat one surface thereof with the desired noble metal. Also within contemplation is the use of electrode bases which are composed of laminates of metals. Thus, an electrically conductive metal plate such as steel may have afiixed to it a layer of titanium hydride as one surface. This titanium hydride surface is then coated with the noble metal so that the bipolar electrode has a steel cathodic surface with a noble metal coated anodic surface. Electrodes of this type have the advantage of utilizing small quantities of titanium hydride thus reducing electrode cost.
In utilizing titanium hydride having noble metal surfaces as the anode in an alkali metal chlorine or chlorate cell it is preferred that the base be constructed of preformed titanium hydride since anolyte in such service is corrosive to metals such as steel as is the wet cell gas.
The electrodes of the instant invention may be shaped to provide for their use as anodes in various electrolytic alkali metal chlorine and chlorate cells. Thus by providing them in the form of flat plates they can be conveniently adapted for use as anode in conventional alkali metal chlorine cells such as the Hooker cell, in the filter press-type alkali chlorine cells as well as in the conventional flowing mercury cathode cells. Typical of cells of this character are the cells described in U .5. Pat. Nos. 2,447,547; 3,247,090; 2,627,501 and 2,599,363. Similarly the titanium hydride electrodes of the instant invention may be shaped for use in conventional alkali metal chlorate cells such as those shown in U.S. Pat. Nos. 3,055,821 and 3,29l,7 l4.
Titanium hydride may be prepared by the methods described in U.S. Pat. No. 2,401,326 and U.S. Pat. No. 2,425,711. Titanium hydride electrodes may be prepared by subjecting titanium hydride powders to the application of considerable pressure in a mold. Typically the titanium hydride powder is subjected to pressures in a mold of the desired shape of the electrodes. Pressures on the order of 50 tons per square inch or more are applied to the powder filled mold in an atmosphere of hydrogen at temperatures of 600 C. or more in a slight vacuum (400 to 600 millimeters of mercury). If desired the titanium hydride powder may be first pressed into the desired shape in a mold at pressures of from about 12 to about tons per square inch. The shaped titanium hydride electrode may then be placed in an oven in a hydrogen atmosphere and sintered at temperatures of from about 600 to l,000 C. or more. After the sintering operation the electrode may be tested for the titanium hydride (Til-I content by use of X-ray diffraction analysis. If desired the electrode after analysis may be subjected to hydrogenation in an oven by surrounding the electrode with hydrogen at temperatures of about 600 to about l,l C. at pressures of 400 to 600 millimeters of mercury.
Another convenient method of providing the titanium hydride electrodes of the instant invention involves the direct hydrogenation of the shaped electrode. In this instance the shaped electrodes composed'of metallic titanium are subjected to temperatures of 1,000 to 1,200 C. in a vacuum oven in an atmosphere of hydrogen at pressures of 400 to 600 millimeters of mercury. The temperature of the heated metal bodies is reduced over a long period of time to eliminate cracking caused by rapid cooling while maintaining a hydrogen atmosphere in the oven. Typically the temperatures are reduced at rates of about 50 C. per hour once the l,000 to 1,200 C. desired temperature is reached. When the electrode has been cooled to room temperature, it is ready for use as an electrode in an alkali chlorine or chlorate cell.
The noble metal coatings are applied to the titanium hydride conveniently by recourse to conventional electroplating techniques. Thus the titanium hydride electrode is immersed in a plating bath containing the desired noble metal and after protecting the hydride surfaces except for the surface on which the coating is to be deposited the unprotected surface is plated by electrolysis of the platinum containing solution in the conventional manner. Typically platinum diamino nitrite solutions containing grams per liter platinum are employed to provide the platinum for deposition on the titanium hydride surface which during the plating operation forms the cathode of the electrolytic cell. The anodes used may be preferably platinum though graphite has also been employed in such baths as the anode of the cell. Palladium may be plated on a titanium hydride electrode in. similar fashion typically from a palladium diamino nitrite solution at concentrations of about 5 grams per liter palladium using a palladium anoderln similar fashion other noble metal surfaces may be applied to the titanium hydride substrate of the novel electrodes herein described.
To further illustrate the instant invention reference is made to the accompanying drawing in which:
FIG. 1 is a side view of the cell of FIG. 2 in section taken along lines l-I and,
FIG. 2 is an end view in cross section ofa bipolar cell utilizing a bipolar titanium hydride electrode having one noble metal surface.
In the cell shown in FIGS. 1 and 2 the cell box 1 is constructed of Plexiglas and provided with a cover member 3 to effectively cover the cell. The cell was provided near the top of the end wall 15 withopenings 13 and 13a for removal of electrolyte from the cell. Gas is removed through openings 16 and 17 in cell top 3. The electrolyte was introduced into the cell through openings 12 and 12a provided near the bottom of the end wall 15. The cell 1 is positioned in a beaker 2, provided with a cover 20. An electrode stem connector 11 passes through an opening 14 in cover 20 of the beaker 2, through opening 16 of cell cover 3 and was electrically connected to the cell anode 8. The stem connector was connected to a power source (not shown). On the opposite side of the cell box 1 was a similar stem connector which passed through opening in cover of the beaker 2 and opening 17 in a cell cover 3 and was electrically connected to the cell cathode 9 at one end and to a suitable power source (not shown) at its other extremity.
Intermediate the anode 8 and the cathode 9 of the cell is the bipolar electrode 5. This electrode is circular in shape and is in the form of a washer. The central portion of the electrode 5 is filled with a Plexiglas plug 7 and is held in place in the cell by a Plexiglas frame 4. The titanium hydride electrode 5 has an anode surface platinum or other noble metal surface 6 which is placed facing the cell cathode 9 while the titanium hydride surface of the electrode faces the anode 8 of the cell.
To illustrate the use of the noble metal coated titanium hydride bipolar electrode in the operation of an alkali metal chlorate cell the following examples were run.
EXAMPLE I A cell such as the cell shown in FIGS. 1 and 2 was employed to produce alkali metal chlorate by electrolysis. The titanium hydride anode 5 was placed in a plating bath with one side exposed to a plating solution of platinum diamino nitrite containing 5 grams per liter platinum. A platinum coating was applied to the exposed surface at a current density of 5 amps per square foot for a period of 30 minutes. The titanium hydride electrode with the coated surface 6 was then placed in the cell box 1. The anode 8 of the cell was a platinized titanium anode plate and the cathode 9 was a titanium sheet. The anode 8 was spaced one-fourth (1/4) of an inch from the titanium hydride surface of the bipolar electrode 5 and the cathode 9 was spaced one-fourth (1/4) of an inch from the noble metal surface 6 of the bipolar electrode 5. A 300 grams per liter ACS grade sodium chloride was utilized as electrolyte, and the run was conducted in a batch operation. The volume of electrolyte used was 2,500 milliliters and this was placed in beaker 2 filling it to the level indicated at 21 in FIGS. 1 and 2. The cell was operated at a temperature of about 38 C. and the pH of the electrolyte was 8. When the cell was actuated, gas lift in the cell drew the electrolyte into the cell through openings 12 and 12a and discharged electrolytes through openings 13 and 130. Cell gas left the cell through openings 16 and 17 of cover 3 and left the beaker through openings l4 and 15 in cover 20.
A current of 3 amps was employed in the cell and the bipolar electrode presented in the cell 5.4 square inches of exposed area on each side of the electrode. Cell voltage during the run across the cell was 6.72 at the start of the run and was 6.85 at the end of the run, which run lasted 69 hours. At the end of the run the cell was dismantled and the bipolar electrode was inspected for swelling or other damage. No damage could be detected by visual observation.
EXAMPLE I] The bipolar electrode from the run of example I was placed back in the. cell used in example I with the electrolyte still in place from the run of example I. The cell was again started at 3 amps current and the electrolysis continued for hours at temperatures of between 38 to 40 C. The electrolyte pH was 8.3. The cell voltage during the run was between 6.95 and 7.16 across the cell. At the end of the run a total of I59 grams of NaClO had been produced, this being the productivity of this run and the run of example I. The cell electrolyte on visual observation was clear and free of any precipitated particles. The cells bipolar electrode 5 was upon visual observation found to be undamaged.
EXAMPLE Ill The cell container 2 of example I was recharged with 2,500 milliliters of ACS grade sodium chloride at a concentration of 300 grams per liter. The platinum coated titanium hydride bipolar electrode employed was the same electrode utilized in examples I and II. The cell was connected to a source of DC current and operated at 3 amps current, a pH of 7.8 at between 38 and 40 C. The cell was operated under these conditions for a period of 240 hours. The cell voltage during the run was between 6.85 and 7.24 across the cell. During the run 242 grams of sodium chlorate was produced. At the end of the run the cell was shut down and the cell liquor examined for contamination with electrode particles. No precipitation of any kind was observed in the cell and the electrode appeared to be unchanged.
EXAMPLE IV EXAMPLE IV The cell of example I was again run using as electrolyte a 300 grams per liter concentration of ACS grade sodium chloride. The platinum coated titanium hydride bipolar electrode from the run of example III was again used. 2,500 milliliters of electrolyte were added to the cell container 2. The current was turned on the cell at 3 amps current flow. Temperature of operation varied between 39 and 40 C. The cell voltage across the cell varied between 7.01 to 7.] volts. The run continued for a period of I85 hours. At shutdown no observable change had taken place in the bipolar electrode.
EXAMPLE V The cell of example I was again employed. The cell container 2 was charged with 2,500 milliliters of ACS grade sodium chloride of a 300 grams per liter concentration. The cell was equipped with the platinum-coated titanium hydride electrode from the run in example IV as the bipolar electrode 5 of the cell. The cell was operated at 38 to 39 C. temperature and current of 3 amps. The cell voltage during the run varied from 6.45 to 6.65 across the entire cell. The cell liquor had a pH of 8.0. The run was continued for 438 hours. A total of 477 grams of NaClt) was produced during the run. After shutdown the cell was examined for evidence of electrode deterioration. None was observed. The bipolar electrode appeared unchanged and no precipitate of any kind was observed in the electrolyte.
In the above examples the cell voltage reported was across the entire cell which, as will be understood by the skilled artisan, because of the bipolar electrode 5, was essentially a two cell unit. Thus the voltage of the individual cells making up the two cell unit tested was approximately one-half A) of the voltage reported.
In addition to the above examples a titanium hydride electrode not having any noble metal surface thereon was tested as a cathode in an alkali metal chlorate cell. In these tests the titanium hydride electrode was placed in between two platinized titanium anodes and a cell electrolyte of 2,500 milliliters of ACS grade sodium chloride at 300 grams per liter concentration was employed in container 2. Various temperatures were employed and cell voltage varied from between 3.75 to 4 volts. Amperage used during the runs was 3.5. The results of the several runs made under these conditions are set forth below in table I:
After run I the electrode was examined and appeared to be in good condition. After run 2 the electrode showed a slight weight gain apparently due to hydrogenation. A total of 0.04 grams of particles were found in the cell liquor.
The bipolar electrode of examples I through V can be readily employed as a bipolar electrode in chlorine cell service also. As will be readily understood by the skilled art this type of operation would require a modification of the cell shown herein by the insertion of a diaphragm (typically an asbestos diaphragm) between the anodes and cathodes of the cell. Thus, for example, in the cell used in example I, a diaphragm placed between the electrode 8 and 5 and one placed between face 6 of the electrode 5 and cathode 9 will effectively convert the cell to a chlorine cell. In such a chlorine cell operation the noble metal coated bipolar titanium hydride electrode is effective and stable.
In such a chlorine cell operation a titanium hydride electrode can be used as a cathode with success. The use of the hydride of titanium in such chlorine cell service is far superior to the use of the metal titanium in this instance since little or no hydrogenation of the electrode can occur.
Further when used as the anode of a chlorine cell, either the diaphragm or mercury type, these electrodes of titanium hydride carrying a noble metal coating are both effective and stable and not subject to the shortcomings of noble metal coated titanium electrodes as mentioned hereinabove.
While in discussing the placing of coatings of noble metals on titanium hydride surfaces hereinabove conventional electroplating methods have been shown, it is of course to be understood that other methods for applying noble metal coatings can be utilized. Thus, thermal and chemical methods, as well as galvanic methods, can be employed. Typical of other methods which may be employed for plating electrodes with noble metals as metals, alloys or oxides are those described in French Pat. No. 1,479,762.
While the invention has been described above with reference to certain specific examples and illustrative embodiments, it is not intended that it be so limited thereby except insofar as appears in the accompanying claims.
I claim:
1. A bipolar electrode useful in the electrolysis of aqueous alkali metal halides comprising a platinum coating on one side of a titanium hydride plate and a substantially solid titanium hydride surface on another side of said plate.
2. A bipolar electrode comprising a plate having substantially solid titanium hydride surface and a platinum surface in contact with a titanium hydride substrate, said substrate and said substantially solid titanium hydride surface being in an electrically communicative relationship.
3. A bipolar electrode comprising an elongated preformed substantially solid titanium hydride body affixed to an elongated platinum coated titanium body at one end of the long axis of said substantially solid titanium hydride body and said platinum coated titanium body.
4. A bipolar electrode useful in the electrolysis of aqueous alkali metal halides comprising: a substantially solid titanium hydride member and an electroconductiveplatinum coating on said substantially solid titanium hydride member.

Claims (3)

  1. 2. A bipolar electrode comprising a plate having substantially solid titanium hydride surface and a platinum surface in contact with a titanium hydride substrate, said substrate and said substantially solid titanium hydride surface being in an electrically communicative relationship.
  2. 3. A bipolar electrode comprising an elongated preformed substantially solid titanium hydride body affixed to an elongated platinum coated titanium body at one end of the long axis of said substantially solid titanium hydride body and said platinum coated titanium body.
  3. 4. A bipolar electrode useful in the electrolysis of aqueous alkali metal halides comprising: a substantially solid titanium hydride member and an electroconductive platinum coating on said substantially solid titanium hydride Member.
US726865A 1968-05-06 1968-05-06 Platinum titanium hydride bipolar electrodes Expired - Lifetime US3617462A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72686568A 1968-05-06 1968-05-06
US11599271A 1971-02-17 1971-02-17

Publications (1)

Publication Number Publication Date
US3617462A true US3617462A (en) 1971-11-02

Family

ID=26813795

Family Applications (2)

Application Number Title Priority Date Filing Date
US726865A Expired - Lifetime US3617462A (en) 1968-05-06 1968-05-06 Platinum titanium hydride bipolar electrodes
US00115992A Expired - Lifetime US3732157A (en) 1968-05-06 1971-02-17 Electrolytic cell including titanium hydride cathodes and noble-metal coated titanium hydride anodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00115992A Expired - Lifetime US3732157A (en) 1968-05-06 1971-02-17 Electrolytic cell including titanium hydride cathodes and noble-metal coated titanium hydride anodes

Country Status (1)

Country Link
US (2) US3617462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2362946A1 (en) * 1976-08-25 1978-03-24 Basf Ag METHOD OF MANUFACTURING ELECTRODES WITH METAL-VALVE SUPPORT
US4120763A (en) * 1976-06-10 1978-10-17 Battelle Memorial Institute Hydrogen transfer by metal hydride between aqueous medium and organic compound
US4127709A (en) * 1977-08-24 1978-11-28 Samuel Ruben Process for electro-plating nickel on titanium
US5580672A (en) * 1995-06-07 1996-12-03 United Technologies Corporation Method for reducing the risk of perforation or gas leakage in electrochemical and gas generating devices

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917518A (en) * 1973-04-19 1975-11-04 Diamond Shamrock Corp Hypochlorite production
US3875043A (en) * 1973-04-19 1975-04-01 Electronor Corp Electrodes with multicomponent coatings
CH587929A5 (en) * 1973-08-13 1977-05-13 Alusuisse
US3974051A (en) * 1975-05-07 1976-08-10 Diamond Shamrock Corporation Production of hypochlorite from impure saline solutions
US4012296A (en) * 1975-10-30 1977-03-15 Hooker Chemicals & Plastics Corporation Electrode for electrolytic processes
US4098671A (en) * 1977-04-18 1978-07-04 Gow Enterprises Limited Cathode for electrolytic process involving hydrogen generation
FR2419985A1 (en) * 1978-03-13 1979-10-12 Rhone Poulenc Ind ELECTRODE FOR ELECTROLYSIS OF SODIUM CHLORIDE
US4256552A (en) * 1979-11-08 1981-03-17 Sweeney Charles T Chlorine generator
US4334968A (en) * 1979-11-08 1982-06-15 Sweeney Charles T Apparatus for generation of chlorine/chlorine dioxide mixtures
US4248681A (en) * 1980-02-13 1981-02-03 Sweeney Charles T Generation of chlorine/chlorine dioxide mixtures
US4362707A (en) * 1981-04-23 1982-12-07 Diamond Shamrock Corporation Preparation of chlorine dioxide with platinum group metal oxide catalysts
US4743350A (en) * 1986-08-04 1988-05-10 Olin Corporation Electrolytic cell
US4761216A (en) * 1987-04-01 1988-08-02 Olin Corporation Multilayer electrode
IT1237882B (en) * 1989-12-12 1993-06-18 Eniricerche Spa SOLID STATE SENSOR TO DETERMINE THE CONCENTRATION OF GAS THAT CAN REACT WITH HYDROGEN
AT397436B (en) * 1990-07-26 1994-04-25 Avl Verbrennungskraft Messtech ANODE OF AN ELECTROCHEMICAL SENSOR ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF
US5158656A (en) * 1991-03-22 1992-10-27 Electron Transfer Technologies, Inc. Method and apparatus for the electrolytic preparation of group IV and V hydrides
US6572758B2 (en) 2001-02-06 2003-06-03 United States Filter Corporation Electrode coating and method of use and preparation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB956292A (en) * 1960-03-01 1964-04-22 Ewald Wicke Composite metal/metal hydride body
US3262876A (en) * 1963-07-05 1966-07-26 Calgon Corp Cleaning ion exchange resins
US3297484A (en) * 1961-05-08 1967-01-10 Gen Electric Electrode structure and fuel cell incorporating the same
FR1479762A (en) * 1965-05-12 1967-05-05 electrode coated with an oxide of a metal belonging to the platinum group and made for the use of this electrode
US3410784A (en) * 1964-10-12 1968-11-12 Electric Reduction Co Apparatus for performing electrolytic processes
US3441495A (en) * 1966-05-20 1969-04-29 Electric Reduction Co Bipolar electrolytic cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB956292A (en) * 1960-03-01 1964-04-22 Ewald Wicke Composite metal/metal hydride body
US3297484A (en) * 1961-05-08 1967-01-10 Gen Electric Electrode structure and fuel cell incorporating the same
US3262876A (en) * 1963-07-05 1966-07-26 Calgon Corp Cleaning ion exchange resins
US3410784A (en) * 1964-10-12 1968-11-12 Electric Reduction Co Apparatus for performing electrolytic processes
FR1479762A (en) * 1965-05-12 1967-05-05 electrode coated with an oxide of a metal belonging to the platinum group and made for the use of this electrode
US3441495A (en) * 1966-05-20 1969-04-29 Electric Reduction Co Bipolar electrolytic cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120763A (en) * 1976-06-10 1978-10-17 Battelle Memorial Institute Hydrogen transfer by metal hydride between aqueous medium and organic compound
FR2362946A1 (en) * 1976-08-25 1978-03-24 Basf Ag METHOD OF MANUFACTURING ELECTRODES WITH METAL-VALVE SUPPORT
US4153742A (en) * 1976-08-25 1979-05-08 Basf Aktiengesellschaft Manufacture of electrodes
US4127709A (en) * 1977-08-24 1978-11-28 Samuel Ruben Process for electro-plating nickel on titanium
US5580672A (en) * 1995-06-07 1996-12-03 United Technologies Corporation Method for reducing the risk of perforation or gas leakage in electrochemical and gas generating devices

Also Published As

Publication number Publication date
US3732157A (en) 1973-05-08

Similar Documents

Publication Publication Date Title
US3617462A (en) Platinum titanium hydride bipolar electrodes
US4104133A (en) Method of in situ plating of an active coating on cathodes of alkali halide electrolysis cells
US3878083A (en) Anode for oxygen evolution
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
CN110318068B (en) Anode coating for ion-exchange membrane electrolyzer
US3236756A (en) Electrolysis with precious metalcoated titanium anode
US3974058A (en) Ruthenium coated cathodes
US3055811A (en) Electrolysis with improved platinum plated titanium anode and manufacture thereof
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
US2872405A (en) Lead dioxide electrode
JPS6361391B2 (en)
US3926751A (en) Method of electrowinning metals
US3497425A (en) Electrodes and methods of making same
US4169775A (en) Protection of the low hydrogen overvoltage catalytic coatings
US4589969A (en) Electrode for electrolysis of solutions of electrolytes and process for producing same
US5035789A (en) Electrocatalytic cathodes and methods of preparation
US4250004A (en) Process for the preparation of low overvoltage electrodes
US20230151503A1 (en) Method for the treatment of a metal substrate for the preparation of electrodes
US3254015A (en) Process for treating platinum-coated electrodes
US5227030A (en) Electrocatalytic cathodes and methods of preparation
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
US3945907A (en) Electrolytic cell having rhenium coated cathodes
IE46061B1 (en) Manufacture of titanium anodes suitable for use in the electrolytic production of manganese dioxide
NO752310L (en)
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions