NO119501B - - Google Patents
Download PDFInfo
- Publication number
- NO119501B NO119501B NO276468A NO276468A NO119501B NO 119501 B NO119501 B NO 119501B NO 276468 A NO276468 A NO 276468A NO 276468 A NO276468 A NO 276468A NO 119501 B NO119501 B NO 119501B
- Authority
- NO
- Norway
- Prior art keywords
- bismuth
- tin
- alloy
- alloys
- hot
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 229910052797 bismuth Inorganic materials 0.000 claims description 20
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 19
- 229910052718 tin Inorganic materials 0.000 claims description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 15
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005336 cracking Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 239000003063 flame retardant Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 5
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Continuous Casting (AREA)
Description
Magnesium-støpelegering med liten tendens til varmrissdannelse. Magnesium casting alloy with little tendency to hot cracking.
Oppfinnelsen angår en aluminiumholdig magnesium-støpe-legering som utmerker seg ved liten tendens til dannelse av varmriss. The invention relates to an aluminium-containing magnesium casting alloy which is characterized by a low tendency to form hot cracks.
Magnesiumlegeringer inneholdende 3-10% aluminium og van-ligvis 0,3-2% sink, f.eks. AZ 91 (dvs. en magnesiumlegering med ca. 9% Al og ca. 1% Zn), har en rekke gode egenskaper som støpele-geringer, hvorav kan nevnes god utflytning, press-støpbarhet og tilfredsstillende fasthetsegenskaper ved temperaturer opptil ca. 100°C. Magnesium alloys containing 3-10% aluminum and usually 0.3-2% zinc, e.g. AZ 91 (i.e. a magnesium alloy with approx. 9% Al and approx. 1% Zn), has a number of good properties such as casting properties, of which good flowability, press castability and satisfactory strength properties at temperatures up to approx. 100°C.
Disse legeringer er ikke spesielt tilbøyelige til varmrissdannelse, men deres anvendelsesmuligheter ville bli enda stør-re om varmrisstilbøyeligheten kunne reduseres ytterligere, idet våre dagers press-støpeteknikk åpner muligheter for masseproduksjon These alloys are not particularly prone to hot cracking, but their application possibilities would be even greater if the tendency to hot cracking could be further reduced, as today's press-casting technology opens up possibilities for mass production
I IN
av en stadig større mangfoldighet av støpte artikler eller detaljer, hvorav en del vil sette store krav med hensyn til legeringens tendens til varmriss. of an ever-increasing variety of cast articles or details, some of which will place great demands with regard to the alloy's tendency to crack when hot.
Varmriss er en deling i et metallisk støpestykke som oppstår i to-faseområdet fast-flytende under avkjølingsprosessen. Ovennevnte type støpelegeringer har et betydelig størkningsinter-vall, og det følger herav at det under størkningen lett kan oppstå spenninger i støpestykket. Disse kan forårsakes av kontraksjons-hindring i støpeform eller -kjerne, likeledes av delkrymping i sel-ve støpestykket. De spenninger som således oppstår under størknin-gen, kan resultere i varmriss, og tendensen hertil forsterkes når forskjellige deler av støpestykket får innbyrdes uensartet avkjø-ling, som f.eks. ved brå overganger mellom tykt og tynt gods. A hot crack is a split in a metallic casting that occurs in the solid-liquid two-phase region during the cooling process. The above-mentioned type of casting alloys have a significant solidification interval, and it follows that during solidification stresses can easily arise in the casting. These can be caused by contraction hindrance in the mold or core, as well as partial shrinkage in the casting itself. The stresses that thus arise during solidification can result in hot cracking, and the tendency to this is intensified when different parts of the casting receive non-uniform cooling, such as e.g. at abrupt transitions between thick and thin goods.
Det er kjent forskjellige måter og midler til å motvirke støpelegeringers tendens til varmrissdannelse. Når det gjelder mag-ne siumlege r inge r av ovennevnte type, er det således kjent at varia-sjon i aluminium- og sinkinnholdet har innflytelse på legeringens varmrisstendens. Different ways and means are known to counteract the tendency of casting alloys to form hot cracks. In the case of magnesium alloy rings of the above type, it is thus known that variation in the aluminum and zinc content has an influence on the alloy's hot rusting tendency.
Det ble nå overraskende funnet at hvis magnesiumlegeringer av den ovenfor nevnte type, dvs. magnesiumlegeringer inneholdende fra 3-10% Al og 0,3-2% sink, tilsettes vismut i meget små mengder, innenfor det ganske snevre intervall av 0,1-0,4%, oppnås en meget markert effekt når det gjelder å redusere legeringens tendens til varmriss. Tinn ble også funnet å ha en gunstig virkning, hvis det tilsettes i små mengder innenfor det samme snevre intervall. Virkningen for tinn er imidlertid ikke så sterk som for vismut. It was now surprisingly found that if magnesium alloys of the type mentioned above, i.e. magnesium alloys containing from 3-10% Al and 0.3-2% zinc, bismuth is added in very small amounts, within the rather narrow interval of 0.1- 0.4%, a very marked effect is achieved when it comes to reducing the alloy's tendency to hot cracking. Tin was also found to have a beneficial effect, if added in small amounts within the same narrow range. However, the effect for tin is not as strong as for bismuth.
Legeringer av ovennevnte art kan derfor med stor fordel anvendes til fremstilling av støpestykker som på grunn av sin form er særlig sterkt varmrisstilbøyelige. Særlig fordelaktig anvendes et vismut-innhold resp. et tinninnhold av fra 0,2-0,3%. Alloys of the above-mentioned kind can therefore be used with great advantage for the production of castings which, due to their shape, are particularly prone to hot rust. A bismuth content or a tin content of from 0.2-0.3%.
Legeringen kan, om det ønskes, tilsettes opptil 0,5% mangan, 0,5% silisium, 0,5% Cu og de vanlige mengder oksydasjons-hindrende metall (beryllium). If desired, up to 0.5% manganese, 0.5% silicon, 0.5% Cu and the usual amounts of oxidation-preventing metal (beryllium) can be added to the alloy.
Det skal bemerkes at det i mange årtier har vært kjent magnesiumlegeringer som inneholder vismut. således er det fra norsk patent 53 391 og det tilsvarende US-patent 2 094 332 kjent alumipium- og sinkholdige magnesiumlegeringer med 0,05-2% vismut eller antimon. Legeringen angis å ha forbedret korrosjonsmotstand. Så vidt vites har patentets lære ikke fått praktisk betydning og legeringen ingen anvendelse - heller ikke som knalegering, som It should be noted that magnesium alloys containing bismuth have been known for many decades. thus, aluminum- and zinc-containing magnesium alloys with 0.05-2% bismuth or antimony are known from Norwegian patent 53 391 and the corresponding US patent 2 094 332. The alloy is stated to have improved corrosion resistance. As far as is known, the teachings of the patent have not gained any practical significance and the alloy has no application - not even as an alloy, which
1 henhold til patentets eksempler synes å ha vært den påtenkte ho-vedanvendelse. Den virkning av vismut som nå er blitt funnet, nemlig at vismut nedsetter varmrisstilbøyeligheten, fremgår ikke av patentskriftet og ble neppe engang oppdaget, muligens på grunn av antimoninnholdet i de vismutholdige magnesiumlegeringer. Det har også i mange årtier vært kjent tinnholdige magnesiumlegeringer. Eksempelvis angir US-patent 2 000 115 en magne-sium-knalegering med opp til 12% tinn, fortrinnsvis ca. 4-6% tinn. Andre tinnholdige magnesiumlegeringer er kjent fra US-patent 2 124 552 og 2 305 82 5, hvor tinninnholdet kan være 0,5-10%. Det eksperimentelt anvendte tinninnhold synes å ha vært vesentlig høy-ere enn 0,5%, og den virkning av tinn som nå er blitt funnet i henhold til foreliggende oppfinnelse, kan ikke antas å være blitt opp-nådd i henhold til de nevnte patentskrifter. I det følgende skal noen illustrerende forsøk beskrives. A) 1) Det ble fremstilt legeringer av AZ 91-typen (9% aluminium, 0,7% sink, 0,2% mangan) inneholdende varierende mengder vismut, henholdsvis tinn. Følgende tabell viser innholdet av vismut og tinnr 1 according to the patent's examples seems to have been the intended main application. The effect of bismuth which has now been found, namely that bismuth reduces the tendency to hot rice, is not apparent from the patent document and was hardly even discovered, possibly because of the antimony content in the bismuth-containing magnesium alloys. Tin-containing magnesium alloys have also been known for many decades. For example, US patent 2,000,115 states a magnesium alloy with up to 12% tin, preferably approx. 4-6% tin. Other tin-containing magnesium alloys are known from US patents 2,124,552 and 2,305,825, where the tin content can be 0.5-10%. The tin content used experimentally seems to have been significantly higher than 0.5%, and the effect of tin which has now been found according to the present invention cannot be assumed to have been achieved according to the mentioned patents. In the following, some illustrative experiments will be described. A) 1) Alloys of the AZ 91 type (9% aluminum, 0.7% zinc, 0.2% manganese) were produced containing varying amounts of bismuth and tin respectively. The following table shows the content of bismuth and tin
Disse legeringer ble utprøvet med hensyn pa varmriss i en modifisertprøvekokille av den type som er beskrevet i "Giesse-rei", 45, Heft 26 (1958), s.761-765. These alloys were tested with regard to hot drawing in a modified test mold of the type described in "Giesse-rei", 45, Heft 26 (1958), pp. 761-765.
Resultatene vil fremgå av kurvebladet. Ordinaten er her antall grader Celsius avvik fra omslagstemperaturen for AZ 91 uten Bi eller Sn. Med omslagstemperaturen menes laveste kokilletempe-ratur som gir rissfri prøvebarre. Kurven for vismut viser en tem-peraturdifferanse på 70-80°C når tilsetningen av vismut var 0,2-0,3%. Dette er en meget stor temperaturforskjell, hvilket vil si at den gunstige effekt av en tilsetning på 0,2-0,3% vismut til legeringen var meget markert. The results will appear on the curve sheet. The ordinate is here the number of degrees Celsius deviation from the cover temperature for AZ 91 without Bi or Sn. By the cover temperature is meant the lowest mold temperature that produces a crack-free test ingot. The curve for bismuth shows a temperature difference of 70-80°C when the addition of bismuth was 0.2-0.3%. This is a very large temperature difference, which means that the beneficial effect of an addition of 0.2-0.3% bismuth to the alloy was very marked.
Kurvebladet viser videre en lignende effekt av tinn på 30-40°C i området 0,1-0,4% vekt% Sn. The curve sheet further shows a similar effect of tin at 30-40°C in the range 0.1-0.4% wt% Sn.
i in
2) En vismuttilsetning på 0,3% til en AZ 61-legering (6% aluminium, 0,7% sink, 0,2% mangan) ga en forbedring på 55°C sammenlignet med AZ 61 uten vismut ved forsøk i ovennevnte kokille. 2) A bismuth addition of 0.3% to an AZ 61 alloy (6% aluminum, 0.7% zinc, 0.2% manganese) gave an improvement of 55°C compared to AZ 61 without bismuth when tested in the above mold .
Legeringene under 1) og 2) viste strekkfasthet som nor-malt for AZ 91-legeringer. Videre viste forsøk at tilsetning av vismut ikke ga øket korrosjonstendens ved dypping i 3%'s NaCl-oppløsning. B) AZ 91-legeringer med og uten vismut ble presstøpt til en spesielt varmriss-ømfintlig detalj. De støpte detaljer ble under-søkt med hensyn til varmriss. The alloys under 1) and 2) showed tensile strength as normal for AZ 91 alloys. Experiments also showed that the addition of bismuth did not increase the corrosion tendency when immersed in a 3% NaCl solution. B) AZ 91 alloys with and without bismuth were die-cast to a particularly hot scratch sensitive part. The cast details were examined with regard to hot scratches.
RESULTAT RESULT
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO276468A NO119501B (en) | 1968-07-11 | 1968-07-11 | |
DE19691934617 DE1934617C3 (en) | 1968-07-11 | 1969-07-08 | Use of magnesium-aluminum die-cast alloys as a material for the production of die-cast parts which, due to their shape or shape, are particularly prone to hot cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO276468A NO119501B (en) | 1968-07-11 | 1968-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO119501B true NO119501B (en) | 1970-05-25 |
Family
ID=19879109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO276468A NO119501B (en) | 1968-07-11 | 1968-07-11 |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE1934617C3 (en) |
NO (1) | NO119501B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3328799C2 (en) * | 1983-08-10 | 1986-02-13 | Heinrich 4600 Dortmund Pottschull | Warping mat for underground expansion, especially pre-pledging warping mat |
JP3603706B2 (en) * | 1999-12-03 | 2004-12-22 | 株式会社日立製作所 | High-strength Mg-based alloys and Mg-based cast alloys and articles |
CN106984915A (en) * | 2017-04-27 | 2017-07-28 | 河南科技大学 | A kind of magnesium alloy brazing solder containing Sn and preparation method thereof, application |
-
1968
- 1968-07-11 NO NO276468A patent/NO119501B/no unknown
-
1969
- 1969-07-08 DE DE19691934617 patent/DE1934617C3/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE1934617B2 (en) | 1974-07-25 |
DE1934617C3 (en) | 1975-03-20 |
DE1934617A1 (en) | 1970-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4626409A (en) | Aluminium alloys | |
US3653880A (en) | Magnesium cast alloys with little tendency to hot-crack | |
NO119501B (en) | ||
US3567436A (en) | Compression resistant zinc base alloy | |
US2715577A (en) | Copper-base alloys | |
US1815479A (en) | Zinc base alloy | |
US1879748A (en) | Aluminum-silicon alloy | |
NO121753B (en) | ||
US1912382A (en) | Method of making and casting aluminum alloys | |
US2022686A (en) | Aluminum alloy casting and method of making the same | |
US2185453A (en) | Method of heat treating magnesium base alloys | |
US1742557A (en) | Noncorrosive aluminum alloy | |
JP2023527566A (en) | aluminum-silicon-iron casting alloy | |
US1852442A (en) | Zinc-base die-casting alloy | |
US1932838A (en) | Aluminum alloys | |
US1946069A (en) | Magnesium base die casting alloys | |
US2720459A (en) | Highly wear-resistant zinc base alloy | |
JP2007270159A (en) | Creep-resistant magnesium alloy | |
US2075089A (en) | Aluminum alloy | |
US2733991A (en) | Alimilnum-magnesiijm casting alloys | |
US1572489A (en) | Aluminum alloy | |
US2546931A (en) | Magnesium alloy | |
US2123886A (en) | Heat treated aluminum base alloy | |
US1974971A (en) | Method of treating alloys | |
US1663215A (en) | Zinc-base alloy |