NO118762B - - Google Patents

Download PDF

Info

Publication number
NO118762B
NO118762B NO155590A NO15559064A NO118762B NO 118762 B NO118762 B NO 118762B NO 155590 A NO155590 A NO 155590A NO 15559064 A NO15559064 A NO 15559064A NO 118762 B NO118762 B NO 118762B
Authority
NO
Norway
Prior art keywords
phthalimide
silica gel
benzonitrile
ammonia
approx
Prior art date
Application number
NO155590A
Other languages
Norwegian (no)
Inventor
D Jenkins
A Parikh
Original Assignee
British Nylon Spinners Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB4556063A external-priority patent/GB1085239A/en
Application filed by British Nylon Spinners Ltd filed Critical British Nylon Spinners Ltd
Publication of NO118762B publication Critical patent/NO118762B/no

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0206Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting
    • D02G1/0213Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting after drawing the yarn on the same machine
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/229Relaxing

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Indole Compounds (AREA)

Description

Framgangsmåte til framstilling av benzoenitril. Process for the production of benzonitrile.

Det er kjent at man av ftalsyreanhydrid og ammoniakk eller av de kvelstoff-holdige funksjonelle derivater av ftalsyre, slik som f. eks. ftalimid eller ftalsyrediamid ved overledning i ammoniakkstrøm over vannavspaltende katalysatorer, slik som toriumoksyd, silikagel, ler jord, lerjordsili-kater, lerjordfosfater etc. kan framstille ftalonitril. Ved beskrivelsen av denne framgangsmåte er det allerede nevnt at man derved får benzoenitril i underordnede mengder som biprodukt. Når silikagel anvendes som katalysator, angis det til framstilling av ftalonitril en arbeidstemperatur på 360° C som den gunstige. It is known that from phthalic anhydride and ammonia or from the nitrogen-containing functional derivatives of phthalic acid, such as e.g. phthalimide or phthalic acid diamide by conduction in an ammonia stream over water-splitting catalysts, such as thorium oxide, silica gel, clay soil, clay soil silicates, clay soil phosphates etc. can produce phthalonitrile. When describing this procedure, it has already been mentioned that benzonitrile is thereby obtained in minor quantities as a by-product. When silica gel is used as a catalyst, a working temperature of 360° C is indicated as the favorable one for the production of phthalonitrile.

Idet man går ut fra denne iakttagelse er det beskrevet en framgangsmåte til framstilling av benzoenitril, som karak-teriseres ved at man leder ftalsyre-anhydriddamp i blanding med ammoniakkgass ved temperaturer over 450° C over aluminiumoksyd, hvorved det fåes utbytter på 70—80 pst. av det teoretiske av benzoenitril. Denne framgangsmåte ble videre utviklet ved at man tilsatte aluminiumoksyd tungmetalloksyder, særlig sinkoksyd eller koboltoksyd, hvorved reak-sjonstemperaturen kunne senkes og det kunne anvendes temperaturer på 350—420° C. Utbyttene er også ved denne framgangsmåte angitt med 70—80 pst. av det teoretiske. Ved begge framgangsmåter anvendes et meget betraktelig ammoniakkoverskudd, som utgjør ca. 100 ganger det teoretiske (60 g ftalsyreanhydrid krever 1000 1 ammoniakkgass). Based on this observation, a procedure for the production of benzonitrile is described, which is characterized by passing phthalic anhydride vapor in a mixture with ammonia gas at temperatures above 450° C over aluminum oxide, whereby a yield of 70-80 percent is obtained .of the theoretical of benzonitrile. This method was further developed by adding aluminum oxide to heavy metal oxides, especially zinc oxide or cobalt oxide, whereby the reaction temperature could be lowered and temperatures of 350-420° C could be used. The yields in this method are also indicated as 70-80 per cent of theoretical. In both procedures, a very considerable excess of ammonia is used, which amounts to approx. 100 times the theoretical amount (60 g of phthalic anhydride requires 1000 1 of ammonia gas).

Det ble nå funnet at man kan framstille benzoenitril i utmerket utbytte når man leder ftalimiddamp enten for seg eller i blanding med inerte gasser, slik som luft, kvelstoff, ammoniakk, kullsyre, vanndamp, benzoldamp eller liknende ved temperaturer mellom 360° C og ca. 500° C over en silikagel arm er vidsporet og har en volumvekt på under 0,5.1 stedet for å anvende et inert spylemiddel kan det naturligvis arbei-des ved forminsket trykk, f. eks. ved ca. 100 —300 mm kvikksølv, hvorved ftalimidet for-damper ved den koketemperatur som tilsvarer det valgte trykk, uten noen tilset-ning destillerer gjennom katalysatoren og derved dekarboksyleres. Sluttelig kan ftalimid også destilleres gjennom katalysatoren ved atmosfæretrykk. It was now found that benzonitrile can be produced in excellent yield when phthalimide vapor is introduced either alone or in a mixture with inert gases, such as air, nitrogen, ammonia, carbonic acid, water vapor, benzene vapor or the like at temperatures between 360° C and approx. 500° C over a silica gel arm is wide-tracked and has a volume weight of less than 0.5. Instead of using an inert flushing agent, you can of course work at reduced pressure, e.g. at approx. 100-300 mm of mercury, whereby the phthalimide evaporates at the boiling temperature corresponding to the selected pressure, distills without any addition through the catalyst and is thereby decarboxylated. Finally, phthalimide can also be distilled through the catalyst at atmospheric pressure.

Da ftalsyreanhydrid reagerer med ammoniakk ifølge likningen kan den ftalimiddamp som kreves for den nye framgangsmåte også framstilles på i og for seg kjent måte ved tilblanding av minst en ekvivalent ammoniakkgass til ftalsyre-anhydriddamp med eller uten inerte for-tynningsmidler. As phthalic anhydride reacts with ammonia according to the equation, the phthalimide vapor required for the new method can also be produced in a manner known per se by mixing at least one equivalent of ammonia gas to phthalic anhydride vapor with or without inert diluents.

Den for benzoenitrildannelsen anvendte reaksjonstemperatur kan varieres in-nen vide grenser. Omsetningen er imidler-tid ennå ufullstendig ved temperaturer under ca. 400° C men dog kan det ikke omsatte ftalimid igjen føres tilbake i krets-løpet. Mest hensiktsmessig arbeider man ved ca. 390—420° C. Naturen av det silikagel som anvendes som katalysator har en betydelig innvirkning på katalysens for-løp. Det mest aktive er det såkalte vid-porede silikagel (se Fiat Final Report No. 1313, PB 85172, bind 1, sider 394—396, Sili-cagel B), som har en kornet tilstand med 1—3 mm kornstørrelse og en volumvekt på 0,46—0,48. Trangporet silikagel er betydelig mindre aktiv. Særlig sterkt hemmende på katalysen virker sure forurensninger slik som natrium- eller kaliumbisulfat eller fos-forsyre og liknende, ved hjelp av hvilke vannavspaltningen trer sterkt i forgrun-nen likeoverfor kullsyreavspaltningen. The reaction temperature used for the formation of benzonitrile can be varied within wide limits. However, the turnover is still incomplete at temperatures below approx. 400° C, but the converted phthalimide cannot be fed back into the circuit. It is most appropriate to work at approx. 390-420° C. The nature of the silica gel used as catalyst has a significant effect on the course of the catalysis. The most active is the so-called wide-pored silica gel (see Fiat Final Report No. 1313, PB 85172, volume 1, pages 394—396, Sili-cagel B), which has a granular state with a grain size of 1—3 mm and a volumetric weight of 0.46-0.48. Narrow-pore silica gel is considerably less active. Acidic contaminants such as sodium or potassium bisulphate or phosphoric acid and the like have a particularly strong inhibitory effect on the catalysis, with the help of which the decomposition of water takes a strong place in the background directly opposite the decomposition of carbonic acid.

De følgende eksempler viser utførel-sen av framgangsmåten uten å begrense denne. Mellom volumdeler og vektsdeler be-står derved det samme forhold som mellom liter og kilogram. Damp- og gassvolum er omregnet til 20° C og 740 mm trykk. The following examples show the implementation of the method without limiting it. Between parts by volume and parts by weight, there is the same relationship as between liters and kilograms. Steam and gas volumes are converted to 20° C and 740 mm pressure.

Eksempel 1: 1000 volumdeler kvelstoff pr. time blir ledet gjennom et fordampningskar, hvori det befant seg ftalimid som var oppvarmet til 260° C hvorved det pr. time ble fordampet ca. 1 vektsdel ftalimid. Kvelstoffstrøm-men som var ladet med ftalimid passerte deretter et kontaktrør som var opphetet til 410° C hvori det befinner seg 1—3 mm kornet silikagel B (ifølge Fiat Final Report No. 1313,PB 85172,bind I, side 396, siste avsnitt). De gasser som trer ut av kontaktovnen av-kjøles til romtemperatur hvorved det dannede benzoenitril, samt ca. 2—5 pst. av det fordampede ftalimid kondenseres. Av 10 deler fordampet ftalimid fåes 6,5—6,7 vekstdeler benzoenitril, som tilsvarer et utbytte på 93—95,5 pst. av det teoretiske. Idet det tas hensyn til det utskilte ftalimid, som man igjen kan føre tilbake til utgangsma-terialet ,er utbyttet nærmest kvantitativt. Eksempel 2: Anvendes det i eksempel 1 i stedet for kvelstoff ammoniakkgass, er resultatene omtrent de samme, idet det i stedet for det omsatte ftalimid fåes en blanding av ftalonitril og ftalimid. Example 1: 1000 volume parts of nitrogen per hour is passed through an evaporation vessel, in which there was phthalimide that had been heated to 260° C, whereby per hour was evaporated approx. 1 part by weight of phthalimide. The nitrogen stream, which was charged with phthalimide, then passed a contact tube heated to 410° C in which there is 1-3 mm granular silica gel B (according to Fiat Final Report No. 1313, PB 85172, volume I, page 396, last paragraph ). The gases emerging from the contact furnace are cooled to room temperature whereby the benzonitrile formed, as well as approx. 2-5 per cent of the evaporated phthalimide is condensed. From 10 parts of evaporated phthalimide, 6.5-6.7 growth parts of benzonitrile are obtained, which corresponds to a yield of 93-95.5 per cent of the theoretical. Taking into account the separated phthalimide, which can be returned to the starting material, the yield is almost quantitative. Example 2: If ammonia gas is used instead of nitrogen in example 1, the results are approximately the same, as a mixture of phthalonitrile and phthalimide is obtained instead of the reacted phthalimide.

Eksempel 3. Example 3.

Anvendes det i stedet for det i eksempel 1 anvendte kvelstoff luft som spylegass, er resultatene de samme som i eksempel 1. If instead of the nitrogen used in example 1, air is used as purge gas, the results are the same as in example 1.

Eksempel 4: 12000 volumdeler luft pr. time ledes gjennom et fordampningskar hvori det befinner seg ftalsyreanhydrid som er opphetet til 230° C, hvorved det pr. time fordampes ca. 36 vektsdeler ftalsyreanhydrid. Luft-strømmen som er ladet med ftalsyreanhydrid tilledes pr. time 11 vektsdeler gassfor-met ammoniakk. Den dannede, til 310° C forvarmede, gassblanding ledes deretter gjennom et kontaktrør som er opphetet til 415° C og hvori det befinner seg 220 volumdeler 2—5 mm kornet silikagel, som angitt i eksempel 1. De gasser som trer ut av kontaktovnen avkjøles til romtemperatur, hvorved benzoenitril, noe vann og litt ikke omsatt ftalimid kondenseres. Reaksjons-blandingen opptas i eter, vannet skilles fra, den resterende eteroppløsning tørkes over kalsiumklorid og filtreres. Deretter fjernes eteren og den tilbakeværende benzoenitril renses ved hjelp av vakuumdestillasjon (kokepunkt 11 mm, 73° C). Utbyttet utgjør omtrent 85 pst. av det teoretiske. Example 4: 12,000 parts by volume of air per hour is passed through an evaporation vessel in which there is phthalic anhydride heated to 230° C, whereby per hour evaporates approx. 36 parts by weight phthalic anhydride. The air flow which is charged with phthalic anhydride is added per hour 11 parts by weight gaseous ammonia. The formed gas mixture, preheated to 310° C, is then led through a contact tube which is heated to 415° C and in which there are 220 parts by volume of 2-5 mm grained silica gel, as indicated in example 1. The gases that emerge from the contact furnace are cooled to room temperature, whereby benzonitrile, some water and some unreacted phthalimide are condensed. The reaction mixture is taken up in ether, the water is separated, the remaining ether solution is dried over calcium chloride and filtered. The ether is then removed and the remaining benzonitrile is purified by means of vacuum distillation (boiling point 11 mm, 73° C). The yield is approximately 85 per cent of the theoretical.

Claims (2)

1 Framgangsmåte til framstilling av benzoenitril hvor gassformig ftalimid eller slike stoffer som formår å danne dette under fremgangsmåtens betingelser ved temperaturer mellom 360 og 500°, fortrinsvis mellom 390—420° C ledes over silikagel, karakterisert ved at vidsporet silikagel med en volumvekt på under 0,5 anvendes som katalysator.1 Process for the production of benzonitrile where gaseous phthalimide or such substances which manage to form this under the conditions of the process at temperatures between 360 and 500°, preferably between 390-420° C are passed over silica gel, characterized in that wide-pore silica gel with a volume weight of less than 0 .5 is used as a catalyst. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at man blander ftalimidet med inerte gasser eller damper, slik som kvelstoff, luft, ammoniakk, vanndamp, benzoldamp eller liknende.2. Method according to claim 1, characterized in that the phthalimide is mixed with inert gases or vapors, such as nitrogen, air, ammonia, water vapor, benzene vapor or the like.
NO155590A 1963-11-19 1964-11-16 NO118762B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB4556063A GB1085239A (en) 1963-11-19 1963-11-19 Improvements in or relating to the drawing and bulking of synthetic polymer yarns
GB2288664 1964-06-03

Publications (1)

Publication Number Publication Date
NO118762B true NO118762B (en) 1970-02-09

Family

ID=26256165

Family Applications (1)

Application Number Title Priority Date Filing Date
NO155590A NO118762B (en) 1963-11-19 1964-11-16

Country Status (11)

Country Link
US (1) US3341913A (en)
AT (1) AT259750B (en)
BE (1) BE655877A (en)
CH (1) CH432714A (en)
DE (1) DE1435370C3 (en)
FI (1) FI42853C (en)
FR (1) FR1418399A (en)
GB (1) GB1085240A (en)
LU (1) LU47380A1 (en)
NL (1) NL146889B (en)
NO (1) NO118762B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500518A (en) * 1967-12-05 1970-03-17 Techniservice Corp Strand treatment method and apparatus
US3902231A (en) * 1970-12-07 1975-09-02 Bancroft & Sons Co J Method and apparatus for drawing and crimping yarn
SE392299B (en) * 1971-08-24 1977-03-21 Du Pont PROCEDURE AND MEANS FOR MANUFACTURE OF YARN WITH FULL AND WIRE
US3965548A (en) * 1975-01-31 1976-06-29 E. I. Du Pont De Nemours And Company Crimper startup method and system
DE2733455C2 (en) * 1977-07-25 1982-12-30 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Stuffer box for texturing chemical fibers
EP0345898B1 (en) * 1988-06-10 1993-04-21 Rhône-Poulenc Viscosuisse SA Method for producing a high tensile strength nylon yarn, yarn made according to this method, and its use
CN1804170B (en) * 2005-01-14 2011-04-06 香港理工大学 Method and apparatus for machining single ring spun yarn
CN102776630B (en) * 2012-08-17 2014-11-26 浙江耐隆纤维有限公司 Manufacturing method of high-strength low-elasticity zero-shrinking and environment-friendly elasticized diamond fibers
EP2792772B1 (en) * 2013-04-18 2016-09-07 SUPERBA (Société par Actions Simplifiée) Device for feeding a stuffer box with a feeding roller

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA679584A (en) * 1964-02-04 Iwnicki Kurt Crimping of yarn
US2500690A (en) * 1945-11-21 1950-03-14 Owens Corning Fiberglass Corp Apparatus for making fibrous products
DE1069325B (en) * 1950-10-04 1959-11-19 The Chemstrand Corporation, Philadelphia, Pa. (V. St. A.) Process for the production of permanently crimped threads from acrylonitrile polymers
US2852906A (en) * 1951-12-14 1958-09-23 Du Pont Method and apparatus for producing bulky continuous filament yarn
US3046633A (en) * 1959-03-16 1962-07-31 Chori Co Ltd Apparatus for producing crimped thermoplastic synthetic yarns
US3024516A (en) * 1959-05-18 1962-03-13 Chemstrand Corp Apparatus for treating filament yarn
US3099064A (en) * 1961-04-13 1963-07-30 Eastman Kodak Co Method and apparatus for making rug yarn
US3137119A (en) * 1961-06-14 1964-06-16 Chavanoz Moulinage Retorderie Process for the production of high bulk yarns
US3154835A (en) * 1962-04-10 1964-11-03 Monsanto Co Apparatus and method for yarn texturizing

Also Published As

Publication number Publication date
FR1418399A (en) 1965-11-19
GB1085240A (en) 1967-09-27
US3341913A (en) 1967-09-19
DE1435370A1 (en) 1969-05-08
DE1435370B2 (en) 1977-10-20
AT259750B (en) 1968-01-25
BE655877A (en) 1965-05-17
DE1435370C3 (en) 1978-07-06
FI42853B (en) 1970-08-03
FI42853C (en) 1970-11-10
CH432714A (en) 1967-03-31
LU47380A1 (en) 1965-01-19
NL6413484A (en) 1965-05-20
NL146889B (en) 1975-08-15

Similar Documents

Publication Publication Date Title
US3884981A (en) Vapor phase hydrogenolysis dehydrogenation process
NO118762B (en)
US4092353A (en) Process for the purification of benzoic acid
US2456599A (en) Process for preparing methylamines
US1931858A (en) Production of unsaturated ethers
US2420382A (en) Catalytic reduction of organic chloro-nitro compounds
US2652432A (en) Method of making chlokomethyl
US3325245A (en) Lithium phosphate catalyst
US2451350A (en) Preparation of unsaturated ketones
US2399361A (en) Manufacture of cyanogen
US2776190A (en) Manufacture of hydrazine
US3347916A (en) Process for preparing nu-formyl compounds using boric acid as catalyst
US2396201A (en) Production of acetyl cyanide
US2007144A (en) Method of making ethylidene chloride
US2561483A (en) Method for preparing isoprene by dehydration of 1-methoxy, 3-methyl, butene-3
US4059634A (en) Production of pinacolone
US2788361A (en) Process for the manufacture of benzonitrile
US2904579A (en) Process for preparing nitriles
US2691685A (en) Process for making acetals
US2548687A (en) Production of fumaric acid
US2062263A (en) Producing diacetyl
US1794057A (en) Method of making dimethyl aniline
US3268430A (en) Process for preparing anhydrous chlorooxirane and chloroacetaldehyde
US3364271A (en) Preparation of halopropadienes
US2245509A (en) Production of 4,4'-dichlorodibutyl ether