NO118557B - - Google Patents

Download PDF

Info

Publication number
NO118557B
NO118557B NO164051A NO16405166A NO118557B NO 118557 B NO118557 B NO 118557B NO 164051 A NO164051 A NO 164051A NO 16405166 A NO16405166 A NO 16405166A NO 118557 B NO118557 B NO 118557B
Authority
NO
Norway
Prior art keywords
hydrogen
catalyst
hydrocarbons
aromatics
fraction
Prior art date
Application number
NO164051A
Other languages
Norwegian (no)
Inventor
G Hovestreydt
J Logemann
K Delcour
Original Assignee
Stamicarbon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamicarbon filed Critical Stamicarbon
Publication of NO118557B publication Critical patent/NO118557B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Fremstilling av mettede, 1-4 C-atomer inneholdende alifatiske hydrokarboner sammen med benzen og homologer på basis av lettbensiner. Preparation of saturated, 1-4 C atoms containing aliphatic hydrocarbons together with benzene and homologues on the basis of light petrols.

Oppfinnelsen vedrorer fremstilling av mettede 1-4 C-atomer inneholdende alifatiske hydrokarboner sammen med aromatiske The invention relates to the production of saturated 1-4 C atoms containing aliphatic hydrocarbons together with aromatic

hydrokarboner (benzen og' homologer) på basis av lettbensiner med et kokeområde på 40 til 110 - 180°C. hydrocarbons (benzene and' homologues) based on light petrols with a boiling range of 40 to 110 - 180°C.

Som bekjent kan de i lettbensiner (kp. 40 til 110 - 120°C) tilstedeværende-hydrokarboner i særdeleshet de med 5-7 til 9 karbonatome.r gjennom termisk, krakking ved temperaturer på 700 - 900°C vidtgående omsettes til gassformig umettet hydrokarbon med 2-4 C-atomer og videre i det vesentlige til metan og hydrogen. As is well known, the hydrocarbons present in light petrol (bp. 40 to 110 - 120°C), in particular those with 5-7 to 9 carbon atoms, can through thermal cracking at temperatures of 700 - 900°C be extensively converted into gaseous unsaturated hydrocarbon with 2-4 C atoms and further essentially to methane and hydrogen.

.Bensinene omsettes ved en slik krakkingsprosess - beregnet .The petrols are converted by such a cracking process - calculated

efter vektdeler og betinget av sammensetningen av utgangsstoffet og de aktuelle driftsbetingelser - til f.eks.- 20 - 25 % etylen og til f.eks. 35 - 55 % metan, propylen og umettede C^-hydrokarboner; ved siden av oppnås andeler på 20 - 30 % by parts by weight and depending on the composition of the starting material and the relevant operating conditions - to e.g. 20 - 25% ethylene and to e.g. 35 - 55% methane, propylene and C 1 -unsaturated hydrocarbons; in addition, shares of 20 - 30% are achieved

ennå flytende hydrokarboner, den såkalte krakkbensin, og da for det meste med et, i sammenligning med den opprinnelige bensin, hbyt aromatinnhold. still liquid hydrocarbons, the so-called crack petrol, and then mostly with a, compared to the original petrol, high aromatics content.

De fremstilte flytende hydrokarboner har gjennom det hbyere aromatinnhold fått en stbrre verdi som brennstoff for Due to the higher aromatic content, the produced liquid hydrocarbons have gained a better value as fuel

•bensinmotorer. •gasoline engines.

Som utgangsstoff for utvinning av rene aromater er denne flytende fraksjon p.g.a. det relativt lave aromatinnhold og de umettede hydrokarboner under alle omstendigheter mindre egnet. As a starting material for the extraction of pure aromatics, this liquid fraction is due to the relatively low aromatic content and the unsaturated hydrocarbons are in any case less suitable.

Av de ved krakking fremkommende gassformige produkter har Of the gaseous products arising from cracking have

etylen og også butadien den hoyeste verdi som utgangsstoff for kjemisk syntese; verdien av de ovrige gasser begrenser seg for det meste bare til den som brennstoff. ethylene and also butadiene the highest value as starting material for chemical synthesis; the value of the other gases is mostly limited only to it as fuel.

Det er videre kjent en fremgangsmåte (se f.eks. britisk patent nr. 935.681), ved hvilken med hensyn til fremstillingen av etylen og aromater lettbensiner forst krakkes ved oppvarm- A method is also known (see e.g. British patent no. 935,681), in which, with regard to the production of ethylene and aromatics, light petrols are first cracked by heating

ning og derpå i stor utstrekning går over til metan, etylen, gassformig umettede hydrokarboner med 3-4 C-atomer og en væskefraksjon (krakkbensin), hvorved sist-nevnte fraksjon efter utskillelse av gassen under bestemt trykk og relativt milde temperaturforhold derefter underkastes en katalytisk hydrogenbehandling, for å mette de i krakkbensinen tilstedeværende olefiner, slik at denne krakkbensin egner seg til å tjene som utgangsstoff for den ekstraktive utvinning av aromater,! hvorpå efter utvinning av aromatene den gjenværende væske j.gjen kan tilfores den termiske krakkprosess. ning and then to a large extent passes to methane, ethylene, gaseous unsaturated hydrocarbons with 3-4 C atoms and a liquid fraction (cracked petrol), whereby the last-mentioned fraction, after separation of the gas under specific pressure and relatively mild temperature conditions, is then subjected to a catalytic hydrogen treatment, in order to saturate the olefins present in the cracked petrol, so that this cracked petrol is suitable to serve as a starting material for the extractive extraction of aromatics,! after which, after extraction of the aromatics, the remaining liquid can again be supplied to the thermal cracking process.

En ytterligere ulempe ved denne fremgangsmåte består i at aromatinnholdet i krakkbensinen som oppnås til sist, gjerne er så lav at disse aromater må utvinnes ved hjelp av ekstraksjon, A further disadvantage of this method consists in the fact that the aromatics content in the cracked petrol that is finally obtained is often so low that these aromatics must be recovered by means of extraction,

en med store utlegg forbundet metodikk. a methodology associated with large expenditures.

Det er også kjent en fremgangsmåte (se f.eks. amerikansk patent nr. 2.143.472) for utvinning av aromater og lavere kokende olefiner på basis av et naftenholdig oljedestillat, hvorved utgangsmaterialet i dampform utsettes for en slik katalytisk behandling at naftenene går over til aromatene, hvorefter reaksjonsblandingen underkastes en ikke katalytisk krakkingsprosess, for å krakke parafinene og ennå tilstedeværende naftener, som begge har et kokepunkt som overstiger det for aromatene, til lavere kokende olefiner og parafiner, hvorved reaksjonsblandingen ved rektifisering skilles i en tjærefraksjon, en aromatfraksjon, parafin- og olefinfraksjoner og gassformige hydrokarboner. Som det viser seg underkastes for utvinning av renere aromater også ved denne fremgangsmåte den således erholdte aromatfraksjon en ekstraksjon for på denne måte å bevirke en adskillelse mellom de i aromatfraksjonen ennå tilstedeværende ikke-aromater, hvilke ikke opploser seg i ekstraksjonsmidlet, og de egentlige aromater, hvilke med ekstraksjonsmidlet danner en oppløsning. A method is also known (see e.g. US patent no. 2,143,472) for the extraction of aromatics and lower boiling olefins on the basis of a naphthenic oil distillate, whereby the starting material in vapor form is subjected to such a catalytic treatment that the naphthenes are converted to the aromatics, after which the reaction mixture is subjected to a non-catalytic cracking process, to crack the paraffins and still present naphthenes, both of which have a boiling point exceeding that of the aromatics, into lower boiling olefins and paraffins, whereby the reaction mixture is separated by rectification into a tar fraction, an aromatic fraction, paraffin - and olefin fractions and gaseous hydrocarbons. As it turns out, for the extraction of purer aromatics, the aromatic fraction thus obtained is also subjected to an extraction in this method in order to effect a separation between the non-aromatics still present in the aromatic fraction, which do not dissolve in the extractant, and the actual aromatics, which with the extractant form a solution.

Oppfinnelsen fremskaffer nok en fremgangsmåte ved hvilken på basis av lettbensiner det på den ene side dannes en væskefraksjon med så sterkt forhdyet aromatinnhold at aromatene herav kan oppnås ved en i sammenligning med ekstraksjonsmetoden langt billigere adskillelsesprosess og da ved rektifikasjon og at det på den annen side oppnås gassformige mettede hydrokarboner med i det vesentlige 2-4 C-atomer, som egner seg utmerket til å tjene som utgangsstoff for fremstillingen av etylen gjennom termisk krakking av hydrokarbon hvorved foruten etylen bare en liten mengde mindre verdifulle gassformige biprodukter som propylen dannes. The invention still provides a method in which, on the basis of light petrol, on the one hand, a liquid fraction is formed with such a highly concentrated aromatic content that the aromatics can be obtained from it by a separation process that is far cheaper in comparison with the extraction method and then by rectification, and that on the other hand it is obtained gaseous saturated hydrocarbons with essentially 2-4 C atoms, which are excellently suited to serve as starting material for the production of ethylene through the thermal cracking of hydrocarbon whereby, in addition to ethylene, only a small amount of less valuable gaseous by-products such as propylene are formed.

Fremgangsmåten ifdlge oppfinnelsen oppviser dessuten den fordel at den er fleksibel overfor de produkter som oppnås, dvs. The method according to the invention also has the advantage that it is flexible with respect to the products that are obtained, i.e.

den fremskaffer den mulighet, gjennom en endring av reak- it provides that possibility, through a change of reac-

sjonsbetingelsene å produsere flere aromater og mindre gassformige hydrokarboner eller også mindre aromater og flere gassformige hydrokarboner. sion conditions to produce more aromatics and less gaseous hydrocarbons or also less aromatics and more gaseous hydrocarbons.

Det foran nevnte oppnås ifolge oppfinnelsen ved at man underkaster utgangsstoffet, lettbensin med et kokeområde på 40 til 110 - 180°, ved oket temperatur og oket trykk i nærvær av en dehydreringskatalysator en hydrogenbehandling på den måte at ikke bare de i bensinen opprinnelige tilstedeværende aromater blir oppnådd, men dessuten kan betydelige mengder aromater og samtidig mettede hydrokarboner med 1-4 C-atomer dannes, slik at efteradskillilse av de gassformige og flytende hydrokarboner oppnås en aromatisk væskefraksjon, bestående av minst 70 vekt-% aromater og forovrig mettede C^-hydrokarboner. The aforementioned is achieved according to the invention by subjecting the starting material, light petrol with a boiling range of 40 to 110 - 180°, at increased temperature and pressure in the presence of a dehydration catalyst to a hydrogen treatment in such a way that not only the aromatics originally present in the petrol are achieved, but in addition significant amounts of aromatics and simultaneously saturated hydrocarbons with 1-4 C atoms can be formed, so that after separation of the gaseous and liquid hydrocarbons an aromatic liquid fraction is obtained, consisting of at least 70% by weight aromatics and otherwise saturated C^ hydrocarbons .

Ved den ifolge oppfinnelsen katalytiske hydrogenbehandling under trykk spiller i det vesentlige to i og for seg kjente reaksjoner en rolle. In the catalytic hydrogen treatment under pressure according to the invention, essentially two reactions known per se play a role.

På den ene side finner en katalytisk såkalt hydroformning av bensinen sted,■ hvilket bevirker en okning av aromatinnholdet, f.eks. ved en dehydrering av naftener med 6-8 C-atomer, isomerisering av naftener med 5 C-atomer i ringen til naftener med 6 C-atomer i ringen, med efterfblgende dehydrering og cyklisering under hydrogenutskillelse av parafiner til aromater, mens det på den annen side opptrer en katalytisk hydrerende krakking av parafiner til lavere mettede hydrokarboner med 1-4 C-atomer. On the one hand, a catalytic so-called hydroforming of the petrol takes place, which causes an increase in the aromatics content, e.g. by a dehydration of naphthenes with 6-8 C atoms, isomerization of naphthenes with 5 C atoms in the ring to naphthenes with 6 C atoms in the ring, with subsequent dehydration and cyclization during hydrogen separation of paraffins to aromatics, while on the other side, a catalytic hydrating cracking of paraffins to lower saturated hydrocarbons with 1-4 C atoms occurs.

Driftsbetingelsene under hvilke hydrogenbehandlingen av lettbensiner ifolge oppfinnelsen finner sted, skiller seg fra de, som i alminnelighet opptrer ved hydroforming av bensiner hvorved til sist også et annet resultat oppnås. The operating conditions under which the hydrogen treatment of light petrols according to the invention takes place differ from those that generally occur in the hydroforming of petrols, whereby a different result is also achieved in the end.

Ved hydroforming onsker man jo å utfore en aromatdannelse, i særdeleshet toluen- og xylendannelse og en isomerisering av de flytende hydrokarboner, hvorved hydrogen frigjores og prosessen styres på den måte at minst mulig gassformice hydro- In hydroforming, one wishes to carry out an aromatics formation, in particular toluene and xylene formation and an isomerization of the liquid hydrocarbons, whereby hydrogen is released and the process is controlled in such a way that the least possible gas formation hydro-

karboner dannes. carbons are formed.

Ved hydrogenbehandling ifolge oppfinnelsen opptrer likeledes aromatdannelse, dessuten omsettes en stor del av de flytende ikke aromatiske hydrokarboner til gassformig mettede hydrokarboner med 1-4 .C-atomer og det frigjores intel hydrogen.,, snarere vil hydrogenbehandlingen forbruke litt hydrogen, f.eks. en mengde på 0 - 3 vekt-%, beregnet på mengden av anvendt bensin; alt dette står i sammenheng med sammensetningen av den opprinnelige bensin og forholdet mellom den fremstilte aromatmengde og mengden av gassformige produkter. During hydrogen treatment according to the invention, aromatic formation also occurs, moreover, a large part of the liquid non-aromatic hydrocarbons is converted into gaseous saturated hydrocarbons with 1-4 carbon atoms and intel hydrogen is released, rather the hydrogen treatment will consume some hydrogen, e.g. an amount of 0 - 3% by weight, calculated on the amount of petrol used; all this is related to the composition of the original petrol and the ratio between the amount of aromatics produced and the amount of gaseous products.

Jo storre dannelsen av gassformige hydrokarboner er, desto storre hydrogenforbruk. The greater the formation of gaseous hydrocarbons, the greater the hydrogen consumption.

Dessuten lar i den dannede aromatholdige væske under hensyn-tagen til en hoyere temperatur ved hydrogenbehandlingen, forholdet mellom benzen og dets homologer seg påvirke til fordel for benzen. Moreover, in the formed aromatic liquid, taking into account a higher temperature during the hydrogen treatment, the ratio between benzene and its homologues is allowed to be influenced in favor of benzene.

Ved gjennomføring av de onskede omsetningsreaksjoner benytter man seg av de normale handelsvanlige dehydreringskatalysatorer, altså metallkatalysatorer som Cr, Mo, Pt, Pd eller andre edelmetaller; metallene er dermed anbragt på en bærer. When carrying out the desired conversion reactions, normal commercial dehydration catalysts are used, i.e. metal catalysts such as Cr, Mo, Pt, Pd or other noble metals; the metals are thus placed on a carrier.

Foretrukket er meget aktive platinakatalysatorer, i hvilke platina er anbragt i en mengde mellom 0,1 og 2 vekt-% på en bærer, i det vesentlige bestående av aluminiumoksyd, silisiumoksyd eller en blanding av aluminium- og silisiumoksyd. Highly active platinum catalysts are preferred, in which platinum is placed in an amount of between 0.1 and 2% by weight on a carrier, essentially consisting of aluminum oxide, silicon oxide or a mixture of aluminum and silicon oxide.

Det sorges ved hydrogenbehandlingen for slike temperatur- og trykkbetingelser og dessuten velges et slikt forhold hydrogen: bensin at aromatdelen av væskefraksjonen utgjor minst 70 vekt-%, denne fraksjon består.forovrig hovedsakelig av C^-hydrokarboner og ut over det omsettes det opprinnelige utgangsstoff f.eks. til halvparten eller ennå mer til gassformige mettede C-^- C^-karbonatomer. During the hydrogen treatment, such temperature and pressure conditions are ensured and, moreover, such a ratio of hydrogen: petrol is chosen that the aromatic part of the liquid fraction constitutes at least 70% by weight, this fraction mainly consists of C^ hydrocarbons and in addition to that, the original starting material f .ex. to half or even more to gaseous saturated C-^- C^ carbon atoms.

De dertil nbdvendige trykk kan f.eks. svinge fra 15 til 90 ata, fortrinnsvis fra 25 til 60 ata, molforholdet mellom hydrogen og bensin fra 4 til 20, mens slutt-temperaturer på f.eks. 550 - 600°C kommer i betraktning; lettbensin kan derved f.eks. fores over katalysatoren i en mengde på 0,5 - 10 volumdeler i flytende form pr. volumdel katalysator pr. time. The necessary pressures can e.g. fluctuate from 15 to 90 ata, preferably from 25 to 60 ata, the mole ratio between hydrogen and gasoline from 4 to 20, while final temperatures of e.g. 550 - 600°C comes into consideration; light petrol can thereby e.g. is fed over the catalyst in a quantity of 0.5 - 10 parts by volume in liquid form per volume fraction of catalyst per hour.

Ved begynnelsen av hydrogenbehandlingen kan temperaturen være lav, fordi det allerede ved temperaturer på f.eks. 450 - At the beginning of the hydrogen treatment, the temperature can be low, because already at temperatures of e.g. 450 -

525°C dannes aromat, men for den likeledes bnskede omsetning av størstedelen av de parafiner som ikke omsettes til aromater, til de bnskede gassformig, mettede C-^- C^-hydrokarboner må temperaturen bkes ved slutten av hydrogenbehandlingen til ca. 100 - 50°C. 525°C aromatics are formed, but for the likewise desired conversion of the majority of the paraffins that are not converted to aromatics, to the desired gaseous, saturated C-^-C^-hydrocarbons, the temperature must be lowered at the end of the hydrogen treatment to approx. 100 - 50°C.

Fordelaktig er det også å gjennomfbre hydrogenbehandlingen i It is also advantageous to carry out the hydrogen treatment in

på hverandre fblgende trinn, eventuelt med en annen katalysator-type i hvert trinn, hvorved i det fbrste trinn temperatur og trykk holdes på et relativt lavt nivå og ved at det i slutt-trinnet foretas en temperatur- og trykkstigning. in successive stages, possibly with a different type of catalyst in each stage, whereby in the first stage temperature and pressure are kept at a relatively low level and by increasing the temperature and pressure in the final stage.

Den ved hydrogenbehandlingen tilstedeværende katalysatormasse kan oppvise såvel formen av et fluidisert lag som den av et fast lag. The catalyst mass present during the hydrogen treatment can take the form of a fluidized layer as well as that of a solid layer.

Fremgangsmåten ifolge oppfinnelsen har den fordel at det danner seg en væske med hby andel av verdifulle aromater og at disse aromater ikke behbver å bli utvunnet ved ekstraksjon; man kan tvertimot nbye seg med en enkel, mindre kostbar rektifikasjon som adskillelsesprosess. The method according to the invention has the advantage that a liquid is formed with a high proportion of valuable aromatics and that these aromatics do not need to be extracted by extraction; on the contrary, one can resort to a simple, less expensive rectification as a separation process.

En slik destillativ adskillelse kan f.eks. bestå av et fbrste trinn, som gir et hovedprodukt av benzen og ikke aromatiske hydrokarboner såvel som et sumpprodukt, hvilket siste ved hjelp av en neste rektifikasjon kan skilles i toluen som hovedprodukt og en med etylbenzen forurenset xylen som sumpprodukt . Such a distillation separation can e.g. consist of a first step, which gives a main product of benzene and non-aromatic hydrocarbons as well as a sump product, the latter of which can be separated by means of a subsequent rectification into toluene as the main product and a xylene contaminated with ethylbenzene as a sump product.

Den ved den fbrste rektifikasjonsprosess som hovedprodukt fremkommende blanding kan for oppnåelse av ren benzen underkastes på kjent måte en azeotropisk destillasjon med f.eks. aceton som hjelpevæske. In order to obtain pure benzene, the mixture resulting from the first rectification process as the main product can be subjected in a known manner to an azeotropic distillation with e.g. acetone as auxiliary liquid.

De ved hydrogenbehandling oppnådde mettede gassformige hydrokarboner underkastes for fremstilling av etylen på The saturated gaseous hydrocarbons obtained by hydrogen treatment are subjected to the production of ethylene on

termisk måte en krakkingsprosess. Fra disse gasser kan .f.br den egentlige krakkingsprosess metan og hydrogen utskilles, : hvilke ikke bidrar til etylendannelsen. thermal way a cracking process. From these gases, e.g. the actual cracking process, methane and hydrogen can be separated, which do not contribute to the formation of ethylene.

Ved hydrogenbehandlingen ifolge oppfinnelsen behbver svovel-forbindelsene for stbrste delen ikke å bli fjernet fra utgangsstoffene. In the hydrogen treatment according to the invention, the sulfur compounds for the most part do not need to be removed from the starting materials.

Lettbensin med svovelinnhold på f.eks. 1000 deler/million lar Petrol with a sulfur content of e.g. 1000 parts/million lar

seg ennå forarbeide. Riktignok vil aromatdannelsen på den ene side være lav, men på den annen side vil det dannes flere gassformige hydrokarboner som krakkes til etylen. still processing. It is true that, on the one hand, the formation of aromatics will be low, but on the other hand, more gaseous hydrocarbons will be formed which are cracked into ethylene.

Fremgangsmåten ifolge oppfinnelsen vises ved hjelp av fig. I The method according to the invention is shown with the help of fig. IN

og II, hvor på skjematisk måte utfbrelsesformene forklares. and II, where the embodiments are explained schematically.

Ved utfbrelsesformen ifolge fig. I tilfores via ledningen I .bensin til reaktoren R, hvor hydrogenbehandlingen finner sted under trykk. In the embodiment according to fig. I is fed via the line I .gasoline to the reactor R, where the hydrogen treatment takes place under pressure.

Den således dannede reaksjonsblanding strbmmer via ledningen The reaction mixture thus formed flows via the line

■ 2 til en separator S-^hvor gassen efter avkjblnihg skilles fra væskefraksjonen. ■ 2 to a separator S-^where the gas is separated from the liquid fraction after cooling.

jVæskefraksjonen går via ledningen 3 til en avdrivningskolonne hvor ennå opploste gasser utvinnes som hovedprodukt, mens ivæsken som sumpprodukt flyter via ledningen 4 til en neste jThe liquid fraction goes via line 3 to a stripping column where still dissolved gases are extracted as the main product, while the liquid as a sump product flows via line 4 to a next

jrektif iseringskolonne D2«I denne kolonne oppnås en adskillelse . imellom benzen og ikke-aromatiske, hovedsakelig -hydrokarboner i på den ene side, hvilke fjernes via ledningen 6, og de hbyere jkokende toluen og xylen på den annen side. Blandingen av ; jrectification column D2« In this column a separation is achieved. between benzene and non-aromatic, mainly -hydrocarbons on the one hand, which are removed via line 6, and the higher-boiling toluene and xylene on the other hand. The mixture of ;

toluen og xylen flyter via ledningen 5 til en rekt i fi serings-kolonne D.-,, fra hvilken som hovedprodukt via ledningen 7 Toluene and xylene flow via line 5 to a rectification column D.-, from which as the main product via line 7

toluen og som sumpprodukt via ledningen 8 xylen utvinnes, i hvilket alltid litt etylbenzen befinner seg. toluene and, as a sump product via line 8, xylene is extracted, in which there is always some ethylbenzene.

Den som hovedprodukt fra kolonnen D2uttredende benzen/parafin-blanding kan, for utvinning av ren benzen på den vanlige måte ved hjelp av destillasjon med f.eks. aceton som hjelpevæske, underkastes -en ytterligere adskillelse. The benzene/kerosene mixture emerging as the main product from column D2 can, for the extraction of pure benzene in the usual way by means of distillation with e.g. acetone as an auxiliary liquid, is subjected to a further separation.

Den fra separatoren S-^ uttredende gassblanding av hydrogen og mettede C-^- -hydrokarboner strommer via ledningen 9 til en separator $2, i hvilke gjennom kjoling hydrogen skilles fra hydrokarbonene. Dette hydrogen bringes, hvis nddvendig, gjennom kompressor P igjen under trykk og fores tilbake til reaktoren R. The gas mixture of hydrogen and saturated C-^- hydrocarbons emerging from the separator S-^ flows via line 9 to a separator $2, in which, through cooling, hydrogen is separated from the hydrocarbons. This hydrogen is, if necessary, brought back under pressure through compressor P and fed back to the reactor R.

De fra separatoren S2avgående hydrokarboner henh. de som hovedprodukt fra des tilla sj onskolonnen D-^utvunnede hydrokarboner går via ledningene 10 og IL til krakkingsanlegget K.^, The hydrocarbons leaving the separator S2 acc. the hydrocarbons extracted as the main product from the des tilla on column D-^ go via lines 10 and IL to the cracking plant K.^,

i hvilket etan, propan og butan under dannelse av etylen underkastes en ikke-katalytisk termisk krakkingsprosess; den derved fremkommende reaksjonsblanding flyter via ledningen 12 til gass-skillekaret S^. in which ethane, propane and butane are subjected to a non-catalytic thermal cracking process to form ethylene; the resulting reaction mixture flows via line 12 to the gas separator vessel S^.

Den fremstilte etylen fjernes via ledningen 13, rnens via ledningen 14 i etylen omsatt ikke etan trer inn i etylenkrakkings-anlegget K^; den ved denne krakkingsprosess dannede gassblanding fores via ledningen 16 igjen til gass-skillekaret S^. Gjennom avtrokksledningone 15 - det er bare inntegnet en - fjernes restgasser (en blanding av i det vesentlige metan, propylen og propan) fra systemet. Efter onske kan disse restgasser eventuelt efter spaltning i komponentene igjen tilfores et varrnekrakkingsanlegg. The produced ethylene is removed via line 13, the ethylene via line 14 converted into ethylene does not enter the ethylene cracking plant K^; the gas mixture formed by this cracking process is fed via the line 16 again to the gas separation vessel S^. Residual gases (a mixture of essentially methane, propylene and propane) are removed from the system through extraction line 15 - only one is drawn. If desired, these residual gases can possibly be re-supplied to a warner cracker after splitting into the components.

Utforelsesformen ifolge fig. II skiller seg fra den ifolge The embodiment according to fig. II differs from it accordingly

fig. I, ved at hydrokarbonbehandlingen finner sted i flere fig. I, in that the hydrocarbon treatment takes place in several

I IN

efter hverandre koplede reaktorer R^og R2og at den fra separatoren S2og avdrivningskolonnen D-^via ledningen 11 uttredende gassblanding av mettede C, - ^-hydrokarboner for utskillelse av metan forst gjennom en gass-skiller , hvorved krakkingsanlegget avlastes. Metanfraksjonen, hvilken frem-deles inneholder komponenter som krakkes til etylen, går derefter gjennom ledningen 18 til gass-separatoren S^, den fra separatoren S. uttredende - C^-fraksjon strommer via ledningen 17 til krakkingsanlegget K-^. successively connected reactors R^ and R2 and that the gas mixture of saturated C, - ^-hydrocarbons exiting from the separator S2 and the stripping column D-^ via line 11 for separation of methane first through a gas separator, whereby the cracking plant is relieved. The methane fraction, which still contains components that are cracked to ethylene, then passes through line 18 to the gas separator S^, the C^ fraction exiting from the separator S. flows via line 17 to the cracking plant K-^.

Reaktoren R-^kan så være beskikket med en for aromatdannelse bedre egnet katalysator, som Pt på en bærer A^O^eventuelt med en mindre mengde halogen (Cl,. F) som promotor, mens reaktoren R2kan inneholde en for den destruktive hydrering av parafinen mer passende katalysator som Pt på en bærer av A^O^ med en mindre mengde alkali- eller jordalkalimetaller The reactor R-^ can then be coated with a catalyst better suited for aromatic formation, such as Pt on a carrier A^O^, possibly with a small amount of halogen (Cl,. F) as a promoter, while the reactor R2 can contain one for the destructive hydrogenation of paraffin more suitable catalyst as Pt on a support of A^O^ with a smaller amount of alkali or alkaline earth metals

som promotor, eller også Pt på en bærer av Si02»Dessuten vil man kunne bringe temperaturen for reaktoren R Q til et noe hoyere, f.eks. ca. 50°C hoyere nivå enn temperaturen som opprett-holdes i reaktoren R-^. as a promoter, or also Pt on a carrier of SiO2 »Furthermore, it will be possible to bring the temperature of the reactor R Q to a somewhat higher level, e.g. about. 50°C higher level than the temperature maintained in the reactor R-^.

Da hydreringsreaksjonen er endoterm vil man gjennom tilsetning av varme kunne opprettholde reaksjonstemperaturen såvel som temperaturforldpet i reaktoren R-^efter behov, mens det i reaktoren R2for destruktiv hydrering av parafiner og olefiner må bortfores varme gjennom kjoling. As the hydration reaction is endothermic, by adding heat it will be possible to maintain the reaction temperature as well as the temperature gradient in the reactor R-^ as needed, while in the reactor R2 for destructive hydration of paraffins and olefins, heat must be removed through cooling.

De i fig. I og II gjengitte utforelsesformer begrenser seg Those in fig. The embodiments shown in I and II are limited

til det . egentlige prinsipp. I praktisk drift finnes det selvfølgelig flere reaktorer for hydrogenbehandling, hvilke periodisk settes ut av drift for å regenerere den katalysator to the . actual principle. In practical operation there are, of course, several reactors for hydrogen treatment, which are periodically taken out of operation to regenerate the catalyst

i reaktoren som f.eks. er blitt uvirksom gjennom karbon-avleiring. in the reactor as e.g. has become inactive through carbon deposition.

Det er i alminnelighet ogsa nodvendig med en tilsetning av hydrogen fordi ved hydrogenbehandlingen hydrogen forbrukes i deler på 0 - 3 % av tilsetningsmengden. It is generally also necessary to add hydrogen because during the hydrogen treatment, hydrogen is consumed in parts of 0 - 3% of the added quantity.

Efterfolgende eksempel gir et inntrykk av de ved fremgangs- The following example gives an impression of the progress

måten ifolge oppfinnelsen oppnådde resultater. the method according to the invention achieved results.

EKSEMPEL 1 EXAMPLE 1

I en anordning ifolge fig. I ledes en bensin med kokeområdet In a device according to fig. In is led a petrol with the cooking area

40 til 160° forst sammen med en femdobbelt mengde hydrogen 40 to 160° first together with a fivefold amount of hydrogen

(beregnet på grammol) ved en temperatur på 565°C og under et trykk på 30 ata over en av aluminiumoksyd med et platina-.belegg bestående katalysator (0,6 vekt-% Pt, 0,66 vekt-% Cl) og da med en gjennomstrbmmingshastighet på 1 liter bensin pr. 1 liter katalysator pr. time. (calculated on gram moles) at a temperature of 565°C and under a pressure of 30 ata over a catalyst consisting of aluminum oxide with a platinum coating (0.6 wt.% Pt, 0.66 wt.% Cl) and then with a flow rate of 1 liter of petrol per 1 liter of catalyst per hour.

For hver 100 g beskikkningsmasse oppnås efter denne hydrogenbehandling 68 g C-^ - C^ gassformige hydrokarboner nemlig: For every 100 g of coating mass, 68 g of C-^ - C^ gaseous hydrocarbons are obtained after this hydrogen treatment, namely:

II gram CH4II grams of CH4

20 gram C2H620 grams of C2H6

26 gram CgHg 26 grams of CgHg

11 gram C4H1Q11 grams of C4H1Q

hvilken mengde sammen med vanndamp tilfores til varmekrakkings-anlegget for der å bli krakket ved en temperatur på 800°C. which quantity together with steam is supplied to the thermal cracking plant to be cracked there at a temperature of 800°C.

Den krakkede reaksjonsblanding trer inn i gass-skilleren Sg»hvorfra en mengde på 21,6 g etan går via ledning 14 til etan-krakkingsanlegget for der å bli underkastet en fornyet krakkingsprosess ved en temperatur på 820°C. The cracked reaction mixture enters the gas separator Sg», from which a quantity of 21.6 g of ethane goes via line 14 to the ethane cracking plant to be subjected there to a renewed cracking process at a temperature of 820°C.

Det oppnås til sist ved gass-skillingen for hver 100 g utgangsbensin 29,2 g etylen såvel som en mengde restgass. Sistnevnte består av en hydrogen-metan-fraksjon (23,8 g), en propylen-propan-fraksjon (11,5 g) og en butylen-butan-fraksjon (2,9 g).1Den ved hydrogenbehandlingen erholdte væskefraksjon (34 g) med et aromatinnhold på 87,6$ kan oppdeles i: i 5,3 g benzen 13,1 g toluen \ 11,4 g xylen og etylbenzen j t i _ _ _ i 4.2 g ikke-aromater i det vesentlige av mettede C^og litt CV bestående hydrokarbon. In the end, 29.2 g of ethylene as well as a quantity of residual gas is obtained for every 100 g of starting gasoline during the gas separation. The latter consists of a hydrogen-methane fraction (23.8 g), a propylene-propane fraction (11.5 g) and a butylene-butane fraction (2.9 g).1 The liquid fraction obtained during the hydrogen treatment (34 g ) with an aromatics content of 87.6$ can be divided into: i 5.3 g benzene 13.1 g toluene \ 11.4 g xylene and ethylbenzene j t i _ _ _ i 4.2 g non-aromatics essentially of saturated C^ and some CV consisting hydrocarbon.

I tilfelle av en direkte termisk krakking av bensin altså In the case of a direct thermal cracking of gasoline that is

uten gjennomfdring av en hydrogenbehandling vil man oppnå: without carrying out a hydrogen treatment, you will achieve:

23,5 g etylen 23.5 g of ethylene

15,5 g metan + hydrogen 15.5 g methane + hydrogen

18,5 g propylen + propan 18.5 g propylene + propane

11,5 g C^-hydrokarbon 11.5 g C 1 -hydrocarbon

26 g krakkbensin med et aromatinnhold på 43 %. 26 g of kerosene with an aromatics content of 43%.

EKSEMPEL 2 EXAMPLE 2

På lignende måter som i eksempel 1 forarbeides en bensin med In similar ways as in example 1, a petrol is processed with

et kp. på 40 til 116°C. a kp. of 40 to 116°C.

For hver 100 g utgangsbensin oppnås efter hydrogenbehandling 64 g ^1~^49ass^ormi9hydrokarbon. Disse består av: For every 100 g of starting petrol, 64 g of ^1~^49ass^ormi9hydrocarbon is obtained after hydrogen treatment. These consist of:

10 g CH410 g of CH4

19 g C2H624 g C3H811 g c4h1019 g C2H624 g C3H811 g c4H10

Efter termisk krakking dannes herav 27,9 g etylen og restgass. De sistnevnte består av en hydrogen-metan-fraksjon (21,7 g), After thermal cracking, 27.9 g of ethylene and residual gas are formed from this. The latter consist of a hydrogen-methane fraction (21.7 g),

en propylen-propan-fraksjon (10,9 g) og en butylen-butan-fraksjon (2,9 g). a propylene-propane fraction (10.9 g) and a butylene-butane fraction (2.9 g).

Den efter hydrogenbehandlingen dannede væskefraksjon (37 g) The liquid fraction formed after the hydrogen treatment (37 g)

med et aromatinnhold på 89 % kan skilles i: with an aromatic content of 89% can be divided into:

9.3 g benzen 9.3 g of benzene

16,9 g toluen 16.9 g of toluene

6,7 g xylen + etylbenzen 6.7 g xylene + ethylbenzene

4,1 g ikke-aromat, i det vesentlige av CV og videre C^+-bestående hydrokarboner. 4.1 g non-aromatic, essentially of CV and further C^+-containing hydrocarbons.

Ved termisk krakking av denne bensin uten forutgående hydrogen- When thermally cracking this gasoline without prior hydrogenation

behandling vil man oppnå: treatment you will achieve:

24,5 g etylen 24.5 g of ethylene

14 g metan + hydrogen 14 g methane + hydrogen

20,5 g propylen + propan 20.5 g propylene + propane

12 g C^-hydrokarbon 12 g of C₁-hydrocarbon

23 g krakkbensin med et aromatinnhold på 20%. 23 g crack petrol with an aromatics content of 20%.

Claims (5)

1. Fremgangsmåte for samtidig omdannelse av lettbensinråmateriale, med et kokeområde på minst 40°C og opp til et område mellom 110 - 180°C, til en fraksjon bestående av mettede alifatiske hydrokarboner, inneholdende fra 1-4 karbonatomer, og en fraksjon bestående av monocykliske, karbocykliske og aromatiske hydrokarboner inneholdende vesentlig benzen og lavere alkylhomologer derav, karakterisert vedhydroforming og krakking av nevnte lettbensin ved å underkaste samme en behandling med fri hydrogengass ved en forhoyet temperatur i området1. Method for the simultaneous conversion of light petrol raw material, with a boiling range of at least 40°C and up to a range between 110 - 180°C, to a fraction consisting of saturated aliphatic hydrocarbons, containing from 1-4 carbon atoms, and a fraction consisting of monocyclic, carbocyclic and aromatic hydrocarbons containing essentially benzene and lower alkyl homologues thereof, characterized by hydroforming and cracking of said light petrol by subjecting it to a treatment with free hydrogen gas at an elevated temperature in the area 450 - 600°C og under et forhoyet trykk på mellom 15 ata og 90 ata i nærvær av en hydrerings-dehydreringskatalysator, for en tidsperiode slik at i det minste halvparten av nevnte lettbensin omdannes til mettede hydrokarboner inneholdende fra 1-4 karbonatomer og gjenværende del av nevnte lettbensinråmateriale omdannes vesentlig til et flytende reaksjonsprodukt med et innhold av nevnte aromatiske forbindelser på i det minste 70 vekt-%, idet de gjenværende deler derav inneholder vesentlig mettede hydrokarboner med 5 karbonatomer.450 - 600°C and under an elevated pressure of between 15 ata and 90 ata in the presence of a hydrogenation-dehydrogenation catalyst, for a period of time such that at least half of said light petrol is converted into saturated hydrocarbons containing from 1-4 carbon atoms and the remaining part of said light petrol raw material is essentially converted into a liquid reaction product with a content of said aromatic compounds of at least 70% by weight, the remaining parts thereof containing substantially saturated hydrocarbons with 5 carbon atoms. 2. Fremgangsmåte ifolge krav 1,karakterisertved at fra den fremkommende aromatholdige væske oppnås aromater på i og for seg kjent måte ved rektifisering.2. Method according to claim 1, characterized in that aromatics are obtained from the resulting aromatic liquid in a manner known per se by rectification. 3. Fremgangsmåte ifolge krav 1,karakterisert vedat man gjennomfører hydrogenbehandlingen i nærvær av en 0,1 - 2 vekt-% platina-inneholdende katalysator, hvis bærer består av aluminiumoksyd, silisiumoksyd eller også en blanding av aluminiumoksyd og silisiumoksyd.3. Method according to claim 1, characterized in that the hydrogen treatment is carried out in the presence of a 0.1 - 2% by weight platinum-containing catalyst, whose carrier consists of aluminum oxide, silicon oxide or also a mixture of aluminum oxide and silicon oxide. 4. Fremgangsmåte ifolge kravene 1-4,karakterisert vedat man gjennomfører fremgangsmåten i to trinn og da i et fdrste trinn i nærvær av en platinakatalysator på en bærer av aluminiumoksyd med halogen som promotor og i et annet trinn i nærvær av en platinakatalysator på en bærer av silisiumoksyd eller en bærer av aluminiumoksyd med et alkali- eller jordalkalimetall som promotor.4. Method according to claims 1-4, characterized in that the method is carried out in two steps and then in a first step in the presence of a platinum catalyst on a support of aluminum oxide with halogen as promoter and in a second step in the presence of a platinum catalyst on a support of silicon oxide or a carrier of aluminum oxide with an alkali or alkaline earth metal as promoter. 5. Fremgangsmåte ifolge et av de foregående krav,karakterisert vedat ved hydrogenbehandling utgjor trykket 25 - 60 ata, temperaturen - i det minste ved slutten av hydrogenbehandlingen - 550 - 600°C og at molar-forholdet hydrogen/bensin holdes på en verdi på 4 - 20, mens lettbensin fores i en mengde av 0,5 - 10 volumdeler (beregnet som væske) pr. volumdel katalysator pr. time over katalysatoren.5. Method according to one of the preceding claims, characterized in that during hydrogen treatment the pressure is 25 - 60 ata, the temperature - at least at the end of the hydrogen treatment - 550 - 600°C and that the hydrogen/gasoline molar ratio is kept at a value of 4 - 20, while light petrol is fed in a quantity of 0.5 - 10 parts by volume (calculated as liquid) per volume fraction of catalyst per hour over the catalyst.
NO164051A 1965-07-26 1966-07-25 NO118557B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL6509667A NL6509667A (en) 1965-07-26 1965-07-26

Publications (1)

Publication Number Publication Date
NO118557B true NO118557B (en) 1970-01-12

Family

ID=19793744

Family Applications (1)

Application Number Title Priority Date Filing Date
NO164051A NO118557B (en) 1965-07-26 1966-07-25

Country Status (12)

Country Link
US (1) US3455813A (en)
AT (1) AT269321B (en)
BE (1) BE684601A (en)
CH (1) CH473071A (en)
DE (1) DE1276265B (en)
DK (1) DK132399C (en)
ES (1) ES329427A1 (en)
GB (1) GB1133263A (en)
IL (1) IL26181A (en)
NL (2) NL6509667A (en)
NO (1) NO118557B (en)
SE (1) SE341390B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003474A1 (en) * 1984-02-02 1985-08-15 Terje Rosenlund Method for impregnating wood, and an apparatus for carrying out the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926779A (en) * 1974-01-21 1975-12-16 Texaco Inc Upgrading of paraffinic gasoline blending components by cyclization with a platinum/magnesium oxide alumina matrix catalyst
DE102004011553A1 (en) * 2004-03-08 2005-10-06 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Ultrasonic device for examination of liquid metal flows, comprises ultrasonic transmitter and receiver mounted on either side of a dip tube through which metal flows from a metal containing crucible

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2143472A (en) * 1936-07-20 1939-01-10 Shell Dev Process for treating hydrocarbons
US2908628A (en) * 1956-06-28 1959-10-13 Sun Oil Co Hydrocarbon conversion
DE1470593A1 (en) * 1961-02-03 1969-02-13 Metallgesellschaft Ag Process for the production of aromatics and olefinic hydrocarbons
US3198728A (en) * 1962-06-20 1965-08-03 Socony Mobil Oil Co Inc Method of improving front end octane rating and increasing "lpg" production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003474A1 (en) * 1984-02-02 1985-08-15 Terje Rosenlund Method for impregnating wood, and an apparatus for carrying out the method

Also Published As

Publication number Publication date
BE684601A (en) 1967-01-26
DK132399B (en) 1975-12-01
AT269321B (en) 1969-03-10
NL6509667A (en) 1967-01-27
DK132399C (en) 1976-05-03
DE1276265B (en) 1968-08-29
ES329427A1 (en) 1967-09-01
NL128679C (en)
CH473071A (en) 1969-05-31
GB1133263A (en) 1968-11-13
SE341390B (en) 1971-12-27
US3455813A (en) 1969-07-15
IL26181A (en) 1970-06-17

Similar Documents

Publication Publication Date Title
JP6817381B2 (en) A method for producing BTX from a mixed hydrocarbon source using thermal decomposition
JP6470760B2 (en) Method and apparatus for converting crude oil to petrochemical products with improved ethylene and BTX yields
JP6368360B2 (en) Process for producing aromatic compounds and light olefins from hydrocarbon raw materials
JP6364075B2 (en) Process for producing light olefins and aromatic compounds from hydrocarbon raw materials
CN110066686B (en) Process for cracking hydrocarbon feedstock in steam cracker unit
KR102374392B1 (en) Process for converting hydrocarbons into olefins
ES2716382T3 (en) Process and installation for the conversion of crude oil into petrochemicals that has an improved carbon efficiency
EA032112B1 (en) Process for the production of light olefins and aromatics from a hydrocarbon feedstock
US5585530A (en) Transhydrogenation
JP2016527343A (en) Process for converting high boiling hydrocarbon feeds to lower boiling hydrocarbon products
KR102454266B1 (en) Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
JP2017511830A (en) Process for converting hydrocarbons to olefins
NO118557B (en)
EP3160925B1 (en) Process for producing alkylated aromatic hydrocarbons from a mixed hydrocarbon feedstream
CN106062146B (en) Using coking by the method for hydrocarbon mixture source production BTX
NO129206B (en)
US11136279B2 (en) Integrated process for producing olefins from alkanes by hydrogen transfer
US3108946A (en) Recovery of hydrocarbons
US3660272A (en) Gasoline production from wellhead natural gas
GB752925A (en) A process for the isomerisation of waxy hydrocarbons
NO119346B (en)