NO118541B - - Google Patents
Download PDFInfo
- Publication number
- NO118541B NO118541B NO155653A NO15565364A NO118541B NO 118541 B NO118541 B NO 118541B NO 155653 A NO155653 A NO 155653A NO 15565364 A NO15565364 A NO 15565364A NO 118541 B NO118541 B NO 118541B
- Authority
- NO
- Norway
- Prior art keywords
- water
- hydrogen gas
- electrolyte
- water vapor
- deuterium
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 239000003792 electrolyte Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 9
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 6
- 229910052805 deuterium Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 241000196324 Embryophyta Species 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 3
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 claims description 2
- 241000720974 Protium Species 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005868 electrolysis reaction Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/234—Surface aerating
- B01F23/2342—Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force
- B01F23/23421—Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force the stirrers rotating about a vertical axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/234—Surface aerating
- B01F23/2342—Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force
- B01F23/23421—Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force the stirrers rotating about a vertical axis
- B01F23/234211—Stirrers thereof
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/14—Activated sludge processes using surface aeration
- C02F3/16—Activated sludge processes using surface aeration the aerator having a vertical axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
Fremgangsmåte til oppkonsentrering av tungt vann. Method for concentrating heavy water.
Det er kjent at når vann og vannstoff, It is known that when water and hydrogen
som begge inneholder de to isotoper pro-tium og deuterium, bringes i kontakt med hverandre, vil det skje en utbytning av isotopene mellom de to reaktanter : which both contain the two isotopes protium and deuterium, are brought into contact with each other, an exchange of the isotopes between the two reactants will occur:
HD + H20 -^H2 + HDO. Reaksjonen vil tendere mot en likevekt bestemt ved lig-ningen HD + H 2 O -^H 2 + HDO. The reaction will tend towards an equilibrium determined by the equation
hvor C angir konsentrasjonen ved like-vektstilstand, og k er en konstant ved en gitt temperatur. where C indicates the concentration at equilibrium, and k is a constant at a given temperature.
Reaksjonshastigheten er meget liten, og selv ved bruk av egnede katalysatorer bør vannet helst foreligge i dampform om reaksjonen skal kunne gå med teknisk brukbar hastighet. The reaction speed is very small, and even when using suitable catalysts, the water should ideally be present in vapor form if the reaction is to be able to proceed at a technically usable speed.
Reaksjonen utnyttes i alminnelighet i forbindelse med et elektrolytisk vannspalt-ningsanlegg. Ved elektrolysen foregår en anriking av tungt vann i elektrolytten, idet den vannstoff gass som frigjøres, er fattigere på deuterium enn vannet i elektrolytten. Når man deler anlegget opp i en rekke trinn med avtagende størrelse, får man en økende tungtvannskonsentra-sjon ved å mate hvert trinn med vann fra det foregående i rekken. Vannet fåes ved utkondensering av den fuktighet som føl-ger med den varme gass fra elektrolys-ørene. The reaction is generally utilized in connection with an electrolytic water splitting plant. During the electrolysis, an enrichment of heavy water takes place in the electrolyte, as the hydrogen gas that is released is poorer in deuterium than the water in the electrolyte. When you divide the plant into a series of stages of decreasing size, you get an increasing heavy water concentration by feeding each stage with water from the previous one in the series. The water is obtained by condensation of the moisture that follows with the hot gas from the electrolyzers.
Ved et bestemt trinn i oppbygningen vil anrikingen av tungt vann være så stor at innholdet av deuterium i den frigjorte vannstoffgass med fordel vil kunne utnyttes ved en utbytningsreaksjon med vanndamp fremstilt av kondensat fra et passende tidligere trinn eller av vanlig vann. At a certain stage in the build-up, the enrichment of heavy water will be so great that the content of deuterium in the liberated hydrogen gas can be advantageously utilized in a yield reaction with water vapor produced from condensate from a suitable earlier stage or from ordinary water.
Ved blandingen av mettet vanndamp og kold vannstoffgass vil det ved de vanlig forekommende blandingsforhold danne seg tåke av ukondensert vann. Blandingen må derfor opphetes ytterligere før den går til katalysatoren, da et nedslag av fuktighet på denne vil nedsette reaksjonshastigheten vesentlig. In the mixture of saturated water vapor and cold hydrogen gas, a mist of uncondensed water will form at the usual mixing conditions. The mixture must therefore be heated further before it goes to the catalyst, as an impact of moisture on this will reduce the reaction rate significantly.
Vannstoffgassen bringer med fra elek-trolysøren endel elektrolytt i form av tåke. Denne bør filtreres fra gassen, da den el-lers vil danne et belegg på katalysatoren. The hydrogen gas brings with it from the electrolyser some electrolyte in the form of mist. This should be filtered from the gas, as it will otherwise form a coating on the catalyst.
Etterat blandingen har fått den rik-tige tilstand, føres den inn på katalysatoren, hvor omsetningen skjer. Dampen kondenseres ut i en kjøler, og gassen kan, om deuteriuminnholdet er stort nok, utbyttes i nye utbytningstrinn mot vanndamp av avtagende deuteriuminnhold. Hvor langt prosessen kan utnyttes, blir et økonomisk spørsmål, spesielt avhengig av prisen på den disponible energi til damp-fremstillingen. Også for de første utbytningstrinn spiller imidlertid utgiftene til dampfremstilling en viktig rolle, og det er derfor av betydning for tungtvannprisen å bruke billige energikilder til dampfrem-stillingen. After the mixture has reached the right state, it is fed onto the catalyst, where the reaction takes place. The steam is condensed out in a cooler, and the gas can, if the deuterium content is high enough, be exchanged in new exchange stages for water vapor of decreasing deuterium content. How far the process can be utilized becomes an economic question, especially depending on the price of the available energy for steam production. Even for the first stages of exploitation, however, the costs of steam production play an important role, and it is therefore important for the price of heavy water to use cheap energy sources for steam production.
Som kjent, utvikles det ved elektrolyse av vann betydelige varmemengder, som må fjernes ved avkjøling. Foreliggende oppfinnelse vedrører en fordelaktig As is well known, considerable amounts of heat are generated during the electrolysis of water, which must be removed by cooling. The present invention relates to an advantageous
fremgangsmåte til utnyttelse av disse varmemengder ved oppkonsentreringen av method for utilizing these amounts of heat during the concentration of
tungt vann etter den kombinerte prosess: elektrolyse — utbytning. Videre omfatter oppfinnelsen en ny fremgangsmåte til blanding av de nødvendige dampmengder med den vannstoffgass som skal utbyttes. heavy water after the combined process: electrolysis — yield. Furthermore, the invention includes a new method for mixing the required quantities of steam with the hydrogen gas to be exchanged.
Fremgangsmåten etter oppfinnelsen går ut på å føre vannstoffgass fra et trinn i elektrolysen i motstrøm mot varm elektrolytt-lut fra et tidligere trinn. Fordunst-ningen fra luten vil derved gi gassen et vanndampinnhold tilsvarende dampten-sjonen ved den herskende luttemperatur. Etterat utbytning har funnet sted i et særskilt katalysatorkammer, blir den på deuteriumoksyd anrikede vanndamp ut-kondensert og eventuelt tilført et passende elektrolysetrinn, hvorfra vannstoffgassen går til ny utbytning, osv. The method according to the invention involves passing hydrogen gas from a step in the electrolysis in countercurrent to hot electrolyte-lye from a previous step. The evaporation from the lye will thereby give the gas a water vapor content corresponding to the vapor tension at the prevailing lye temperature. After recovery has taken place in a special catalyst chamber, the deuterium oxide-enriched water vapor is condensed out and optionally supplied to a suitable electrolysis stage, from which the hydrogen gas goes to new recovery, etc.
Den avkjølte elektrolytt-lut går tilbake til elektrolyseanlegget. The cooled electrolyte liquor returns to the electrolysis plant.
Vedlagte tegning gir et eksempel (skjematisk) på fremgangsmåtens ut-førelse. The attached drawing gives an example (schematic) of the execution of the method.
Beholderen (a) er fylt med et materiale (b) med stor overflate, f. eks. Raschig-ringer, som hviler på en rist (c). Varm elektrolytt fra elektrolyseanlegget ledes ved hjelp av en pumpe (j) inn i beholderen, og fordeles gjennom et perforert rør eller annen egnet anordning (d). Elektrolytten renner ned gjennom beholderen, idet den fordeler seg utover fyllegemene (b), samles i bunnen, og går tilbake til elektrolysørene gjennom røret (e). Vannstoffgassen kommer inn i beholderen gjennom røret (f), hvis åpning er dekket med en hatt (g). Gassen stiger opp mellom fyllegemene i motstrøm mot elektrolytten, idet den oppvarmes og opptar vanndamp i en mengde som er bestemt av elektrolyttens vanndamptensjon ved den rådende temperatur. Blandingen av vanndamp og vannstoffgass føres fra toppen av beholderen direkte inn på katalysatorkammeret (h) hvor reaksjonen foregår, og så videre .til en kjøler (i), hvor den på tungt vann anrikede vanndamp kondenseres ut. Oppfinnelsen medfører flere betydelige fordeler. Den muliggjør således en en-kel og meget effektiv utnyttelse av den foreliggende lutvarme (med derav følgen-de, fordeler for prosessens varmeøkonomi). Da elektrolyttens vanndamptensjon er mindre enn for rent vann, vil vanndampen i blandingen som går til katalysatorkammeret, få en viss overheting, hvorfor man også unngår den sjenerende tåkedannelse som vanlig oppstår ved blanding av kold gass med mettet damp. En ytterligere fordel ved fremgangsmåten ifølge oppfinnelsen ligger i at de lutmengder som vannstoffgassen river med fra elektrolysørene, og som i de kjente prosesser må fjernes ved særlige tiltak foråt ikke katalysatoren skal ødelegges, reduseres meget sterkt. Dette må betegnes som overraskende, idet man snarere skulle ha ventet en økning i gassens elektrolyttinnhold ved en direkte motstrømskontakt mellom gass og elektrolytt. The container (a) is filled with a material (b) with a large surface, e.g. Raschig rings, resting on a grid (c). Hot electrolyte from the electrolysis plant is led by means of a pump (j) into the container, and distributed through a perforated pipe or other suitable device (d). The electrolyte flows down through the container, as it distributes itself beyond the filling cells (b), collects at the bottom, and returns to the electrolysers through the tube (e). The hydrogen gas enters the container through the tube (f), the opening of which is covered with a cap (g). The gas rises between the filler cells in countercurrent to the electrolyte, as it is heated and absorbs water vapor in an amount determined by the water vapor tension of the electrolyte at the prevailing temperature. The mixture of water vapor and hydrogen gas is fed from the top of the container directly into the catalyst chamber (h) where the reaction takes place, and so on to a cooler (i), where the water vapor enriched in heavy water is condensed out. The invention entails several significant advantages. It thus enables a simple and very efficient utilization of the available lye heat (with consequent benefits for the heat economy of the process). As the water vapor tension of the electrolyte is less than that of pure water, the water vapor in the mixture that goes to the catalyst chamber will get a certain amount of overheating, which is why you also avoid the annoying fog formation that usually occurs when mixing cold gas with saturated steam. A further advantage of the method according to the invention is that the amounts of lye which the hydrogen gas tears from the electrolysers, and which in the known processes must be removed by special measures to prevent the catalyst from being destroyed, are greatly reduced. This must be described as surprising, as one should rather have expected an increase in the electrolyte content of the gas in the case of a direct countercurrent contact between gas and electrolyte.
Ved den oppståtte fordunstning av vannet fra elektrolytten inntrer en tilsvarende nedkjøling av denne. Under van-lige dirftsforhold må varmen som utvikles i elektrolysørene, fjernes. Ved bruk av foreliggende oppfinnelse oppnår man således også å spare kjølevann. Man øker også — uten bruk av ekstra energi — den mengde vann som tas ut av vedkommende trinn i tungtvannsanlegget, og har der-med mulighet for å variere de enkelte trinns størrelse i forhold til hverandre, eventuelt øke antall trinn. When the resulting evaporation of the water from the electrolyte occurs, a corresponding cooling of this occurs. Under normal operating conditions, the heat developed in the electrolysers must be removed. When using the present invention, one thus also achieves saving cooling water. One also increases — without the use of extra energy — the amount of water that is taken out of the relevant stage in the heavy water system, and thus has the opportunity to vary the size of the individual stages in relation to each other, possibly increasing the number of stages.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH244564A CH443165A (en) | 1964-02-27 | 1964-02-27 | Device for circulating and aerating water r |
CH634064A CH464809A (en) | 1964-02-27 | 1964-05-14 | Device for circulating and aerating water |
Publications (1)
Publication Number | Publication Date |
---|---|
NO118541B true NO118541B (en) | 1970-01-05 |
Family
ID=25690468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO155653A NO118541B (en) | 1964-02-27 | 1964-11-20 |
Country Status (10)
Country | Link |
---|---|
BE (1) | BE656587A (en) |
CH (1) | CH464809A (en) |
DK (1) | DK116349B (en) |
FI (1) | FI44560B (en) |
FR (1) | FR1420271A (en) |
GB (1) | GB1080651A (en) |
LU (1) | LU47534A1 (en) |
NL (1) | NL146769B (en) |
NO (1) | NO118541B (en) |
SE (1) | SE317034B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5134132Y2 (en) * | 1973-08-11 | 1976-08-24 | ||
JPS559440Y2 (en) * | 1975-07-24 | 1980-02-29 | ||
EP2756879B1 (en) * | 2013-01-22 | 2016-06-08 | Kunze, Silvia | Apparatus for introducing gas into a liquid |
-
1964
- 1964-05-14 CH CH634064A patent/CH464809A/en unknown
- 1964-11-20 NO NO155653A patent/NO118541B/no unknown
- 1964-11-27 DK DK585964A patent/DK116349B/en unknown
- 1964-12-02 FI FI253964A patent/FI44560B/fi active
- 1964-12-03 BE BE656587D patent/BE656587A/xx unknown
- 1964-12-07 LU LU47534A patent/LU47534A1/xx unknown
-
1965
- 1965-01-12 FR FR1606A patent/FR1420271A/en not_active Expired
- 1965-01-28 NL NL6501079A patent/NL146769B/en unknown
- 1965-02-12 SE SE187665A patent/SE317034B/xx unknown
- 1965-02-18 GB GB697165A patent/GB1080651A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR1420271A (en) | 1965-12-03 |
CH464809A (en) | 1968-10-31 |
LU47534A1 (en) | 1965-02-08 |
NL6501079A (en) | 1965-08-30 |
NL146769B (en) | 1975-08-15 |
FI44560B (en) | 1971-08-02 |
DK116349B (en) | 1969-12-29 |
GB1080651A (en) | 1967-08-23 |
SE317034B (en) | 1969-11-03 |
BE656587A (en) | 1965-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7704370B2 (en) | Process for jointly obtaining a chlorine derivative and crystals of sodium carbonate | |
US3968017A (en) | Process and an equipment for producing crystalline citric acid from solutions of alkaline citrates | |
NO150480B (en) | PROCEDURE FOR RECOVERY OF UNREADED MATERIALS AND HEAT FROM A UREA SYNTHESIS | |
US3147072A (en) | Method of processing sea water | |
US2950180A (en) | Chemical reactor tower | |
NO148485B (en) | PLASTIC CONTAINER, SPECIAL FOR STORAGE OF FUEL OIL AND LIKE. | |
US3191916A (en) | Apparatus for separating pure ammonia gas from a mixed off-gas stream | |
US2999795A (en) | Method and apparatus for the purification of heavy-water | |
NO118541B (en) | ||
GB1248436A (en) | Combined steam power plant and distillation system | |
NO155000B (en) | PROCEDURE FOR COOLING A REACTOR FOR MANUFACTURING METHANOL. | |
US2588469A (en) | Process for the production of high concentration alkaline lyes | |
US4138468A (en) | Method and apparatus for producing or recovering alkanolamine from a mixture containing oxazolidone | |
US2908554A (en) | Process for recovering heavy hydrogen and heavy water | |
US2701262A (en) | Urea purification | |
US2934407A (en) | Method for the arrangement of thermodynamic relations | |
US4038035A (en) | Apparatus for enriching hydrogen with deuterium | |
NO314352B1 (en) | Process for the preparation of 1,2-dichloroethane | |
NO152645B (en) | PROCEDURE FOR THE PREPARATION OF CHLORODIOXIDE | |
US3104949A (en) | Process for the production of caustic alkali solutions from alkali metal amalgams and to apparatus therefor | |
GB1125453A (en) | Electrolytic production of chlorine | |
ES315882A1 (en) | Multistage flash evaporator | |
CN210620240U (en) | Improve analytic system of hydrochloric acid of thermal efficiency | |
US3378585A (en) | Process for the production of urea | |
CN102107886A (en) | Ammonia-evaporating process by circularly heating flash evaporation method |