NO118541B - - Google Patents

Download PDF

Info

Publication number
NO118541B
NO118541B NO155653A NO15565364A NO118541B NO 118541 B NO118541 B NO 118541B NO 155653 A NO155653 A NO 155653A NO 15565364 A NO15565364 A NO 15565364A NO 118541 B NO118541 B NO 118541B
Authority
NO
Norway
Prior art keywords
water
hydrogen gas
electrolyte
water vapor
deuterium
Prior art date
Application number
NO155653A
Other languages
Norwegian (no)
Inventor
J Kaelin
Original Assignee
Kaelin J R
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH244564A external-priority patent/CH443165A/en
Application filed by Kaelin J R filed Critical Kaelin J R
Publication of NO118541B publication Critical patent/NO118541B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2342Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force
    • B01F23/23421Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force the stirrers rotating about a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2342Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force
    • B01F23/23421Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force the stirrers rotating about a vertical axis
    • B01F23/234211Stirrers thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Fremgangsmåte til oppkonsentrering av tungt vann. Method for concentrating heavy water.

Det er kjent at når vann og vannstoff, It is known that when water and hydrogen

som begge inneholder de to isotoper pro-tium og deuterium, bringes i kontakt med hverandre, vil det skje en utbytning av isotopene mellom de to reaktanter : which both contain the two isotopes protium and deuterium, are brought into contact with each other, an exchange of the isotopes between the two reactants will occur:

HD + H20 -^H2 + HDO. Reaksjonen vil tendere mot en likevekt bestemt ved lig-ningen HD + H 2 O -^H 2 + HDO. The reaction will tend towards an equilibrium determined by the equation

hvor C angir konsentrasjonen ved like-vektstilstand, og k er en konstant ved en gitt temperatur. where C indicates the concentration at equilibrium, and k is a constant at a given temperature.

Reaksjonshastigheten er meget liten, og selv ved bruk av egnede katalysatorer bør vannet helst foreligge i dampform om reaksjonen skal kunne gå med teknisk brukbar hastighet. The reaction speed is very small, and even when using suitable catalysts, the water should ideally be present in vapor form if the reaction is to be able to proceed at a technically usable speed.

Reaksjonen utnyttes i alminnelighet i forbindelse med et elektrolytisk vannspalt-ningsanlegg. Ved elektrolysen foregår en anriking av tungt vann i elektrolytten, idet den vannstoff gass som frigjøres, er fattigere på deuterium enn vannet i elektrolytten. Når man deler anlegget opp i en rekke trinn med avtagende størrelse, får man en økende tungtvannskonsentra-sjon ved å mate hvert trinn med vann fra det foregående i rekken. Vannet fåes ved utkondensering av den fuktighet som føl-ger med den varme gass fra elektrolys-ørene. The reaction is generally utilized in connection with an electrolytic water splitting plant. During the electrolysis, an enrichment of heavy water takes place in the electrolyte, as the hydrogen gas that is released is poorer in deuterium than the water in the electrolyte. When you divide the plant into a series of stages of decreasing size, you get an increasing heavy water concentration by feeding each stage with water from the previous one in the series. The water is obtained by condensation of the moisture that follows with the hot gas from the electrolyzers.

Ved et bestemt trinn i oppbygningen vil anrikingen av tungt vann være så stor at innholdet av deuterium i den frigjorte vannstoffgass med fordel vil kunne utnyttes ved en utbytningsreaksjon med vanndamp fremstilt av kondensat fra et passende tidligere trinn eller av vanlig vann. At a certain stage in the build-up, the enrichment of heavy water will be so great that the content of deuterium in the liberated hydrogen gas can be advantageously utilized in a yield reaction with water vapor produced from condensate from a suitable earlier stage or from ordinary water.

Ved blandingen av mettet vanndamp og kold vannstoffgass vil det ved de vanlig forekommende blandingsforhold danne seg tåke av ukondensert vann. Blandingen må derfor opphetes ytterligere før den går til katalysatoren, da et nedslag av fuktighet på denne vil nedsette reaksjonshastigheten vesentlig. In the mixture of saturated water vapor and cold hydrogen gas, a mist of uncondensed water will form at the usual mixing conditions. The mixture must therefore be heated further before it goes to the catalyst, as an impact of moisture on this will reduce the reaction rate significantly.

Vannstoffgassen bringer med fra elek-trolysøren endel elektrolytt i form av tåke. Denne bør filtreres fra gassen, da den el-lers vil danne et belegg på katalysatoren. The hydrogen gas brings with it from the electrolyser some electrolyte in the form of mist. This should be filtered from the gas, as it will otherwise form a coating on the catalyst.

Etterat blandingen har fått den rik-tige tilstand, føres den inn på katalysatoren, hvor omsetningen skjer. Dampen kondenseres ut i en kjøler, og gassen kan, om deuteriuminnholdet er stort nok, utbyttes i nye utbytningstrinn mot vanndamp av avtagende deuteriuminnhold. Hvor langt prosessen kan utnyttes, blir et økonomisk spørsmål, spesielt avhengig av prisen på den disponible energi til damp-fremstillingen. Også for de første utbytningstrinn spiller imidlertid utgiftene til dampfremstilling en viktig rolle, og det er derfor av betydning for tungtvannprisen å bruke billige energikilder til dampfrem-stillingen. After the mixture has reached the right state, it is fed onto the catalyst, where the reaction takes place. The steam is condensed out in a cooler, and the gas can, if the deuterium content is high enough, be exchanged in new exchange stages for water vapor of decreasing deuterium content. How far the process can be utilized becomes an economic question, especially depending on the price of the available energy for steam production. Even for the first stages of exploitation, however, the costs of steam production play an important role, and it is therefore important for the price of heavy water to use cheap energy sources for steam production.

Som kjent, utvikles det ved elektrolyse av vann betydelige varmemengder, som må fjernes ved avkjøling. Foreliggende oppfinnelse vedrører en fordelaktig As is well known, considerable amounts of heat are generated during the electrolysis of water, which must be removed by cooling. The present invention relates to an advantageous

fremgangsmåte til utnyttelse av disse varmemengder ved oppkonsentreringen av method for utilizing these amounts of heat during the concentration of

tungt vann etter den kombinerte prosess: elektrolyse — utbytning. Videre omfatter oppfinnelsen en ny fremgangsmåte til blanding av de nødvendige dampmengder med den vannstoffgass som skal utbyttes. heavy water after the combined process: electrolysis — yield. Furthermore, the invention includes a new method for mixing the required quantities of steam with the hydrogen gas to be exchanged.

Fremgangsmåten etter oppfinnelsen går ut på å føre vannstoffgass fra et trinn i elektrolysen i motstrøm mot varm elektrolytt-lut fra et tidligere trinn. Fordunst-ningen fra luten vil derved gi gassen et vanndampinnhold tilsvarende dampten-sjonen ved den herskende luttemperatur. Etterat utbytning har funnet sted i et særskilt katalysatorkammer, blir den på deuteriumoksyd anrikede vanndamp ut-kondensert og eventuelt tilført et passende elektrolysetrinn, hvorfra vannstoffgassen går til ny utbytning, osv. The method according to the invention involves passing hydrogen gas from a step in the electrolysis in countercurrent to hot electrolyte-lye from a previous step. The evaporation from the lye will thereby give the gas a water vapor content corresponding to the vapor tension at the prevailing lye temperature. After recovery has taken place in a special catalyst chamber, the deuterium oxide-enriched water vapor is condensed out and optionally supplied to a suitable electrolysis stage, from which the hydrogen gas goes to new recovery, etc.

Den avkjølte elektrolytt-lut går tilbake til elektrolyseanlegget. The cooled electrolyte liquor returns to the electrolysis plant.

Vedlagte tegning gir et eksempel (skjematisk) på fremgangsmåtens ut-førelse. The attached drawing gives an example (schematic) of the execution of the method.

Beholderen (a) er fylt med et materiale (b) med stor overflate, f. eks. Raschig-ringer, som hviler på en rist (c). Varm elektrolytt fra elektrolyseanlegget ledes ved hjelp av en pumpe (j) inn i beholderen, og fordeles gjennom et perforert rør eller annen egnet anordning (d). Elektrolytten renner ned gjennom beholderen, idet den fordeler seg utover fyllegemene (b), samles i bunnen, og går tilbake til elektrolysørene gjennom røret (e). Vannstoffgassen kommer inn i beholderen gjennom røret (f), hvis åpning er dekket med en hatt (g). Gassen stiger opp mellom fyllegemene i motstrøm mot elektrolytten, idet den oppvarmes og opptar vanndamp i en mengde som er bestemt av elektrolyttens vanndamptensjon ved den rådende temperatur. Blandingen av vanndamp og vannstoffgass føres fra toppen av beholderen direkte inn på katalysatorkammeret (h) hvor reaksjonen foregår, og så videre .til en kjøler (i), hvor den på tungt vann anrikede vanndamp kondenseres ut. Oppfinnelsen medfører flere betydelige fordeler. Den muliggjør således en en-kel og meget effektiv utnyttelse av den foreliggende lutvarme (med derav følgen-de, fordeler for prosessens varmeøkonomi). Da elektrolyttens vanndamptensjon er mindre enn for rent vann, vil vanndampen i blandingen som går til katalysatorkammeret, få en viss overheting, hvorfor man også unngår den sjenerende tåkedannelse som vanlig oppstår ved blanding av kold gass med mettet damp. En ytterligere fordel ved fremgangsmåten ifølge oppfinnelsen ligger i at de lutmengder som vannstoffgassen river med fra elektrolysørene, og som i de kjente prosesser må fjernes ved særlige tiltak foråt ikke katalysatoren skal ødelegges, reduseres meget sterkt. Dette må betegnes som overraskende, idet man snarere skulle ha ventet en økning i gassens elektrolyttinnhold ved en direkte motstrømskontakt mellom gass og elektrolytt. The container (a) is filled with a material (b) with a large surface, e.g. Raschig rings, resting on a grid (c). Hot electrolyte from the electrolysis plant is led by means of a pump (j) into the container, and distributed through a perforated pipe or other suitable device (d). The electrolyte flows down through the container, as it distributes itself beyond the filling cells (b), collects at the bottom, and returns to the electrolysers through the tube (e). The hydrogen gas enters the container through the tube (f), the opening of which is covered with a cap (g). The gas rises between the filler cells in countercurrent to the electrolyte, as it is heated and absorbs water vapor in an amount determined by the water vapor tension of the electrolyte at the prevailing temperature. The mixture of water vapor and hydrogen gas is fed from the top of the container directly into the catalyst chamber (h) where the reaction takes place, and so on to a cooler (i), where the water vapor enriched in heavy water is condensed out. The invention entails several significant advantages. It thus enables a simple and very efficient utilization of the available lye heat (with consequent benefits for the heat economy of the process). As the water vapor tension of the electrolyte is less than that of pure water, the water vapor in the mixture that goes to the catalyst chamber will get a certain amount of overheating, which is why you also avoid the annoying fog formation that usually occurs when mixing cold gas with saturated steam. A further advantage of the method according to the invention is that the amounts of lye which the hydrogen gas tears from the electrolysers, and which in the known processes must be removed by special measures to prevent the catalyst from being destroyed, are greatly reduced. This must be described as surprising, as one should rather have expected an increase in the electrolyte content of the gas in the case of a direct countercurrent contact between gas and electrolyte.

Ved den oppståtte fordunstning av vannet fra elektrolytten inntrer en tilsvarende nedkjøling av denne. Under van-lige dirftsforhold må varmen som utvikles i elektrolysørene, fjernes. Ved bruk av foreliggende oppfinnelse oppnår man således også å spare kjølevann. Man øker også — uten bruk av ekstra energi — den mengde vann som tas ut av vedkommende trinn i tungtvannsanlegget, og har der-med mulighet for å variere de enkelte trinns størrelse i forhold til hverandre, eventuelt øke antall trinn. When the resulting evaporation of the water from the electrolyte occurs, a corresponding cooling of this occurs. Under normal operating conditions, the heat developed in the electrolysers must be removed. When using the present invention, one thus also achieves saving cooling water. One also increases — without the use of extra energy — the amount of water that is taken out of the relevant stage in the heavy water system, and thus has the opportunity to vary the size of the individual stages in relation to each other, possibly increasing the number of stages.

Claims (1)

Fremgangsmåte til oppkonsentrering av tungt vann under anvendelse av utbytning av de to isotoper deuterium og pro-tium mellom vanndamp og vannstoffgass, karakterisert ved at den nødvendige damp fremstilles ved at vannstoffgass fra et passende trinn i et elektrolytisk vannspalt-ningsanlegg som er oppdelt for produksjon av tungt vann, føres i direkte kontakt med varm elektrolytt fra et annet passende trinn gjennom en beholder fylt med et materiale med stor overflate, således at vannstoffgassen oppvarmes av elektrolytten og opptar vanndamp fra denne, hvor-etter blandingen av vannstoffgass og vanndamp føres til et særskilt katalysatorkammer hvor utbytningen foregår, og re-aksjonsblandingen kjøles, hvorved utkon-denseres vann anriket på deuteriumoksyd.Method for the concentration of heavy water using the exchange of the two isotopes deuterium and protium between water vapor and hydrogen gas, characterized in that the necessary steam is produced by hydrogen gas from a suitable stage in an electrolytic water splitting plant which is divided for the production of heavy water, is brought into direct contact with hot electrolyte from another suitable stage through a container filled with a material with a large surface area, so that the hydrogen gas is heated by the electrolyte and absorbs water vapor from it, after which the mixture of hydrogen gas and water vapor is brought to a special catalyst chamber where the recovery takes place, and the reaction mixture is cooled, whereby water enriched in deuterium oxide is condensed.
NO155653A 1964-02-27 1964-11-20 NO118541B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH244564A CH443165A (en) 1964-02-27 1964-02-27 Device for circulating and aerating water r
CH634064A CH464809A (en) 1964-02-27 1964-05-14 Device for circulating and aerating water

Publications (1)

Publication Number Publication Date
NO118541B true NO118541B (en) 1970-01-05

Family

ID=25690468

Family Applications (1)

Application Number Title Priority Date Filing Date
NO155653A NO118541B (en) 1964-02-27 1964-11-20

Country Status (10)

Country Link
BE (1) BE656587A (en)
CH (1) CH464809A (en)
DK (1) DK116349B (en)
FI (1) FI44560B (en)
FR (1) FR1420271A (en)
GB (1) GB1080651A (en)
LU (1) LU47534A1 (en)
NL (1) NL146769B (en)
NO (1) NO118541B (en)
SE (1) SE317034B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134132Y2 (en) * 1973-08-11 1976-08-24
JPS559440Y2 (en) * 1975-07-24 1980-02-29
EP2756879B1 (en) * 2013-01-22 2016-06-08 Kunze, Silvia Apparatus for introducing gas into a liquid

Also Published As

Publication number Publication date
FR1420271A (en) 1965-12-03
CH464809A (en) 1968-10-31
LU47534A1 (en) 1965-02-08
NL6501079A (en) 1965-08-30
NL146769B (en) 1975-08-15
FI44560B (en) 1971-08-02
DK116349B (en) 1969-12-29
GB1080651A (en) 1967-08-23
SE317034B (en) 1969-11-03
BE656587A (en) 1965-04-01

Similar Documents

Publication Publication Date Title
US7704370B2 (en) Process for jointly obtaining a chlorine derivative and crystals of sodium carbonate
US3968017A (en) Process and an equipment for producing crystalline citric acid from solutions of alkaline citrates
NO150480B (en) PROCEDURE FOR RECOVERY OF UNREADED MATERIALS AND HEAT FROM A UREA SYNTHESIS
US3147072A (en) Method of processing sea water
US2950180A (en) Chemical reactor tower
NO148485B (en) PLASTIC CONTAINER, SPECIAL FOR STORAGE OF FUEL OIL AND LIKE.
US3191916A (en) Apparatus for separating pure ammonia gas from a mixed off-gas stream
US2999795A (en) Method and apparatus for the purification of heavy-water
NO118541B (en)
GB1248436A (en) Combined steam power plant and distillation system
NO155000B (en) PROCEDURE FOR COOLING A REACTOR FOR MANUFACTURING METHANOL.
US2588469A (en) Process for the production of high concentration alkaline lyes
US4138468A (en) Method and apparatus for producing or recovering alkanolamine from a mixture containing oxazolidone
US2908554A (en) Process for recovering heavy hydrogen and heavy water
US2701262A (en) Urea purification
US2934407A (en) Method for the arrangement of thermodynamic relations
US4038035A (en) Apparatus for enriching hydrogen with deuterium
NO314352B1 (en) Process for the preparation of 1,2-dichloroethane
NO152645B (en) PROCEDURE FOR THE PREPARATION OF CHLORODIOXIDE
US3104949A (en) Process for the production of caustic alkali solutions from alkali metal amalgams and to apparatus therefor
GB1125453A (en) Electrolytic production of chlorine
ES315882A1 (en) Multistage flash evaporator
CN210620240U (en) Improve analytic system of hydrochloric acid of thermal efficiency
US3378585A (en) Process for the production of urea
CN102107886A (en) Ammonia-evaporating process by circularly heating flash evaporation method