NO117250B - - Google Patents

Download PDF

Info

Publication number
NO117250B
NO117250B NO168696A NO16869667A NO117250B NO 117250 B NO117250 B NO 117250B NO 168696 A NO168696 A NO 168696A NO 16869667 A NO16869667 A NO 16869667A NO 117250 B NO117250 B NO 117250B
Authority
NO
Norway
Prior art keywords
synchronous machine
mains
inverter
ship
shaft generator
Prior art date
Application number
NO168696A
Other languages
Norwegian (no)
Inventor
W Droste
Original Assignee
Licentia Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Gmbh filed Critical Licentia Gmbh
Priority to NO477968A priority Critical patent/NO122264B/no
Publication of NO117250B publication Critical patent/NO117250B/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/08Synchronising of networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/42Arrangements for controlling electric generators for the purpose of obtaining a desired output to obtain desired frequency without varying speed of the generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

Strømforsyningsanlegg for skip med akselgenerator. Power supply system for ships with shaft generator.

Oppfinnelsen angår et strømforsyningsanlegg for skip, bestemt til* å frembringe en vekselspenning med konstant frekvens og omfattende en akselgenerator i form av en synkrongenerator som drives med sterkt variabelt omdreiningstall og efterfølges av en ikke styrt likeretter og en vekselretter. ;Der er kjent strømforsyningsanlegg med akselgeneratorer hvor den som trefasegenerator utførte akselgenerator roterer med variabelt omdreiningstall og magnetiseres med et dreiefelt hvis størrelse og frekvens stilles inn slik at der i det av akselgeneratoren forsynte trefasenétt står til rådighet en spenning med konstant høyde og frekvens. ;Slike akselgeneratorer krever en stor investering, fremfor alt når de er dimensjonert for lave nominelle omdreiningstall. Akselgeneratoren har da mange poler og liten luftspalte. Videre er det uheldig" at der kreves et, kostbart vekselretteranlegg til å frembringe det méd hensyn til frekvens og størrelse, variable dreiefelt for akselgeneratorens magnetisering. ;Videre er der kjent en akselgenerator utført som like-strømmaskin. Ved hjelp av en likestrømmotor som driver en trefasegenerator, forsynes skipsnettet med trefaset strøm. Frekvens og spenning i skipsnettet blir holdt konstante ved styring av magnetiseringen av henholdsvis likestrømmaskinene og trefasegeneratoren. Også dette akselgenerator-anlegg med kommutatormaskiner blir forholdsvis kostbart. Dessuten krever dette anlegg stor plass og stadig tilsyri. ;Det er også kjent som akselgenerator å bénytte en asynkronmaskin som drives oversynkront. Den forlangte konstante frekvens blir tilveiebragt ved hjelp av en regulerbar belastnings-krets bestående av en likeretter og en likestrømmotor. Asynkron-maskinens sekundærvikling mater likeretteren, som i sin tur mater likestrømmotoren. Den effekt som tas fra sekundærviklingen, blir fortrinnsvis ført tilbake til nettet over en synkronmaskin som er tilkoblet likestrømmotoren, og som samtidig leverer den blindeffekt som skal til for asynkronmaskinen. Også for dette anlegg gjelder de ulemper som er anført for de anordninger som allerede blev omtalt ovenfor. Som ulempe kunde man også fremheve at dette anlegg ikke er selvstartende. Skipsnettet må allerede være strømførende når man kobler inn asynkronmaskinen som tjener som akselgenerator. - ■ Videre er-der kjent et akselgenerator-anlegg hvor akselgeneratoren frembringer trefasestrøm som likerettes og over en selvført vekselretter igjen omdannes til trefasestrøm. SelvfØrte vekselretters er imidlertid kostbare og kompliserte, da der må an-ordnes midler til å levere blindstrømmen og kommuteringsstrømmen. Foråt utgangsspenningen skal bli omtrent sinusformet, må der dessuten anvendes filterkretser. Sluttelig er dtit vanskelig å treffe forholds-regler til beskyttelse i tilfellet av kortslutning, da den selvførte vekselretter ikke kan avgi noen kortslutningsstrøm som bringer ;sikringer til å smelte.;Oppfinnelsens oppgave er derfor å skaffe et strøm-forsyningsanlegg som kan frembringe en vekselspenning med konstant frekvens for skip, og hvor de nevnte ulemper er ryddet av veien. ;Der skal med enkle midler og med minimale omkostninger skaffes et økonomisk arbeidende strømforsyningsanlegg som selv i tilfellet av kortslutning ikke uten videre faller ut, og som kan tas i drift uten noe eksisterende strømførende skipsnett. Utgangspunktet er en akselgenerator i form av en synkrongenerator som drives av skipspropel-lerens aksel, og som efterfølges av en ikke styrt likeretter og en vekselretter. Oppfinnelsen består nu i at vekselretteren er en nettfort vekselretter, at der ennyidére er anordnet en synkronmaskin som under drift av akselgeneratoren er fast forbundet med vekselretterens utgang og med skipsnettet, at der er tilordnet akselgeneratoren en reguleringsinnretning som endrer akselgeneratorens magnetiserings-strøm i retning av konstant skipsnettsfrekvens, samt at der er tilordnet synkronmaskinen en reguleringsinnretning som endrer synkronmaskinens magnetiseringsstrøm i retning av konstant skipsnettsspen-ning. ;Ved passende regulering av synkronmaskinen blir altså skipsnettets spenning holdt konstant uavhengig *av dets belastning, og det selv når synkronmaskinen uten mekanisk drift løper tomt med som faseforskyver. Skipsnettets frekvens påvirkes via akselgeneratorens magnetisering. F.eks. fører en økning av strømmen i^likestrøm-mellem-kretsen til en høyning av skipsnettfrekvensen, betinget ved den nett-førte vekselretters egenskaper. Forutsetningen er bare at der fore-kommer forbrukere som f.eks. ved effekt- resp. strøm-økning reagerer med en frekvensstigning. Dette tilfelle er her allerede gitt ved synkronmaskinen,som ligger ved vekselretterens utgang. The invention relates to a power supply system for ships, intended to* produce an alternating voltage with a constant frequency and comprising a shaft generator in the form of a synchronous generator which is operated with a highly variable number of revolutions and is followed by an uncontrolled rectifier and an inverter. ;There are known power supply systems with shaft generators where the shaft generator designed as a three-phase generator rotates at a variable number of revolutions and is magnetized with a rotating field whose size and frequency are set so that a voltage with a constant height and frequency is available in the three-phase network supplied by the shaft generator. ;Such shaft generators require a large investment, above all when they are dimensioned for low nominal revolutions. The shaft generator then has many poles and a small air gap. Furthermore, it is unfortunate that an expensive inverter system is required to produce, with regard to frequency and size, variable rotating fields for the shaft generator's magnetization. Furthermore, a shaft generator designed as a direct current machine is known. three-phase generator, the ship's grid is supplied with three-phase current. The frequency and voltage in the ship's grid are kept constant by controlling the magnetization of the direct current machines and the three-phase generator respectively. This shaft generator system with commutator machines also becomes relatively expensive. Furthermore, this system requires a large space and constant supply of oxygen. ;It is also known as shaft generator to utilize an asynchronous machine that is operated oversynchronously. The required constant frequency is provided by means of an adjustable load circuit consisting of a rectifier and a DC motor. The secondary winding of the asynchronous machine feeds the rectifier, which in turn feeds the DC motor. The effect which is taken from second the winding, is preferably fed back to the grid via a synchronous machine which is connected to the DC motor, and which at the same time supplies the reactive power required for the asynchronous machine. The disadvantages listed for the devices already discussed above also apply to this facility. As a disadvantage, one could also emphasize that this plant is not self-starting. The ship's mains must already be live when the asynchronous machine that serves as the shaft generator is switched on. - ■ Furthermore, a shaft generator system is known where the shaft generator produces three-phase current which is rectified and converted back into three-phase current via a self-powered inverter. However, self-driven inverters are expensive and complicated, as means must be provided to supply the reactive current and the commutation current. In order for the output voltage to become approximately sinusoidal, filter circuits must also be used. Finally, it is difficult to take protective measures in the event of a short circuit, as the self-powered inverter cannot emit any short circuit current that causes fuses to melt. The task of the invention is therefore to provide a power supply system that can produce an alternating voltage constant frequency for ships, and where the aforementioned disadvantages have been cleared out of the way. ;There, with simple means and with minimal costs, an economically working power supply system must be obtained which, even in the event of a short circuit, does not fail without further ado, and which can be put into operation without any existing current-carrying ship network. The starting point is a shaft generator in the form of a synchronous generator which is driven by the shaft of the ship's propeller, and which is followed by an uncontrolled rectifier and an inverter. The invention now consists in that the inverter is a mains inverter, that at the same time a synchronous machine is arranged which, during operation of the shaft generator, is firmly connected to the output of the inverter and to the ship's grid, that there is assigned to the shaft generator a control device that changes the magnetization current of the shaft generator in the direction of constant ship's mains frequency, and that the synchronous machine is assigned a control device that changes the synchronous machine's magnetizing current in the direction of constant ship's mains voltage. With appropriate regulation of the synchronous machine, the voltage of the ship's mains is therefore kept constant regardless *of its load, and that even when the synchronous machine without mechanical operation runs empty with it as a phase shifter. The frequency of the ship's mains is affected via the shaft generator's magnetisation. E.g. an increase in the current in the direct current intermediate circuit leads to an increase in the ship's grid frequency, conditioned by the properties of the grid-driven inverter. The only prerequisite is that there are consumers such as e.g. by effect or current increase responds with a frequency increase. This case is already given here at the synchronous machine, which is located at the output of the inverter.

Synkronmaskinen som under akselgeneratorens drift erThe synchronous machine which during the shaft generator's operation is

fast forbundet med vekselretterens utgang og med skipsnettet, fyller flere funksjoner. Den dekker for det første skipsnettets blind-;effekt-behov og"for det annet behovet for kommutéringsstrømmer til vekselretteren og representerer således en kominuteringshjelp for vekselretteren. Dessuten danner den en filterkrets for overbølgene fra vekselretteren. permanently connected to the output of the inverter and to the ship's grid, fulfills several functions. It covers, firstly, the ship's net's reactive power needs and, secondly, the need for commutation currents to the inverter and thus represents a commutation aid for the inverter. It also forms a filter circuit for the surges from the inverter.

For å oppnå en konstant spenning ved synkronmaskinens utgang kan der hensiktsmessig også være anordnet en kompounderings-innretning. In order to achieve a constant voltage at the output of the synchronous machine, a compounding device can suitably also be arranged there.

Hovedfordelene ved forsyningsanlegget ifølge oppfinnelsen består i at omkostningene til utstyret blir meget små sammen-holdt med kjente anlegg og der. er sikret en god regulerbarhet av frekvens og spenning i skipsnettet som skal forsynes, ved vilkårlig frekvens fra akselgeneratoren. The main advantages of the supply system according to the invention are that the costs of the equipment are very small compared to known systems and there. is ensured good controllability of frequency and voltage in the ship's mains to be supplied, at any frequency from the shaft generator.

Den effekt som avgis av akselgeneratoren, er proporsjonal med differansespenningen mellem synkronmaskinens og akselgeneratorens spenning . Behovet for blindstrfim og kommuterings-strommer til vekselretteren er samtidig proporsjonalt med den effekt som leveres av akselgeneratoren. Stiger nu den leverte effekt dynamisk på grunn av en ytre forstyrrelse, så synker spenningen ved vekselretterens utgang fordi synkronmaskinen må avgi Øket blindeffekt. Hvis nu spenningen ved likeretterens inngang blev dynamisk opprettholdt, vilde differansespenningen bli flket og den overleverte effekt dermed 6ket ytterligere. Anlegget vilde altså være ustabilt og strOmmen stige over alle grenser. Derfor blir det iffllge oppfinnelsen foreslått at synkronmaskinen og/eller akselgeneratoren blir dimensjonert slik med hensyn til sine reaktanser at sttttkortslutnings-strommen bak den ikke styrte likeretter er mindre enn synkronmaskinens -st6tkortslutningsstr6m. Akselgeneratoren får dermed en dynamisk karakteristikk, idet dens spenning ved en strOmOkning synker i sterkere grad enn det er tilfellet ved synkronmaskinen. Denne dynamiske karakteristikk av akselgeneratoren blir f.eks. opp-nådd ved at man gir den en forholdsvis stor sttttkortslutnings-reaktans. Med sikte på dette blir det if&lge oppfinnelsen videre foreslått at der som akselgenerator anvendes en synkronmaskin uten dempervikling. Dette betyr samtidig en ytterligere Skonomisk fordel fordi synkronmaskiner uten dempervikling er billigere enn slike med d emp er vi kl in g. The power emitted by the shaft generator is proportional to the differential voltage between the voltage of the synchronous machine and the shaft generator. The need for reactive current and commutation currents for the inverter is also proportional to the power supplied by the shaft generator. If the delivered power increases dynamically due to an external disturbance, the voltage at the inverter's output drops because the synchronous machine must emit increased reactive power. If the voltage at the rectifier's input was dynamically maintained, the differential voltage would be reduced and the delivered power would thus be further reduced. The plant would therefore be unstable and the current would rise above all limits. Therefore, according to the invention, it is proposed that the synchronous machine and/or the shaft generator be dimensioned in such a way with regard to their reactances that the short-circuit current behind the uncontrolled rectifier is smaller than the synchronous machine's short-circuit current. The shaft generator thus acquires a dynamic characteristic, as its voltage drops to a greater extent when the current increases than is the case with the synchronous machine. This dynamic characteristic of the axle generator is e.g. achieved by giving it a relatively large short-circuit reactance. With a view to this, according to the invention, it is further proposed that a synchronous machine without a damper winding is used as the shaft generator. At the same time, this means a further economic advantage because synchronous machines without damper winding are cheaper than those with dampers.

Ved en annen utførelse i henhold til oppfinnelsen blir det foreslått at der mellem skipsnettgeneratoren og skipsnettet er innkoblet en nettdrossel. Synkronmaskinens kompounderings- eller reguleringsinnretning er samtidig dimensjonert slik at spenningsfallet på nettdrosselen blir utlignet eller utregulert på en slik måte at skipsnettspenningen forblir konstant. In another embodiment according to the invention, it is proposed that a grid choke is connected between the ship's grid generator and the ship's grid. The synchronous machine's compounding or regulation device is also dimensioned so that the voltage drop on the mains choke is equalized or regulated in such a way that the ship's mains voltage remains constant.

Ved kortslutning i skipsnettet forhindrer nettdrosselen i In the event of a short circuit in the ship's mains, the mains choke prevents i

at vekselretteren faller ut av takt fordi spenningen ved vekselretterens utgang ikke går tilbake til null. Årsaken er at synkronmaskinens kortslutnings-strom går over drosselen og forårsaker et spenningsfall. Ved hjelp av nettdrosselen blir ennvidere over-bOlger fra vekselretteren holdt borte fra skipsnettet. Foråt der ikke skal opptre lastavhengige spenningsvariasjoner i skipsnettet, blir spenningsfallet på nettdrosselen utregulert med av synkronmaskinens reguleringsinnretning. that the inverter falls out of sync because the voltage at the inverter output does not return to zero. The reason is that the synchronous machine's short-circuit current passes over the choke and causes a voltage drop. With the help of the grid throttle, further over-waves from the inverter are kept away from the ship's grid. Before there are to be no load-dependent voltage variations in the ship's network, the voltage drop on the network throttle is regulated by the synchronous machine's regulation device.

Ifølge oppfinnelsen blir det videre foreslått at nettdrosselen skal være shuntet ved frakoblet akselgenerator. Dermed reduseres forbigående spenningsfall under innkobling av forbrukere. Ifølge et ytterligere forslag i samsvar med oppfinnelsen er det gunstig at synkronmaskinen tjener som en skipsnettgenerator som under drift av akselgeneratoren er frakoblet sin hjelpekraftmaskin. Under drift av akselgeneratoren behøver hjelpekraftmaskinen da ikke å rotere tomt med. According to the invention, it is further proposed that the mains throttle should be shunted when the shaft generator is disconnected. This reduces transient voltage drops during the connection of consumers. According to a further proposal in accordance with the invention, it is advantageous for the synchronous machine to serve as a ship mains generator which, during operation of the shaft generator, is disconnected from its auxiliary power machine. During operation of the shaft generator, the auxiliary power machine does not need to rotate idling.

Som en videre utvikling av oppfinnelsen blir det til dette formål foreslått å forsyne nettdrosselen med et uttak som synkronmaskinen er tilsluttet. Denne forholdsregel er gunstig forsåvidt som drosselen virker som transformator og ved en kortslutning i skipsnettet sOrger for en høyere spenning ved vekselretterens utgang enn hvad som er tilfellet ved en direkte tilslutning av synkronmaskinen til vekselretteren. As a further development of the invention, it is proposed for this purpose to supply the mains throttle with an outlet to which the synchronous machine is connected. This precaution is beneficial as long as the choke acts as a transformer and in the event of a short circuit in the ship's mains ensures a higher voltage at the inverter output than is the case with a direct connection of the synchronous machine to the inverter.

Skal akselgeneratoren arbeide parallelt med ytterligere synkronmaskiner drevet av hjelpekraftmaskiner, så lar dette seg. bare gjøre dersom akselgeneratorens frekvens blir regulert slik at fre-kvensen ved fikende avgitt effekt synker i samme grad som ved kraft-maskinene. En slik regulering faller imidlertid forholdsvis kostbar. Det er derfor hensiktsmessig at frekvensreguleringen i tilfellet av parallelldrift med ytterligere synkronmaskiner drevet av kraft-maskiner skjer via kraftmaskinenes omdreiningstallregulering. Regu-leringsstørrelsen for akselgeneratoren blir da dennes avgitte effekt eller effektavgivelsen fra de paralleltarbeidende synkronmaskiner. If the shaft generator is to work in parallel with additional synchronous machines driven by auxiliary power machines, then this is possible. only do so if the frequency of the shaft generator is regulated so that the frequency with increasing power output drops to the same extent as with the power machines. However, such regulation is relatively expensive. It is therefore appropriate that the frequency regulation in the case of parallel operation with additional synchronous machines driven by power machines takes place via the power machines' speed regulation. The control variable for the shaft generator then becomes its output power or the power output from the parallel-working synchronous machines.

Ved Økende belastning på skipsnettet Øker også leveringen av blindeffekt fra synkronmaskinen eller fra synkronmaskin ene hvis der foreligger flere. I den forbindelse blir det ifølge oppfinnelsen foreslått at synkronmaskinene i det sistnevnte tilfelle blir innkoblet avhengig av skipsnettbelastningen og idriftsettelsen av synkronmaskinene skjer efter asynkron start av disse i umagnetisert tilstand. Magnetiseringen blir først tilkoblet efterat skipsnettgeneratoren er løpt igang asynkront. Derved spares en start av den tilhørende Dieselmotor. På denne måte blir det også mulig å starte synkronmaskinen ved defekt Dieselmotor. In case of increasing load on the ship's network, the supply of reactive power from the synchronous machine or from one synchronous machine if there are several also increases. In that connection, according to the invention, it is proposed that the synchronous machines in the latter case are switched on depending on the ship's mains load and the commissioning of the synchronous machines takes place after their asynchronous start in an unmagnetized state. The magnetization is only connected after the ship's mains generator has been started asynchronously. This saves a start of the associated Diesel engine. In this way, it is also possible to start the synchronous machine in the event of a defective Diesel engine.

I mange tilfeller foreligger det krav at aksel-generatoranlegget skal tas i drift uten at der står til rådighet noe nett som er sterkt nok for starten av synkronmaskinen. Idrift-setteisen kan da i henhold til oppfinnelsen skje på den måte at synkronmaskinen er tilsluttet akselgeneratoren direkte under shunting av likeretter og vekselretter og lOper igang asynkront, at vekselretteren under den asynkrone start ikke får noen tennepulser, og at shuntingen blir opphevet og vekselretteren forsynt med tennepulser efterat synkronmaskinen er 10pt igang og magnetisert. Når vekselretteren ikke får tennepulser, fOrer den ingen strttm. In many cases, there is a requirement that the shaft-generator system must be put into operation without any network being available that is strong enough to start the synchronous machine. According to the invention, the start-up can then take place in such a way that the synchronous machine is connected to the shaft generator directly during shunting of the rectifier and inverter and starts asynchronously, that the inverter does not receive any ignition pulses during the asynchronous start, and that the shunting is canceled and the inverter is supplied with ignition pulses after the synchronous machine is 10pt running and magnetized. When the inverter does not receive ignition pulses, it does not supply current.

Tegningen viser et utfttrelseseksempel på oppfinnelsens gjenstand. Fig. 1 er et prinsippkoblingsskjema for strOm-forsyningsanlegget ifttlge oppfinnelsen. Fig. 2 viser en hensiktsmessig videre utformning for tilslutningen av synkronmaskinen. The drawing shows an illustrative example of the object of the invention. Fig. 1 is a principle connection diagram for the power supply system according to the invention. Fig. 2 shows an appropriate further design for the connection of the synchronous machine.

En akselgenerator 10 (fig. 1) som har en magneti-seringsvikling 11 og en ankervikling 12 og drives av en propeller-aksel 13, mater en ikke styrt likeretter 14. Efter likeretteren 14 A shaft generator 10 (Fig. 1) which has a magnetizing winding 11 and an armature winding 12 and is driven by a propeller shaft 13, feeds an uncontrolled rectifier 14. After the rectifier 14

er der innkoblet en nettfOrt vekselretter 15, som mater et akipsnett l6. Ved utgangen fra vekselretteren 15 ligger ennvidere en synkronmaskin 17 som er anordnet som skipsnettgenerator og kan tilkobles et Dieselaggregat 19 over en utlOsbar kobling 18. a mains power inverter 15 is connected there, which feeds an akips mains l6. At the output from the inverter 15, there is also a synchronous machine 17 which is arranged as a ship's mains generator and can be connected to a diesel generator 19 via a releaseable coupling 18.

En Onske-/målfiverdisammenligner 20 hos en reguleringsinnretning for synkronmaskinen 17 sammenligner spenningen i skips-^ nettet 16 med en på forhånd gitt Onskespenning. Reguleringsawikelsen leveres til en reguleringsforsterker 21t, sem magnetiseringsviklingen 22 hos synkronmaskinen 17 er tilsluttet. Synkronmaskinen 17 holder således skipsnettspenningen konstant. A desired/target value comparator 20 in a control device for the synchronous machine 17 compares the voltage in the ship's mains 16 with a previously given Desired voltage. The regulation deviation is delivered to a regulation amplifier 21t, to which the magnetization winding 22 of the synchronous machine 17 is connected. The synchronous machine 17 thus keeps the ship's mains voltage constant.

En ytterligere reguleringsinnretning for akselgeneratoren 10, omfattende en Onske-/måleverdisammenligner 27 og en reguleringsforsterker 28, tjener til regulering av skipsnettfrekvensen. Ved utgangen fra reguleringsforsterkeren 28 ligger magnetiseringsviklingen 11 hos akselgeneratoren 10. A further regulation device for the shaft generator 10, comprising a Desired/measured value comparator 27 and a regulation amplifier 28, serves to regulate the ship's mains frequency. At the output from the control amplifier 28, the magnetization winding 11 is located at the shaft generator 10.

Mellem synkronmaskinen 17 og skipsnettet 16 er der innkoblet en nettdrossel 2J, Den forhindrer at vekselretteren faller ut av takt, da spenningen i tilfellet av kortslutning ved vekselretterens utgang ikke går tilbake til null. Ved hjelp av nettdrosselen 23 blir ennvidere overbalger fra vekselretteren 15 holdt borte fra skipsnettet 16. Foråt der ikke skal opptre lastavhengige spenningsvariasjoner i skipsnettet; 16, blir spenningsfallet på nettdrosselen 23 utregulert med av reguleringsinnretningen for synkronmaskinen 17• A mains choke 2J is connected between the synchronous machine 17 and the ship's mains 16. It prevents the inverter from falling out of sync, as the voltage in the event of a short circuit at the inverter's output does not return to zero. With the help of the mains throttle 23, further overcurrents from the inverter 15 are kept away from the ship's grid 16. Before there should not be load-dependent voltage variations in the ship's grid; 16, the voltage drop on the mains choke 23 is regulated out by the regulation device for the synchronous machine 17•

Ved frakoblet akselgenerator 10 blir nettdrosselen 23 kortsluttet med en bryter 24. Dermed blir forbigående spenningsfall ved innkobling av forbrukere redusert. When the shaft generator 10 is disconnected, the mains throttle 23 is short-circuited with a switch 24. Thus, transient voltage drops when consumers are switched on are reduced.

På fig. 2 er der vist en nettdrossel 26 med et uttakIn fig. 2 shows a mains choke 26 with an outlet

som synkronmaskinen 17 er tilsluttet. Denne forholdsregel er truffet fordi drosselen 26 virker som transformator og i tilfellet av en kortslutning i skipsnettet 16 sorger for en høyere spenning ved vekselretterens utgang enn hvad som vilde være tilfellet ved direkte tilslutning av synkronmaskinen 17 til vekselretteren 15»Parallelt med synkronmaskinen 17 er der ennvidere koblet en kondensator 25 to which the synchronous machine 17 is connected. This precaution is taken because the throttle 26 acts as a transformer and in the event of a short circuit in the ship's network 16 ensures a higher voltage at the output of the inverter than would be the case if the synchronous machine 17 was directly connected to the inverter 15" In parallel with the synchronous machine 17 there is further connected a capacitor 25

som bevirker at synkronmaskinen 17 alt i alt kan dimensjoneres mindre. Kondensatoren 25 overtar tildels de funksjoner synkronmaskinen 17 which causes the synchronous machine 17 to be dimensioned smaller overall. The capacitor 25 partially takes over the functions of the synchronous machine 17

skal tjene. shall serve.

Claims (8)

1. Strømforsyningsanlegg for skip, bestemt til å frembringe en vekselspenning med konstant frekvens og omfattende en med1. Power supply system for ships, intended to produce an alternating voltage with a constant frequency and comprising a med sterkt variabelt omdreiningstall drevet synkrongenerator som akselgenerator, efter hvilken der er innkobiet en ikke styrt likeretter og en vekselretter, karakterisert ved at der som vekselretter er anordnet en nettført vekselretter (15)» at der er anordnet en synkronmaskin (17) som under drift av akselgeneratoren (10) er fast forbundet med vekselretterens (15) utgang og med skipsnettet (16),' at der er tilordnet akselgeneratoren (10) en reguleringsinnretning (28) som endrer akselgeneratorens (10) magnetiseringsstrom i retning av konstant skipsnettsfrekvens, og'at der er tilordnet synkronmaskinen (17) en reguleringsinnretning (21) som endrer synkronmaskinens (17) magnetiseringsstrøm i retning av konstant skipsnettspenning. highly variable speed driven synchronous generator as a shaft generator, after which an uncontrolled rectifier is purchased and an inverter, characterized in that where a grid-connected inverter (15) is arranged as an inverter" that a synchronous machine (17) is arranged which, during operation of the shaft generator (10), is permanently connected to the output of the inverter (15) and to the ship's mains (16) ), that there is assigned to the shaft generator (10) a regulating device (28) which changes the magnetizing current of the shaft generator (10) in the direction of constant ship mains frequency, and that there is assigned to the synchronous machine (17) a regulating device (21) which changes the synchronous machine's (17) magnetizing current in the direction of constant ship mains voltage. 2. Strømforsyningsanlegg som angitt i krav 1, karakterisert ved at synkronmaskinen (17) og/eller akselgeneratoren (10) er dimensjonert slik med hensyn til sine reaktanser at stot-kortslutningsstrømmen bak den ikke styrte likeretter (14) er mindre enn synkronmaskinens (17) støtkortslutningsstrøm. 2. Power supply system as specified in claim 1, characterized in that the synchronous machine (17) and/or the shaft generator (10) are dimensioned such that with respect to their reactances, the stot short-circuit current behind the uncontrolled rectifier (14) is smaller than that of the synchronous machine (17) impulse short circuit current. 3. Strømforsyningsanlegg som angitt i krav 1, karakterisert ved at der som akselgenerator (10) er anordnet en synkrongenerator uten dempervikling. 3. Power supply system as stated in claim 1, characterized in that a synchronous generator without damper winding is arranged as shaft generator (10). 4. Strømforsyningsanlegg som angitt i krav 1, karakterisert ved at der mellem synkronmaskinen (17) og skipsnettet (16) er innkoblet en nettdrossel (23). 4. Power supply system as specified in claim 1, characterized in that a mains choke (23) is connected between the synchronous machine (17) and the ship's mains (16). 5. Strømforsyningsanlegg som angitt i krav 1, karakterisert ved at der som synkronmaskin tjener en skipsnettgenerator (17) som under drift av akselgeneratoren (10) er frakoblet sin hjelpekraftmaskin (19). 5. Power supply system as specified in claim 1, characterized in that a ship mains generator (17) serves as a synchronous machine which, during operation of the shaft generator (10), is disconnected from its auxiliary power machine (19). 6. Strømforsyningsanlegg som angitt i krav 1 og 4, karakterisert ved at nettdrosselen (26) er forsynt med et uttak som synkronmaskinen (17) er tilsluttet. 6. Power supply system as stated in claims 1 and 4, characterized in that the mains throttle (26) is provided with an outlet to which the synchronous machine (17) is connected. 7. Strømforsyningsanlegg som angitt i krav 1, karakterisert ved at synkronmaskinene, hvis der foreligger flere slike, innkobles avhengig av skipsnettbelastningen og idriftsettelsen av synkronmaskinene skjer efter asynkron start av disse i umagnetisert tilstand. 7. Power supply system as specified in claim 1, characterized in that the synchronous machines, if there are several such, are switched on depending on the ship's mains load and the commissioning of the synchronous machines takes place after asynchronous start of these in an unmagnetized state. 8. Strømforsyningsanlegg som angitt i krav 1, karakterisert ved at synkronmaskinen (17) når den tas i drift, er tilsluttet akselgeneratoren (10) direkte under shunting av likeretter (14) og vekselretter (15) og løper igang asynkront, at vekselretteren (15) under den asynkrone start ikke får noen tennepulser og dermed ikke fører noen strøm, og at shuntingen oppheves og vekselretteren (15) forsynes med tennepulser efterat synkronmaskinen (17) er løpt igang og ef magnetisert.8. Power supply system as specified in claim 1, characterized in that the synchronous machine (17) when it is put into operation, is connected to the shaft generator (10) directly during shunting of the rectifier (14) and inverter (15) and runs asynchronously, that the inverter (15 ) during the asynchronous start does not receive any ignition pulses and thus does not carry any current, and that the shunting is canceled and the inverter (15) is supplied with ignition pulses after the synchronous machine (17) has started and is magnetized.
NO168696A 1966-06-23 1967-06-21 NO117250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO477968A NO122264B (en) 1966-06-23 1968-11-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEL53900A DE1281027B (en) 1966-06-23 1966-06-23 Power supply system for an alternating voltage on-board network on ships with a wave generator
DEL0054463 1966-09-03

Publications (1)

Publication Number Publication Date
NO117250B true NO117250B (en) 1969-07-21

Family

ID=25986075

Family Applications (1)

Application Number Title Priority Date Filing Date
NO168696A NO117250B (en) 1966-06-23 1967-06-21

Country Status (6)

Country Link
DE (2) DE1281027B (en)
DK (3) DK145029C (en)
GB (2) GB1166196A (en)
NL (1) NL160405C (en)
NO (1) NO117250B (en)
SE (1) SE334556B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8004597A (en) * 1980-08-14 1982-03-16 Stichting Energie METHOD AND APPARATUS FOR THE OPTIMAL USE OF VARIABLE NON-MANAGABLE SOURCES OF ENERGY.
BR8200062A (en) * 1981-01-15 1982-10-26 Asea Ltd ENERGY RECOVERY PROCESS FROM RESIDUAL GAS CHAIN OF METALLURGICAL PROCESSING VASE AND INSTALLATION FOR IRON OR STEEL PRODUCTION BY THAT PROCESS
EP0073088A3 (en) * 1981-08-20 1984-04-04 ASEA Limited Obtaining energy from cryogenic fluids
WO1983002099A1 (en) * 1981-12-17 1983-06-23 Peter Jan Fournais Method and generating plant for ships having a shaft generator
GB2186130A (en) * 1986-02-03 1987-08-05 English Electric Co Ltd Standby power supply for motor
GB0713527D0 (en) 2007-07-12 2007-08-22 Rolls Royce Plc A Synchronous electrical machine
DE102008031698A1 (en) 2007-11-02 2009-06-04 Siemens Aktiengesellschaft Floating harbor power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE762134C (en) * 1941-09-18 1954-01-25 Arno Fischer Wind and hydropower generation plant
DE1122147B (en) * 1959-09-14 1962-01-18 Asea Ab Arrangement in an asynchronous generator driven by a shaft with variable speed
DE1136235B (en) * 1960-08-04 1962-09-06 Bbc Brown Boveri & Cie Power generation plant for diesel motor ships

Also Published As

Publication number Publication date
SE334556B (en) 1971-04-26
DE1281027B (en) 1968-10-24
GB1166196A (en) 1969-10-08
DK145029B (en) 1982-08-02
GB1166197A (en) 1969-10-08
NL160405C (en) 1979-10-15
NL160405B (en) 1979-05-15
DK122200B (en) 1972-01-31
DK145029C (en) 1983-01-03
DE1488979A1 (en) 1969-05-14
NL6708733A (en) 1967-12-27
DK145029A (en)

Similar Documents

Publication Publication Date Title
EP1222390B1 (en) Wind power plant
US4427897A (en) Fixed pitch wind turbine system utilizing aerodynamic stall
US3593078A (en) Starting and operating control for an ac motor powered by a dc power supply
NO136510B (en)
US20190288624A1 (en) Fault ride-through system
NO117250B (en)
US3526816A (en) System for recovering slippage power in slip ring induction motors
GB2206751A (en) Starting a variable speed constant frequency generating system
US4321478A (en) Auxiliary power supply with kinetic energy storage
US2892098A (en) Aircraft electrical system
Shah et al. Efficiency evaluation of three phase and single phase C2C self-excited induction generator for micro hydro power application
US3546550A (en) Control circuit for braking speed control of induction motor
US2431252A (en) Alternating current drive protective system
NO165049B (en) PROCEDURE FOR CONTINUOUS SUPPLY OF A SHIP NET FROM A FREQUENTLY VARIABLE PROGRESS NETWORK ON SHIPS.
US3818298A (en) Series a.c. commutator motor with stabilized speed
US3031607A (en) Collector-free compounded synchronous generator
US2501543A (en) Frequency regulating system
US2644916A (en) Electronic motor and commutating means therefor
Abraham et al. Ac motor supply with thyristor converters
US2887641A (en) Alternating-current systems with intermittently operating squirrel-cage motors energized from synchronous alternators
US3154731A (en) Speed control system for dynamo electric machine
GB2095487A (en) Induction Generators
US1331940A (en) Electric ship propulsion
Abramov et al. Motor soft starters in electric drives used in mining machinery
US3411068A (en) Brushless alternators of the selfregulating and self-exciting type