DK145029B - POWER SUPPLY UNIT FOR SHIP GENERATOR - Google Patents
POWER SUPPLY UNIT FOR SHIP GENERATOR Download PDFInfo
- Publication number
- DK145029B DK145029B DK327567AA DK327567A DK145029B DK 145029 B DK145029 B DK 145029B DK 327567A A DK327567A A DK 327567AA DK 327567 A DK327567 A DK 327567A DK 145029 B DK145029 B DK 145029B
- Authority
- DK
- Denmark
- Prior art keywords
- synchronous machine
- voltage
- shaft generator
- power supply
- generator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/04—Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
- H02J3/08—Synchronising of networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/42—Arrangements for controlling electric generators for the purpose of obtaining a desired output to obtain desired frequency without varying speed of the generator
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
Description
145029 1 Opfindelsen angår et strømforsyningsanlæg til et vekselspændingsnet med konstant frekvens på skibe med en med stærkt varierende omdrejningstal drevet synkrongenerator som akselgenerator, efter hvilken der 5 er koblet en ikke-styret ensretter og en netstyret vekselretter, og som er forsynet med mindst en synkronmaskine, der tjener som blindeffektmaskine, og som har en reguleringsindretning, der indstiller synkronmaskinens magnetiseringsstrøm til en opnåelse af 10 en konstant netspænding.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a constant-frequency AC power supply system on ships with a widely varying rpm synchronous generator as a shaft generator, after which an uncontrolled rectifier and a grid-controlled inverter are provided and provided with at least one synchronous mask. which serves as a blind power machine and which has a control device which sets the synchronizing current of the synchronous machine to obtain a constant mains voltage.
Der kendes strømforsyningsanlæg med akselgeneratorer, hvor den som trefaset vekselstrømsgenerator udformede akselgenerator roterer med varierende omdrejnings-15 tal og magnetiseres af et drejefelt, hvis størrelse og frekvens indstilles på en sådan måde, at der i det af akselgeneratoren forsynede trefasede vekselstrømsnet dannes en konstant spænding med konstant frekvens.There are known power supply systems with shaft generators, in which the shaft generator designed as a three-phase alternator rotates with varying rpm and is magnetized by a turning field, the size and frequency of which is set in such a way that a three-phase alternating supply provided by the shaft generator is constant. constant frequency.
Sådanne akselgeneratoranlæg kræver større udgifter, i-20 sær når de er konstrueret til små nominelle omdrejningstal. Akselgeneratoren har da mange poler og en lille luftspalte. Det er endvidere en ulempe,.at der til frembringelse af det i frekvens og størrelse varierende drejefelt til magnetisering af akselgenerato-25 ren kræves et kostbart vekselretteranlæg.Such shaft generator systems require greater expense, especially when designed for small rated rpm. The shaft generator then has many poles and a small air gap. It is also a disadvantage that a costly inverter is required in order to produce the variable frequency range and magnitude for magnetization of the shaft generator.
Endvidere kendes en akselgenerator, der er udformet som en jævnstrømsmaskine. Ved hjælp af en jævnstrømsmotor, der driver en trefaset vekselstrømgenerator, 30 forsynes skibsnettet med trefaset vekselstrøm. Ved styring af jævnstrømsmaskinens magnetisering holdes frekvensen konstant, og ved styring af den trefasede vekselstrømsgenerators magnetisering holdes spændingen i skibsnettet konstant. Også dette akselgenerator-35 anlæg med kommutatormaskiner er forholdsvis kostbart.Furthermore, a shaft generator known as a DC machine is known. By means of a direct current motor driving a three-phase alternator, the ship's network is supplied with three-phase alternating current. When controlling the magnetization of the DC machine, the frequency is kept constant, and when controlling the magnetization of the three-phase alternator, the voltage in the ship network is kept constant. Also this shaft generator-35 system with commutator machines is relatively expensive.
145029 2 1 Desuden kræver dette anlæg megen plads og konstant pasning.145029 2 1 In addition, this system requires a lot of space and constant care.
Det er også kendt at anvende, som akselgenerator, en a-5 synkronmaskine, der drives oversynkront. Den fornødne konstante frekvens tilvejebringes ved hjælp af en regulerbar belastningskreds bestående af en ensretter Og en jævnstrømsmotor. Asynkronmaskinens sekundærvikling føder ensretteren, som jævnstrømsmotoren er koblet 10 . efter. Den fra sekundærviklingen optagne effekt bliver fortrinsvis ført tilbage til nettet ved hjælp af en til jævnstrømsmotoren koblet synkronmaskine, hvorved synkronmaskinen samtidig leverer den til asynkronmaskinen krævede blindeffekt. På dette anlæg gælder 15 ligeledes de for de allerede nævnte indretninger anførte ulemper. Som ulempe skal især fremhæves, at dette anlæg ikke er selvstartende. Skibsnettet skal allerede være strømførende, når den som akselgenerator tjenende asynkronmaskine indkobles.It is also known to use, as a shaft generator, an a-5 synchronous machine that operates oversynchronously. The required constant frequency is provided by means of an adjustable load circuit consisting of a rectifier and a DC motor. The secondary winding of the asynchronous machine feeds the rectifier to which the DC motor is coupled 10. after. The power obtained from the secondary winding is preferably returned to the grid by means of a synchronous machine coupled to the DC motor, whereby the synchronous machine simultaneously supplies the blind power required for the asynchronous machine. At this plant, 15 also apply the disadvantages mentioned for the devices already mentioned. As a disadvantage, it should be pointed out in particular that this plant is not self-starting. The shipping network must already be live when the asynchronous machine serving as a shaft generator is switched on.
2020
Der kendes endvidere et akselgeneratoranlæg, hvor akselgeneratoren frembringer den trefasede vekselstrøm, der ensrettes og ved hjælp af en selvstyrende veksel-retter igen omdannes til trefaset vekselspænding. Selv-25 styrende vekselrettere er imidlertid kostbare og komplicerede, da der kræves midler til frembringelse af blindstrømmen og kommuteringsstrømmen. For at opnå en nogenlunde sinusformet udgangsspænding kræves der endvidere filterkredse. Endelig er det vanskeligt at 30 træffe beskyttelsesforanstaltninger mod kortslutning, da den selvstyrende vekselretter ikke kan afgive en kortslutningsstrøm, der kan smelte sikringerne.Furthermore, a shaft generator system is known in which the shaft generator generates the three-phase alternating current which is rectified and is again converted to three-phase alternating voltage by means of an autonomous inverter. However, self-controlling inverters are costly and complicated, since means are needed to generate the blind and commutation currents. Furthermore, to obtain a fairly sinusoidal output voltage, filter circuits are required. Finally, it is difficult to take protective measures against short circuits, as the autonomous inverter cannot supply a short-circuit current that can fuse the fuses.
Formålet med opfindelsen er derfor at tilvejebringe 35 et strømforsyningsanlæg til skibe til frembringelse af 3 U5029 1 en vekselspænding med konstant frekvens, som med enkle midler og små omkostninger kan fremstilles økonomisk, og som i kortslutningstilfælde heller ikke uden videre falder ud, og som kan tages i drift, udep at 5 nettet i forvejen er strømførende. Dette formål opfyldes ved, at akselgeneratoren har en reguleringsindretning, som indstiller akselgeneratorens magnetiserings-strøm til opnåelse af en konstant frekvens, og at synkronmaskinen i akselgeneratordrift er fast forbun-10 det med vekselretterudgangen og skibenettet.The object of the invention is therefore to provide a power supply system for ships to produce a constant frequency AC voltage which can be economically produced with simple means and at low cost, and which, in the short term, also does not fail and can be removed. In operation, the grid is already live. This object is fulfilled by the shaft generator having a control device which sets the shaft generator's magnetization current to obtain a constant frequency and that the synchronous machine in shaft generator operation is permanently connected to the inverter output and the ship network.
Hovedfordelen ved forsyningsanlægget ifølge opfindelsen består i, at omkostningerne i forhold til kendte anlæg er meget ringe, og at der sikres en god reguler-15 barhed af frekvens og spænding i det forsynede skibsnet ved en vilkårlig frekvens for akselgeneratoren.The main advantage of the supply system according to the invention consists in the fact that the costs compared to known plants are very low and that a good control of frequency and voltage is ensured in the supplied ship network at any frequency of the shaft generator.
Anlægget kan ifølge krav 2 være ejendommeligt ved, at der mellem synkronmaskinen og skibsnettet er indkoblet 20 en netdrosselspole. Synkronmaskinens kompounderings- eller reguleringsorgan er herved dimensioneret på en sådan måde, at spændingsfaldet ved netdrosselspolen bliver udlignet, således at skibsnetspændingen forbliver konstant.According to claim 2, the system can be characterized in that a net choke coil is connected between the synchronous machine and the ship network. The compounding or regulating means of the synchronous machine are hereby dimensioned in such a way that the voltage drop at the mains coil is equalized, so that the ship network voltage remains constant.
2525
Anlægget kan ifølge krav 3 være ejendommeligt ved, at netdrosselspolen har et udtag, som synkronmaskinen er sluttet til. Denne foranstaltning er fordelagtig, idet drosselspolen virker som transformator og ved en kort-30 slutning i skibsnettet sørger for en højere spænding ved udgangen af vekselretteren, end det er tilfældet ved en direkte tilslutning af synkronmaskinen til.vekselretteren.According to claim 3, the system can be characterized in that the mains coil has an outlet to which the synchronous machine is connected. This measure is advantageous in that the choke acts as a transformer and at a short circuit in the ship network provides a higher voltage at the output of the inverter than is the case with a direct connection of the synchronous machine to the inverter.
35 Anlægget kan ifølge krav 4 være ejendommeligt ved, at v:-v·;·· ' 145029 4 1 en skibsnetgenerator bruges som synkronmaskine, hvil- ken skibsgenerator ved akselgeneratorens drift er koblet fra sin hj.ælpekraf tmaskine. Herved opnås, at hjæl-pemaskinen ikke behøver at rotere med i tomgang, når 5 aksel-generatoren er i drift.The system according to claim 4 can be characterized in that v: -v ·; ·· '145029 4 1 a ship network generator is used as a synchronous machine, which ship generator in the shaft generator operation is disconnected from its auxiliary power machine. Hereby it is obtained that the auxiliary machine does not have to rotate at idle when the shaft generator is in operation.
Endelig-kan.anlægget ifølge krav 5 være ejendommeligt ved, at synkronmaskinen ved igangsætning uden hjælp af primærmotor er koblet direkte til akselgenerato-10 . ren ved forbikobling af ensretteren og vekselretteren, hvorved, vekselretteren ikke modtager nogen tæn-dingsi-mpuls er. ..Herved opnås, at akselgeneratoranlæg-get kan: sættes i drift, uden at der er et tilstrækkeligt stærkt net til rådighed til igangsætning af syn-. 15 kronmaskinen, Når vekselretteren ikke modtager nogen tændimpulser, fører den ikke nogen strøm.Finally, the system according to claim 5 can be characterized in that the synchronous machine is switched directly to shaft generator-10 when started without the aid of a primary motor. clean by bypassing the rectifier and inverter, whereby the inverter receives no ignition pulse. .. This achieves that the shaft generator system can: be put into operation without a sufficiently strong network available for starting the vision. 15 The crown machine, When the inverter receives no ignition pulses, it does not conduct any current.
Opfindelsen forklares nærmere under henvisning til tegningen, hvor 20.The invention is further explained with reference to the drawing, in which:
fig. 1 viser et principdiagram for et forsyningsanlæg ifølge opfindelsen, fig. 2 viser en fordelagtig videreudvikling til 25 tilslutning af synkronmaskinen, og fig. 3a, 3b, 3c viser indstilling af tændvinklen for de styrbare ventiler i vekselretteren.FIG. 1 shows a principle diagram of a supply system according to the invention; FIG. 2 shows an advantageous further development for connecting the synchronous machine, and fig. 3a, 3b, 3c show the setting of the ignition angle of the controllable valves in the inverter.
30 En akselgenerator 10 (fig. 1) med en magnetiserings-vikling 11 og en ankervikling 12, der drives af en propelaksel 13, føder en ikke-styret ensretter 14.A shaft generator 10 (Fig. 1) with a magnet winding 11 and an anchor winding 12 driven by a propeller shaft 13 feeds an uncontrolled rectifier 14.
Efter ensretteren l4 er der indkoblet en netstyret vekselretter 15, der føder et skibsnet 16. En synkron-35 maskine 17 er endvidere tilsluttet udgangen af vek- 145029 5 1 selretteren 15 som skibsgenerator, der ved hjælp af en omskiftelig kobling 18 er tilkoblet et dieselaggre- gat 19.Further to rectifier 14, there is connected a grid controlled inverter 15 which feeds a ship network 16. A synchronous machine 17 is further connected to the output of the inverter 15 as a ship generator which is connected to a diesel generator by means of a switchable coupling 18 - hole 19.
5 Synkronmaskinen 17, der ved akselgeneratorens 10 drift er fast forbundet med vekselretterudgangen og skibsnettet 16, opfylder flere funktioner. Den dækker på den ene side helt eller delvist skibsnettets 16 blindef-fektbehov og på den anden side behovet for kommute-10 ringsstrøm til vekselretteren 15 og frembringer således en kommuteringshjælp til vekselretteren. Endvidere udgør synkronmaskinen 17 en filterkreds for vekselrette-rens 15 overtoner.5 The synchronous machine 17, which in the operation of the shaft generator 10 is firmly connected to the inverter output and the ship network 16, fulfills several functions. It, on the one hand, fully or partially covers the blind power needs of the shipping network 16 and, on the other hand, the need for commutation current to the inverter 15 and thus provides a commutation aid to the inverter. Furthermore, the synchronous machine 17 constitutes a filter circuit for the overtones of the inverter 15.
15 Til opnåelse af en konstant spænding på udgangen af synkronmaskinen kan der også med fordel anvendes en kompound-indretning.In order to obtain a constant voltage at the output of the synchronous machine, a compound device can also advantageously be used.
Akselgeneratorens 10 afgivelse af blindeffekt er pro-20 portional med differensspændingen mellem synkronmaskinens 17 spænding og akselgeneratorens 10 spænding. Behovet for vekselretterens 15 blindatrøm og kommute-ringsstrøm er derved proportionalt med akselgeneratorens 10 afgivelse af blindeffekt. Hvis effektafgi-25 velsen nu stiger dynamisk på grund af en ydre forstyrrelse, falder spændingen på vekselretterens 15 udgang, mens synkronmaskinen 17 skal afgive en større blind- . effekt. Bliver nu spændingen ved ensretterindgangen opretholdt dynamisk, vil differensspændingen blive 30 forstørret og effektafgivelsen vil dermed yderligere forøges. Anlægget vil altså være ustabilt; strømmen stiger over alle grænser.The shutter output of the shaft generator 10 is proportional to the differential voltage between the voltage of the synchronous machine 17 and the voltage of the shaft generator 10. The need for the inverter current blind and commutation current is thereby proportional to the output of the blind generator 10. If the power output now rises dynamically due to an external disturbance, the voltage drops on the inverter 15 output, while the synchronous machine 17 must output a larger blind. effect. If the voltage at the rectifier input is maintained dynamically, the differential voltage will be increased and the power output will thus be further increased. The plant will thus be unstable; power increases across all boundaries.
Akselgeneratoren 10 har et dynamisk forhold, hvorved 35 spændingen ved en strømstigning i større målestok fal- - -- ; 145029 6 1 der, ligesom det er tilfældet ved synkronmaskinen 17.The shaft generator 10 has a dynamic relationship whereby the voltage at a larger scale current increase - -; 14, as is the case with the synchronous machine 17.
Dette forhold ved akselgeneratoren 10 bliver for eksempel opnået ved, at der i denne er en forholdsvis stor kortslutningsreaktans. Herved kan en som akselge-5 nerator 10 synkronmaskine indrettes uden dæmpningsvikling med den yderligere fordel, at synkronmaskinen u-den dæmpningsvikling er mindre kostbar end en med dæmpningsvikling 10 Et sammeniigningsorgan 20 for en reguleringsindretning for synkronmaskinen 17 sammenligner skibsnettets 16 spænding med en ønsket spænding. Reguleringsafvigelsen sendes til en regulatorforstærker 21, hvortil synkronmaskinens 17 magnetiseringsvikling 22 er kob-15 let. Synkronmaskinen holder således også skibsnetspændingen konstant, når denne uden træk løber med i tomgang som faseforskyder.This ratio of the shaft generator 10 is obtained, for example, in that it has a relatively large short-circuit reactance. Hereby, a synchronous machine as a shaft generator 10 can be arranged without damping winding with the added advantage that the synchronous machine without damping winding is less expensive than one with damping winding 10. A comparator 20 for a control device for the synchronous machine 17 compares the voltage of the ship network 16 with a desired voltage. The control deviation is sent to a regulator amplifier 21 to which the magnetizing winding 22 of the synchronous machine 17 is coupled. Thus, the synchronous machine also keeps the ship's grid voltage constant when it runs without idle as a phase shifter.
Til regulering af skibsnetsfrekvensen tjener en yder-20 ligere reguleringsindretning 28 for akselgeneratoren 10, Her sammenlignes skibsnetspændingens frekvens med en fo'rudgivet ønsket værdi ved sammenlignings stedet 27 og forstærkes-i regulatorforstærkeren 28. Det er i denne sammenhæng kendt, at en symmetrisk effektiv 25 ydelsesfordeling af flere parallelt på et net arbejdende generatorer kan opnås ved, at alle drivmaskiner får det samme omdrejningstal og den samme tomgangskarakteristik. Således er frekvensregulatoren 27, 28 ' udstyret- med den samme faldende karakteristik som 30 skibsnetsgeneratorens omdrejningstalregulator. Derved bliver frekvensen i praksis holdt belastningsuafhængig og konstant ligesom skibsnetsgeneratorens frekvens. Med denne forudsætning kan akselgeneratoren arbejde sammen med et vilkårlig stort net, der bliver 35 fødet af flere skibsnetsgeneratorer, ligesom den også 145029 7 1 kan løbe 1 alenedrift. Når nettet i det foreliggende tilfælde består af .akselgeneratoren 10 og den roterende synkronmaskine 17, bestemmes frekvensfastholdelsen udelukkende ved hjælp af akselgeneratoren.In order to control the ship network frequency, an additional control device 28 for the shaft generator 10 is used. Here, the frequency of the ship network voltage is compared with a predetermined desired value at the comparison site 27 and amplified in the regulator amplifier 28. It is known in this context that a symmetrically efficient 25 distribution of several parallel generators on a grid can be achieved by giving all drives the same rpm and the same idle characteristic. Thus, the frequency regulator 27, 28 'is equipped with the same decreasing characteristic as the ship network generator speed regulator. As a result, in practice, the frequency is kept load independent and constant, just like the frequency of the ship network generator. With this prerequisite, the shaft generator can work with any large grid that is fed by several ship network generators, and it can also run 1 single operation. In the present case, when the grid consists of the shaft generator 10 and the rotating synchronous machine 17, the frequency retention is determined solely by means of the shaft generator.
55
En reguleringsafvigelse i sammenligningsstedet 2J bliver som magnetiseringsstrøm ført til akselgeneratorens 10 magnetiseringsvikling 11. Ved en for lav frekvens i skibsnetspændingen bliver magnetiseringsstrømmen ø-10 . get via regulatoren 27, 28, således at akselgeneratoren 10 yder en højere spænding på ensretteren 14. I jævnstrømsmellemkredsen øges spænding og strøm. Eftersom vekselretteren 15 kun kan afgive effekt til trefasenettet, bliver der derefter tilført nettet en 15 øget effekt. Denne fremskynder den ved udgangen af vekselretteren 15 liggende synkronmaskine 17 og i givet fald andre på nettet løbende trefasemaskiner så meget, at frekvensafvigelsen udlignes. Herved leverer maskinen 17 en blindstrøm til nettet og vekselrette-20 ren 15. Netspændingen holdes konstant af maskinens 17 spændingsregulering 20, 21.A control deviation in the comparison site 2J is fed as a magnetizing current to the magnetization winding of the shaft generator 10. At too low a frequency in the ship network voltage, the magnetization current becomes γ-10. through the regulator 27, 28, so that the shaft generator 10 provides a higher voltage on the rectifier 14. In the DC intermediate circuit voltage and current are increased. Since the inverter 15 can only supply power to the three-phase network, then the network is supplied with an increased power 15. This speeds up the synchronous machine 17 lying at the output of the inverter 15 and, where appropriate, other three-phase machines running on the grid so that the frequency deviation is offset. In this way, the machine 17 supplies a blind current to the mains and the inverter 20. The mains voltage is kept constant by the voltage regulation 20, 21 of the machine 17.
Sædvanligvis vil ved en vekselretter tændvinklen blive forstørret ved optrædende spændingssænkninger ved 25 vekselretterudgangen, for at strømmen ikke skal stige.Usually, in the case of an inverter, the ignition angle will be enlarged by the occurrence of voltage drops at the inverter output so that the current does not increase.
Dette er f.eks. tilfældet ved jævnspændings-højspændingsoverførsel. Ved spændingssænkninger i sekundærnettet forøges vekselretterens tændvinkel. I strømforsyningsanlægget ifølge opfindelsen må der imidler-30 tid regnes med så store spændingssænkninger, f.eks. ved kortslutning, at tændvinklen ikke kan forøges i en sådan grad, at for store strømme forhindres. Desuden er da også faren for kipning af vekselretteren særlig stor, idet der forefindes både overstrømme og 35 store tændvinkler. Ifølge opfindelsen kan vekselret- 145029 8 1 teren være opbygget af enkelte styrbare elektriske ventiler, og tændvinklen for den enkelte, styrbare, elektriske ventil på en sådan måde afhænge af den spænding, der driver dens kommuteringsstrøm, at tændingen 5 sker, når denne spænding bliver mindre end en af en valgt referencespænding dannet grænseværdi. Herved opnås der en forbedring af reguleringsforholdet ved et strømforsyningsanlæg ifølge opfindelsen med hensyn til reguleringshurtigheden og stabiliteten, især ved 10 . ikke normale driftstilstande, f.eks, ved igangsætning af en lokal strømforsyningsgenerator, ved tilkobling af yderligere lokale strømforsyningsgeneratorer og ved forstyrrelser i det lokale net. Styrbare, elektriske ventiler kan også ifølge opfindelsen an-15 bringes i grupper af parallelt koblede elektriske ventiler til beherskelse af store strømme.This is e.g. the case of DC voltage high voltage transmission. In case of voltage reductions in the secondary grid the inverter's ignition angle is increased. In the power supply system according to the invention, however, such large voltage reductions, e.g. by short-circuiting that the ignition angle cannot be increased to such an extent that excessive currents are prevented. Furthermore, the danger of tilting the inverter is also particularly great, with both overcurrents and 35 large ignition angles. According to the invention, the inverter can be made up of single controllable electric valves, and the angle of ignition of the individual controllable electric valve in such a way depends on the voltage driving its commutation current that ignition 5 occurs when this voltage becomes less than one limit value formed by a selected reference voltage. Hereby, an improvement in the control ratio of a power supply system according to the invention is achieved with respect to the regulation speed and stability, especially at 10. not normal operating conditions, for example, when starting a local power supply generator, by connecting additional local power supply generators and by disruptions in the local grid. Controllable electric valves can also be arranged according to the invention in groups of parallel coupled electric valves to control large currents.
Tændvinklen bør ved en vekselretter ikke nedsættes til under 90°, da den ellers går over i ensretterdrift og 20 da er kortsluttet i det lokale strømforsyningsanlæg.In the case of an inverter, the ignition angle should not be reduced to below 90 °, as it otherwise switches to rectifier operation and 20 is then shorted in the local power supply system.
Pette ville i et strømforsyningsanlæg ifølge opfindelsen føre til, at det lokale net og den parallelt koblede lokale strømforsyningsgenerator blev kortsluttet. Strømforsyningsanlægget ifølge opfindelsen til forøgel-25 se af sikkerheden mod falsk kommutering af vekselrette-ren er indrettet på en sådan måde, at tændvinklen for hver enkelt styrbar, elektrisk ventil indskrænkes til en værdi på over 90°.In a power supply system according to the invention, Pette would short-circuit the local grid and the parallel power supply generator. The power supply system according to the invention for increasing the safety against false commutation of the inverter is arranged in such a way that the ignition angle of each controllable electric valve is reduced to a value of more than 90 °.
30 Midler ifølge opfindelsen til bestemmelse af tændvinklen og disses virkning er vist i fig. 3a, 3b og 3c.30 Means according to the invention for determining the ignition angle and their effect are shown in FIG. 3a, 3b and 3c.
Fig. 3a viser en sædvanlig, af enkelte styrbare, elektriske ventiler u-^, u2, v^ v2j w1 og w2 opbygget vekselretter, der fra den ikke styrede ensretter tilføres 35 en jævnstrøm med spænding U og til det lokale net af- 145029 9 1 giver vekselstrøm med fasespændinger u, v og w. Forløbet af spændingerne u, v og w, der danner et dreje-strømsystem, er vist i fig. 3 som funktion af tiden t eller vinklen ut. I det viste tilfælde tændes ved 5 normal drift først de elektriske ventiler v-^ og u2· I den sædvanlige cykliske rækkefølge af de elektriske ventiler må derefter kommuteres til Wp derpå u2 til v2 og sluttelig w^ til u^. Tændvinklen α^-j. skal for den elektriske ventil u^'s vedkommende regnes fra 10 den vinkel ω t, hvor spændingen u bliver positiv og større end de to spændinger v og w. Fra denne vinkel at regne er det nemlig muligt at kommutere til u .FIG. 3a shows a conventional inverter constructed of single controllable electrical valves u- ^, u2, v ^ v2j w1 and w2 supplied from the uncontrolled rectifier to a direct current of voltage U and to the local grid. alternating current with phase voltages u, v and w. The sequence of voltages u, v and w forming a rotary current system is shown in FIG. 3 as a function of time t or angle out. In the case shown, at normal operation, the electric valves v- ^ and u2 are first switched on. In the usual cyclic order of the electric valves, then commute to Wp then u2 to v2 and finally w ^ to u ^. The angle of ignition α ^ -j. for the electric valve u ^ must be calculated from 10 the angle ω t, where the voltage u becomes positive and greater than the two voltages v and w. From this angle, it is possible to commute to u.
Den spænding, der kan drive kommuteringsstrømmen ved kommuteringen fra w1 til u^, er differensspændingen 15 u-w mellem spændingerne u og w.The voltage that can drive the commutation current at the commutation from w1 to u ^ is the differential voltage 15 u-w between the voltages u and w.
Forløbet af differensspændingen u-w i afhængighed af tændvinklen er vist i fig. 3c, hvor spændingsmå lestokken afviger fra den i fig. 3b benyttede. Endvi-20 dere er der vist forløbet af en her savtakformet referencespænding u , der ifølge opfindelsen er en periodisk funktion af tiden med samme frekvens som den spænding u-w, der driver kommuteringsstrømmen, og som ikke har nogen positiv værdi for tændvinkler u.^ mellem 0 25 og 90°. Skæringspunktet mellem kurven for spændingsdifferencen u-w og kurven for referencespændingen ur som grænseværdi bestemmer tændingsvinklen a^. Der kendes koblinger, der ved værdier under grænseværdien afgiver en spændingsimpuls til tænding af en elektrisk 30 ventil. Synker differensspændingen, f.eks. ved overbelastning af det lokale net, og har f.eks. det i fig.The progression of the differential voltage u-w depending on the ignition angle is shown in fig. 3c, where the voltage gauge differs from that of FIG. 3b. Further, there is shown the course of a sawtooth shaped reference voltage u, which according to the invention is a periodic function of time with the same frequency as the voltage u which drives the commutation current, and which has no positive value for ignition angles u. 25 and 90 °. The intersection of the curve of the voltage difference u-w and the curve of the reference voltage clock as a limit value determines the angle of ignition a ^. Couplings are known which, at values below the limit value, produce a voltage pulse for igniting an electric valve. Decreases the differential voltage, e.g. by overloading the local network, and has e.g. FIG.
3c med stiplede linier viste forløb, så vil den elektriske ventil u^ tændes allerede ved den mindre tænd-vinkel a2. Derved forhindre på ønsket og enkel måde 35 en formindskelse af det til kommutering nødvendige 145029 10 1 spændings-tidsareal.3c with dashed lines, the electric valve will be switched on already at the smaller turning angle a2. Thereby, in the desired and simple manner 35, a reduction of the voltage-time area needed for commutation is prevented.
Referencespændingen i det i fig. 3c viste eksempel er valgt savtakformet, fordi et sådant spændingsforløb 5 på kendt måde kan opnås med enkle midler. Det kan i- midlertid til opnåelse af en endnu stærkere formindskelse af tændvinklen i tilfælde af forstyrrelser være fordelagtigt, at referencespændingen har et passende andet, f.eks. sinus- eller rektangelformet forløb.The reference voltage in the FIG. 3c is selected sawtooth shaped because such a voltage loss 5 can be obtained in known manner with simple means. However, in order to achieve an even stronger reduction of the ignition angle in the event of a disturbance, it may be advantageous that the reference voltage has a suitable other, e.g. sinusoidal or rectangular course.
1010
Mellem synkronmaskinen 17 og skibsnettet 16 er der koblet en netdrosselspole 23. Den forhindrer en omkip-ning af vekselretteren, eftersom spændingen ved kortslutning af vekselretterudgangen ikke går tilbage til 15 0. Irsagen er, at synkronmaskinens kortslutningsstrøm går gennem drosselspolen og bevirker et spændingsfald.Between the synchronous machine 17 and the ship network 16, a mains coil 23 is coupled. It prevents the inverter from being switched, since the voltage when shorting the inverter output does not return to 15 0. The reason is that the short-circuit current of the synchronous machine passes through the coil and causes a voltage drop.
Endvidere udelukkes vekselretterens 15 overtoner ved hjælp af netdrosselspolen 23 fra skibsnettet 16. Ved at der ikke optræder belastningsafhængige spændings- 20 svingninger i skibsnettet 16, bliver spændingsfaldet ved netdrosselspolen 23 udreguleret af synkronmaskinens 17 reguleringsindretning.Furthermore, the overtones of the inverter 15 are eliminated by means of the mains coil 23 from the ship network 16. In the absence of load-dependent voltage fluctuations in the ship network 16, the voltage drop at the mains coil 23 is offset by the control device of the synchronous machine 17.
. Ved udkoblet akselgenerator 10 bliver netdrosselspo-25 len 23 kortsluttet ved hjælp af en kontakt 24. Derved formindskes forbigående spændingsfald ved indkobling af forbrugerne. Ved indkobling af akselgeneratoren 10 bliver synkronmaskinen 17 koblet fra dennes hjælpe-kraftmaskine 19. Dermed behøver denne ikke at løbe med 30 i tomgang.. When the shaft generator 10 is switched off, the mains coil 25 is short-circuited by means of a switch 24. This reduces the temporary drop in voltage when the consumers are switched on. When the shaft generator 10 is switched on, the synchronous machine 17 is disconnected from its auxiliary power machine 19. Thus, it does not have to run at idle 30.
I fig. 2 er der vist en netdrosselspole 26 med et udtag, hvortil synkronmaskinen 17 er tilsluttet. Denne foranstaltning skyldes, at drosselspolen 26 virker som 35 transformator og ved en kortslutning i skibsnettet 16 145029 11 1 sørger for en højere spænding på vekselretterens udgang end tilfældet ville være ved en direkte tilkobling af synkronmaskinen 17 til vekselretteren 15. Synkronmaskinen 17 er endvidere koblet parallelt med en 5 kondensator 25, der bevirker, at synkronmaskinen 17 ialt kan fremstilles mindre. Kondensatoren 25 overtager delvis synkronmaskinens 17 funktioner.In FIG. 2, there is shown a mains coil 26 with an outlet to which the synchronous machine 17 is connected. This measure is due to the fact that the throttle coil 26 acts as a transformer and, by a short circuit in the ship network 16, provides a higher voltage at the output of the inverter than would be the case with a direct connection of the synchronous machine 17 to the inverter 15. The synchronous machine 17 is also connected in parallel. with a capacitor 25 which causes the synchronous machine 17 to be produced in total less. The capacitor 25 partially takes over the functions of the synchronous machine 17.
I mange tilfælde krævee det, at akselgeneratoranlægget 10 skal tages i drift, uden at der står et tilstrækkeligt stærkt net til rådighed til tilslutning af synkronmaskinen. Igangsætningen kan da ske på den måde, at synkronmaskinen 17 direkte tilsluttes til akselgene- f ratoren 10 ved en shuntning af ensretteren 14 og vek-15 selretteren 15 og starter asynkront. Under den asynkrone opstart får vekselretteren 15 ingen tændimpul-ser. Efter at synkronmaskinen har opnået høje omdrejninger og magnetisering,bliver shuntrtingen brudt og vekselretteren 15 forsynet med tændimpulser. Når vek-20 selretteren 15 ikke får tændimpulser, fører den ingen strøm.In many cases, it requires the shaft generator system 10 to be operated without a sufficiently strong network available to connect the synchronous machine. The startup can then be effected in that the synchronous machine 17 is directly connected to the shaft generator 10 by a shunt of the rectifier 14 and the inverter 15 and starts asynchronously. During the asynchronous startup, the inverter 15 receives no ignition pulses. After the synchronous machine has achieved high revolutions and magnetization, the shunt ring is broken and the inverter 15 is supplied with ignition pulses. When the inverter 15 does not receive ignition pulses, it does not conduct current.
Hvis akselgeneratoren drives parallelt med den stadig af hjælpekraftmaskinen drivende synkronmaskine, vil 25 dette kun være muligt, når akselgeneratorens frekvens er reguleret således, at frekvensen med stigende ef-'· fektafgivelse falder på samme måde som kraftmaskinens. Reguleringsstørrelsen til akselgeneratoren er da denne effektafgivelse eller den parallelt arbejdende syn-30 kronmaskines effektafgivelse.If the shaft generator is operated in parallel with the synchronous machine, which is still driven by the auxiliary power machine, this will only be possible when the frequency of the shaft generator is regulated so that the frequency of increasing power output decreases in the same way as that of the power machine. The control size for the shaft generator is then this output or the output of the parallel working synchro machine.
Claims (5)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEL0053900 | 1966-06-23 | ||
DEL53900A DE1281027B (en) | 1966-06-23 | 1966-06-23 | Power supply system for an alternating voltage on-board network on ships with a wave generator |
DEL0054463 | 1966-09-03 | ||
DEL0054463 | 1966-09-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK145029B true DK145029B (en) | 1982-08-02 |
DK145029C DK145029C (en) | 1983-01-03 |
Family
ID=25986075
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK145029D DK145029A (en) | 1966-06-23 | ||
DK327567A DK145029C (en) | 1966-06-23 | 1967-06-23 | POWER SUPPLY SYSTEM FOR SHIPS WITH SHAFT GENERATOR |
DK576768AA DK122200B (en) | 1966-06-23 | 1968-11-26 | Coupling device for a ship power supply system. |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK145029D DK145029A (en) | 1966-06-23 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK576768AA DK122200B (en) | 1966-06-23 | 1968-11-26 | Coupling device for a ship power supply system. |
Country Status (6)
Country | Link |
---|---|
DE (2) | DE1281027B (en) |
DK (3) | DK145029C (en) |
GB (2) | GB1166196A (en) |
NL (1) | NL160405C (en) |
NO (1) | NO117250B (en) |
SE (1) | SE334556B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983002099A1 (en) * | 1981-12-17 | 1983-06-23 | Peter Jan Fournais | Method and generating plant for ships having a shaft generator |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8004597A (en) * | 1980-08-14 | 1982-03-16 | Stichting Energie | METHOD AND APPARATUS FOR THE OPTIMAL USE OF VARIABLE NON-MANAGABLE SOURCES OF ENERGY. |
BR8200062A (en) * | 1981-01-15 | 1982-10-26 | Asea Ltd | ENERGY RECOVERY PROCESS FROM RESIDUAL GAS CHAIN OF METALLURGICAL PROCESSING VASE AND INSTALLATION FOR IRON OR STEEL PRODUCTION BY THAT PROCESS |
EP0073088A3 (en) * | 1981-08-20 | 1984-04-04 | ASEA Limited | Obtaining energy from cryogenic fluids |
GB2186130A (en) * | 1986-02-03 | 1987-08-05 | English Electric Co Ltd | Standby power supply for motor |
GB0713527D0 (en) | 2007-07-12 | 2007-08-22 | Rolls Royce Plc | A Synchronous electrical machine |
DE102008031698A1 (en) | 2007-11-02 | 2009-06-04 | Siemens Aktiengesellschaft | Floating harbor power supply |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE762134C (en) * | 1941-09-18 | 1954-01-25 | Arno Fischer | Wind and hydropower generation plant |
DE1122147B (en) * | 1959-09-14 | 1962-01-18 | Asea Ab | Arrangement in an asynchronous generator driven by a shaft with variable speed |
DE1136235B (en) * | 1960-08-04 | 1962-09-06 | Bbc Brown Boveri & Cie | Power generation plant for diesel motor ships |
-
0
- DK DK145029D patent/DK145029A/da unknown
-
1966
- 1966-06-23 DE DEL53900A patent/DE1281027B/en not_active Withdrawn
- 1966-09-03 DE DE19661488979 patent/DE1488979A1/en active Pending
-
1967
- 1967-06-12 GB GB27015/67A patent/GB1166196A/en not_active Expired
- 1967-06-21 NO NO168696A patent/NO117250B/no unknown
- 1967-06-21 SE SE08831/67A patent/SE334556B/xx unknown
- 1967-06-22 NL NL6708733.A patent/NL160405C/en not_active IP Right Cessation
- 1967-06-23 DK DK327567A patent/DK145029C/en active
- 1967-08-14 GB GB37265/67A patent/GB1166197A/en not_active Expired
-
1968
- 1968-11-26 DK DK576768AA patent/DK122200B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983002099A1 (en) * | 1981-12-17 | 1983-06-23 | Peter Jan Fournais | Method and generating plant for ships having a shaft generator |
Also Published As
Publication number | Publication date |
---|---|
DE1281027B (en) | 1968-10-24 |
DK145029A (en) | |
NO117250B (en) | 1969-07-21 |
GB1166197A (en) | 1969-10-08 |
SE334556B (en) | 1971-04-26 |
NL6708733A (en) | 1967-12-27 |
NL160405C (en) | 1979-10-15 |
DK145029C (en) | 1983-01-03 |
DE1488979A1 (en) | 1969-05-14 |
DK122200B (en) | 1972-01-31 |
GB1166196A (en) | 1969-10-08 |
NL160405B (en) | 1979-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3832625A (en) | Electrical power generating arrangement and method utilizing an induction generator | |
US4931715A (en) | Synchronous motor torque control device | |
EP0114274A1 (en) | Control and stabilizing system for damperless synchronous motor | |
US4431953A (en) | Circuit for operating a synchronous motor from a dc supply | |
GB2071433A (en) | Converter System | |
NO136510B (en) | ||
EP2357723B1 (en) | Synchronous machine startup device | |
DK145029B (en) | POWER SUPPLY UNIT FOR SHIP GENERATOR | |
US3667014A (en) | Exciter arrangement for synchronous motors | |
KR830001604B1 (en) | Slip recovery system of wound induction motor | |
US2478623A (en) | Regulator for synchronous dynamoelectric machines | |
US2501543A (en) | Frequency regulating system | |
US3031607A (en) | Collector-free compounded synchronous generator | |
US3436633A (en) | Regulator sensing circuit for alternating-current generator | |
US1529318A (en) | Electric ship propulsion | |
US2074126A (en) | Frequency regulating system | |
US4267498A (en) | Drive equipment with two-phase synchronous motor | |
US3555401A (en) | Circuit arrangement for regulating the frequency of electrical power lines aboard a ship | |
GB2095487A (en) | Induction Generators | |
US2367930A (en) | Control system | |
US1968575A (en) | Regulating system | |
JP2895059B2 (en) | Sub-synchronous and super-synchronous cascaded static converter and method of operation | |
US2478622A (en) | Regulator system | |
JP2578200B2 (en) | Voltage control device of power generator | |
US2315491A (en) | Electric drive |