NO115102B - - Google Patents

Download PDF

Info

Publication number
NO115102B
NO115102B NO155035A NO15503564A NO115102B NO 115102 B NO115102 B NO 115102B NO 155035 A NO155035 A NO 155035A NO 15503564 A NO15503564 A NO 15503564A NO 115102 B NO115102 B NO 115102B
Authority
NO
Norway
Prior art keywords
content
test
turning
cutting
carbon
Prior art date
Application number
NO155035A
Other languages
Norwegian (no)
Original Assignee
Waertsilae Yhtymae O Y
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waertsilae Yhtymae O Y filed Critical Waertsilae Yhtymae O Y
Publication of NO115102B publication Critical patent/NO115102B/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B21/00Locks with lamelliform tumblers which are not set by the insertion of the key and in which the tumblers do not follow the movement of the bolt e.g. Chubb-locks
    • E05B21/06Cylinder locks, e.g. protector locks
    • E05B21/066Cylinder locks, e.g. protector locks of the rotary-disc tumbler type
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B67/00Padlocks; Details thereof
    • E05B67/06Shackles; Arrangement of the shackle
    • E05B67/22Padlocks with sliding shackles, with or without rotary or pivotal movement
    • E05B67/24Padlocks with sliding shackles, with or without rotary or pivotal movement with built- in cylinder locks
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B67/00Padlocks; Details thereof
    • E05B67/06Shackles; Arrangement of the shackle
    • E05B67/22Padlocks with sliding shackles, with or without rotary or pivotal movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/40Portable
    • Y10T70/413Padlocks
    • Y10T70/487Parts, accessories, attachments and adjuncts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/70Operating mechanism
    • Y10T70/7441Key
    • Y10T70/7486Single key
    • Y10T70/7508Tumbler type
    • Y10T70/7559Cylinder type
    • Y10T70/7655Cylinder attaching or mounting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/80Parts, attachments, accessories and adjuncts
    • Y10T70/8432For key-operated mechanism
    • Y10T70/8459Housings
    • Y10T70/8541Mounting arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/80Parts, attachments, accessories and adjuncts
    • Y10T70/8973Mounting aids, guides and assistors

Landscapes

  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Switch Cases, Indication, And Locking (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Chairs For Special Purposes, Such As Reclining Chairs (AREA)
  • Powder Metallurgy (AREA)

Description

Sintret hårdmetall-legering. Sintered carbide alloy.

Foreliggende oppfinnelse vedrører sintret < hårdmetall, hovedsakelig bestemt for skjærende bearbeidelse og en fremgangsmåte til dets frem-stilling. Med de hårdmetallkvaliteter som hittil har vært kjent, har anvendelsen av hårdmetall ved skjærende bearbeidelse vært begrenset til relativt lave tilmatningsverdier og høye skjære-hastigheter. Med hensyn til den beste økonomi ved bearbeidelsen er det kjent å velge tilmatningen så stor som arbeidsforholdene tillater. Hårdmetallenes ubetydelige seighet i sammen-ligning med stål motvirker imidlertid den ønskete øking av tilmatningen, spesielt da ved ugunstige bearbeidelsesbetingelser som f. eks. ved arbeide i eldre, ustabile maskiner, samt ved intermitterende skjæring. I den senere tid har man derfor søkt å utvikle nye, seigere hårdmetall bestående av karbidene av metallene volfram, titan og tantal, sammensintret med et hjelpemetall fra jerngruppen, vanligvis kobolt. Det er videre kjent at en øking av kobolt-innholdet hos en slik legering medfører en for-høyet seighet. Flere legeringer med forskjellig innhold av nevnte karbider og kobolt er også kjent og er ført på markedet. The present invention relates to sintered cemented carbide, mainly intended for cutting processing, and a method for its production. With the cemented carbide qualities that have been known up to now, the use of cemented carbide in cutting processing has been limited to relatively low feed values and high cutting speeds. With regard to the best economy during processing, it is known to choose the feed as large as the working conditions allow. However, the negligible toughness of carbides in comparison with steel counteracts the desired increase in the feed, especially when unfavorable processing conditions such as e.g. when working in older, unstable machines, as well as when cutting intermittently. In recent times, efforts have therefore been made to develop new, tougher cemented carbides consisting of the carbides of the metals tungsten, titanium and tantalum, sintered together with an auxiliary metal from the iron group, usually cobalt. It is also known that an increase in the cobalt content of such an alloy leads to an increased toughness. Several alloys with different contents of the aforementioned carbides and cobalt are also known and are on the market.

Der anvendes ved oppfinnelsen en legering, som inneholder 78—80 % WC, 2—4 % TaC, 3—5 % TiC, 12.5—15 % Co samt eventuelt opptil 3 % av en eller flere karbider, nitrider, borider eller silisider av ytterligere metaller til-hørende gruppene 5a og 6a i det periodiske system, og det har vist seg, at der oppnåes ut-merkete, tidligere ukjente egenskaper, som en bemerkelsesverdig høy seighet med en tilstrek-kelig slitestyrke, som gjør legeringen spesielt egnet for et anvendelsesområde, hvor hårdmetall ikke tidligere er kommet på tale, når i disse legeringer det totale kullstoffinnhold er 92—96.5 %, hensiktsmessig 93—95 % av det støkiometriske prosentuelle innhold av kullstoff og innholdet av fritt kullstoff, når i det høyeste 0,10 %, hensiktsmessig høyst 0.05 %, og hvor middelkornstørrelsen er 1—2. The invention uses an alloy containing 78-80% WC, 2-4% TaC, 3-5% TiC, 12.5-15% Co and possibly up to 3% of one or more carbides, nitrides, borides or silicides of further metals belonging to groups 5a and 6a in the periodic table, and it has been shown that excellent, previously unknown properties are achieved, such as a remarkably high toughness with a sufficient wear resistance, which makes the alloy particularly suitable for an area of application , where cemented carbide has not previously come into question, when in these alloys the total carbon content is 92-96.5%, appropriately 93-95% of the stoichiometric percentage content of carbon and the content of free carbon reaches at most 0.10%, suitable at most 0.05%, and where the mean grain size is 1-2.

Særlig fordelaktige resultater oppnåes når legeringene består av 79 % WC, 3 % TaC, 4 % TiC og 14 % Co, hvorunder det totale kullstoffinnhold er 5.50—5.65 % og innholdet av fritt kullstoff når opp til ca. 0.05 %. Particularly advantageous results are achieved when the alloys consist of 79% WC, 3% TaC, 4% TiC and 14% Co, under which the total carbon content is 5.50-5.65% and the free carbon content reaches approx. 0.05%.

En legering av denne type har naturligvis en mindre slipemotstand enn de kvaliteter som ved vesentlig lavere Co-innhold har en større hårdhet. Det har imidlertid vist seg, at ved å sintre ovennevnte legering under svakt avkullende forhold har man oppnådd en lengere slite-tid uten at seigheten ved anvendelsen av platene er blitt bemerkelsesverdig forringet. De svakt avkullende forhold kan oppnås ved inn-pakning i et pulver, bestående f. eks. av alumi-nium- eller zirkonoksyd og grafitt eller ved å sintre i vakuum. Avkullingen må dog ikke være så stor at de ovenfor nevnte karbider går over i andre, på grunn av sin sprøhet uheldige karbider, f. eks. den såkalte 2-karbid. Hensiktsmessig minskes det totale C-innhold til 0.20—0.50 %, fortrinsvis 0.30—0.40 % under det støkoimet-riske kullstoffinnhold, hvorved det fri C-innhold i de ferdige plater reduseres til under 0,10 %, hensiktsmessig til 0.50 %. Hårdmetallplater ifølge oppfinnelsen er spesielt bestemt til skjærende bearbeiding av stål i såvel valset, smidd, som støpt tilstand under ugunstige betingelser. Med slike ugunstige betingelser menes f. eks. stor tilmåting, stor sponarealer, arbeide i eldre og svakere maskiner, intermitterende drift som f. eks. ved høvling, dreining med kilespor etc, bearbeiding med ujevnt gods med varierende skjæredybde, bearbeiding av arbeidsstykker med dårlig overflate, samt overhodet i tilfeller hvor hårdmetall tidligere har vist seg å være for sprødt. For ytterligere å belyse anvendelses-området for hårdmetall-legeringen ifølge oppfinnelsen skal der nedenfor gis noen eksempler fra de mange prøver som hittil er utført. An alloy of this type naturally has a lower grinding resistance than the grades which, with a significantly lower Co content, have a greater hardness. It has been shown, however, that by sintering the above-mentioned alloy under slightly decarburizing conditions, a longer wear time has been achieved without the toughness during use of the plates having been significantly impaired. The slightly decarburizing conditions can be achieved by packaging in a powder, consisting e.g. of aluminum or zirconium oxide and graphite or by sintering in vacuum. However, the decarburization must not be so great that the above-mentioned carbides turn into other carbides that are unfavorable due to their brittleness, e.g. the so-called 2-carbide. Appropriately, the total C content is reduced to 0.20-0.50%, preferably 0.30-0.40% below the stoichiometric carbon content, whereby the free C content in the finished plates is reduced to below 0.10%, expediently to 0.50%. Carbide plates according to the invention are particularly intended for cutting steel in both rolled, forged and cast condition under unfavorable conditions. By such unfavorable conditions is meant e.g. large capacity, large chip areas, working in older and weaker machines, intermittent operation such as e.g. when planing, turning with keyways, etc., processing uneven material with varying cutting depth, processing workpieces with a poor surface, as well as generally in cases where cemented carbide has previously proven to be too brittle. In order to further illuminate the application area for the cemented carbide alloy according to the invention, some examples from the many tests that have been carried out so far will be given below.

Det her anvendte hårdmetall var fremstilt på følgende måte: 79 vektsdeler WC, 3 vektsdeler TaC og 4 vektsdeler TiC ble malt med 14 vektsdeler Co etter sammenkarburering av karbidene ved 1700° C. Det oppnådde pulver hadde et totalt kullstoffinnhold av 5.75—5.85 %, hvorav innholdet av fritt kullstoff gikk opp til ca. 0.10 %. Plater av blandingen ble deretter sintret, innpakket i et pulver bestående av 15 % grafitt og resten aluminiumoksyd, ved en tem-peratur av ca. 1400° C. Det ferdige hårdmetall hadde en middel kornstørrelse av 1—2 my og et totalt kullstoffinnhold av 5.50—5.65 %, hvorav ca. 0.05 % fritt kullstoff, samt en spesi-fik vekt av 13.0—13.1 g/cm<3>. Hårdmetallenes vickershårdhet ved en last av 30 kg var ca. 1300, hvilket er en uventet hårdhet og bøy-holdfastheten var ca. 250 kg/cm2. The cemented carbide used here was produced in the following way: 79 parts by weight WC, 3 parts by weight TaC and 4 parts by weight TiC were ground with 14 parts by weight Co after carburizing the carbides at 1700° C. The obtained powder had a total carbon content of 5.75-5.85%, of which the content of free carbon rose to approx. 0.10%. Sheets of the mixture were then sintered, wrapped in a powder consisting of 15% graphite and the rest aluminum oxide, at a temperature of approx. 1400° C. The finished cemented carbide had an average grain size of 1-2 my and a total carbon content of 5.50-5.65%, of which approx. 0.05% free carbon, as well as a specific weight of 13.0-13.1 g/cm<3>. The Vickers hardness of the hard metals at a load of 30 kg was approx. 1300, which is an unexpected hardness and the bending strength was approx. 250 kg/cm2.

Eksempel 1. Example 1.

En charge som i hovedsaken inneholdt 79 % WC, 3 % TaC, 4 % TiC og 14 % Co med A charge which mainly contained 79% WC, 3% TaC, 4% TiC and 14% Co with

et støkiometrisk beregnet kullstoffinnhold, på 5,85 % ble fremstilt. Prøveplater av denne charge ble sintret på fire forskjellige måter for derved å få frem plater med fire' forskjellige kullstoffunderskudd. Sintringstemperaturen var i samtlige fire tilfeller ca. 1400° C. Resultatene fremgår av tabell 1. a stoichiometrically calculated carbon content of 5.85% was produced. Sample plates of this charge were sintered in four different ways to thereby produce plates with four different carbon deficits. The sintering temperature was in all four cases approx. 1400° C. The results appear in table 1.

Prøver nr. 1 og 2 er utført i henhold til oppfinnelsen, mens prøver nr. 3 og 4 ikke er utført i henhold til oppfinnelsen. Plater av de fire forskjellige prøver er blitt sammenlignet ved tre forskjellige prøvedreininger i henhold til det nedenstående. Resultatene er middelverdier. Samples no. 1 and 2 have been carried out in accordance with the invention, while samples no. 3 and 4 have not been carried out in accordance with the invention. Plates of the four different samples have been compared at three different test rotations according to the following. The results are mean values.

Prøvedreining nr. 1. Trial turning No. 1.

Hensikten med dette dreieforsøk var å måle platenes motstandsevne mot slagpåkjenninger. Dreiningen skjedde i normalisert kullstoffstål som inneholdt 0,60 % kullstoff og med en brinellhårdhet på ca. 225. I arbeidsstykket fantes et langsgående utfreset spor, så at man fikk ett slag på verktøyet for hver omdreining. De øvrige data for prøvningen var: Skjærevinkler: a = 5°, /9 = 77°, y = 8°, t = 90°, v. =' 60° The purpose of this turning test was to measure the plates' resistance to impact stresses. The turning took place in normalized carbon steel containing 0.60% carbon and with a Brinell hardness of approx. 225. In the workpiece there was a longitudinally milled groove, so that one stroke was made on the tool for each revolution. The other data for the test were: Cutting angles: a = 5°, /9 = 77°, y = 8°, t = 90°, v. =' 60°

neseradien r = 1 mm. nose radius r = 1 mm.

Skjærsdybde = 1 mm Cutting depth = 1 mm

mating = 0,103 mm/omdr. feed = 0.103 mm/rev.

Skjær hastighet = 150 m/min. Cutting speed = 150 m/min.

Dreiebenk: SKODA SUR 300. Lathe: SKODA SUR 300.

Etter hvert halvminutts kjøring ble stålene undersøkt med hensyn på eventuelle brudd i skjæret, og faseslitasjen på klaringssiden ble avlest. After every half-minute run, the steels were examined for any breaks in the cutting edge, and the phase wear on the clearance side was read.

Resultatene fremgår av tabell 2. The results appear in table 2.

Et nøyaktig stadim av prøvningen ga som resultat at denne ikke utelukkende kunne gi en verdimåling av platenes slagseighet, fordi platene snarere ble utsatt for en kombinasjon av slag- og slitasjepåkjenninger med en sterk inn-flytelse av slitasjen. Ved disse prøvningsforhold viste som man ser prøver nr. 1 og 2 særlig gode egenskaper, og livslengden inntil brudd var mer enn dobbelt så høy som for prøver nr. 3 og 4. A precise stage of the test gave the result that this could not exclusively provide a value measurement of the plates' impact resistance, because the plates were rather exposed to a combination of impact and wear stresses with a strong influence of wear. Under these test conditions, as can be seen, samples no. 1 and 2 showed particularly good properties, and the lifespan until breaking was more than twice as high as for samples no. 3 and 4.

Prøvedreining 2. Test turning 2.

Hensikten var å få istand en mere utpreget slagseighetsprøve av prøveplatene enn man The purpose was to prepare a more pronounced impact strength test of the test plates than one

hadde fått ved prøvedreining nr. 1. Man brukte samme arbeidsstykke med spor, men der ble gjort følgende forandringer av skjærevinkler og skjæredata. had obtained during test turning no. 1. The same workpiece with grooves was used, but the following changes were made to cutting angles and cutting data.

Etter hver mm dreining ble eggens utseende og faseslitasjen studert. Dreiningen ble avbrutt etter 7 minutter hvis der ikke inntraff brudd i skjæret. Prøver nr. 1 og 2 motsto denne prøv-ning uten vanskelighet, mens prøve nr. 3 fikk skjærbrudd etter 3—5 min. og prøve nr. 4 etter 1—4 min. After each mm of turning, the appearance of the egg and the phase wear were studied. The turning was stopped after 7 minutes if no fracture occurred in the cutting. Samples no. 1 and 2 withstood this test without difficulty, while sample no. 3 suffered a shear fracture after 3-5 min. and test no. 4 after 1-4 min.

Prøvedreining 3. Test turning 3.

En ennu mere umild slagprøvning enn ved prøvedreining 2 ble istandbragt ved at materia-let i arbeidsstykkene ble forandret til normalisert kullstoffstål med 0,80 % C og med en brinell-hardhet på ca. 235. An even harsher impact test than with trial turning 2 was established by changing the material in the workpieces to normalized carbon steel with 0.80% C and with a Brinell hardness of approx. 235.

Arbeidsstykkene var dessuten forsynt med to diametralt motsatte langsgående spor. Videre ble spånvinklen forandret til + 4° mot The workpieces were also provided with two diametrically opposite longitudinal grooves. Furthermore, the chip angle was changed to + 4° towards

— 20 ved foregående prøvedreining, hvorved eggens motstandsevne mot slag ble vesentlig nedsatt. De første tre minutter ble brukt de samme data som tidligere (skjæredybde 3 mm, matning 0,5 mm/omdr. og skjærhastighet 50 m/min.). For å påskynde prøven ble skjærhastigheten deretter øket til 75 m/min. De verk-tøy som etter 9 min. dreietid fremdeles var feilfri ble kjørt videre med en matning av 1,0 mm/omdr. Resultatene av prøvedreiningen fremgår av tabell 3. — 20 during the preceding trial turning, whereby the egg's resistance to impact was significantly reduced. For the first three minutes, the same data as before were used (cutting depth 3 mm, feed 0.5 mm/rev. and cutting speed 50 m/min.). To speed up the sample, the shear speed was then increased to 75 m/min. The tools that after 9 min. turning time was still error-free was continued with a feed of 1.0 mm/rev. The results of the trial turning appear in table 3.

Eksempel 2. Example 2.

Der ble gjort en sammenlikning mellom en hårdmetallegering i henhold til oppfinnelsen (stål nr 5 — 8, resp. nr. 13 — 16) og en annen hårdmetallegering (stål nr. 1 — 4, resp. nr. 9 — 12) som inneholdt 6,5 % TiC, 3,5 % TaC, 14,5 % Co og 75,5 % WC, ved prøvedreininger. Disse ble tildels utført som slag-seighetsprøvning og dels som slitasjeprøvning. A comparison was made between a hard metal alloy according to the invention (steel no. 5 - 8, resp. no. 13 - 16) and another hard metal alloy (steel no. 1 - 4, resp. no. 9 - 12) which contained 6 .5% TiC, 3.5% TaC, 14.5% Co and 75.5% WC, at trial turns. These were partly carried out as impact toughness tests and partly as wear tests.

Slagseighetsprøvning. Impact test.

Dreiningen ble utført i et arbeidsstykke av kullstoffstål med 0,80 % C og med en brinellhårdhet på 260 HB. Arbeidsstykket var forsynt med dobbelt spor så at man fikk to slag på verk-tøyet for hver omdreining av arbeidsstykket. Skjærvinklene var a = 5, ft = 77° y = 8°, £ = 90°, x = 60°, r 1 mm. Skjærdybden var hele tiden 3,0 mm, matningen var i begyn nelsen 50 m/min. Eggen ble inspisert i måle-mikroskop, og eggens utseende ble bedømt etter en skala hvor 0 er uskadd egg og 3 totalt egg-brudd. Etter 400 slag ble skjærhastigheten forhøyet til 75 m/min. Inspeksjon skjedde etter ytterligere 200 slag (således i alt 600 slag). Endelig ble matningen forhøyet til 1,0 mm/omdr. mens skjærhastigheten igjen fikk verdien 50 m/min. Inspeksjon skjedde dels etter 200 slag (totalt 800 slag) og dels etter 400 slag (totalt 1000 slag). Der ble prøvet fire verktøy av hver kvalitet. Resultatene fremgår av nedenstående tabell 4. Det fremgår av disse at stål nr. 5 — 8 i henhold til den foreliggende oppfinnelse er over-legne over stålene nr. 1 — 4. Bare ett av stålene 1 — 4 var feilfritt etter prøvningen, mens samtlige verktøy med hårdmetall i henhold til oppfinnelsen var feilfrie. The turning was carried out in a workpiece of carbon steel with 0.80% C and with a Brinell hardness of 260 HB. The workpiece was provided with a double groove so that the tool was hit twice for each revolution of the workpiece. The shear angles were a = 5, ft = 77° y = 8°, £ = 90°, x = 60°, r 1 mm. The cutting depth was always 3.0 mm, the feed was initially 50 m/min. The egg was inspected under a measuring microscope, and the appearance of the egg was judged on a scale where 0 is an undamaged egg and 3 total egg breakage. After 400 strokes, the cutting speed was increased to 75 m/min. Inspection took place after a further 200 strokes (so a total of 600 strokes). Finally, the feed was increased to 1.0 mm/rev. while the cutting speed was again given the value of 50 m/min. Inspection took place partly after 200 strokes (a total of 800 strokes) and partly after 400 strokes (a total of 1000 strokes). Four tools of each quality were tested. The results are shown in table 4 below. It appears from these that according to the present invention, steels no. 5 - 8 are superior to steels nos. 1 - 4. Only one of the steels 1 - 4 was faultless after the test, while all carbide tools according to the invention were error-free.

Slitasjeprøvning. Abrasion testing.

Med samme skjærvinkler som ved slag-seighetsprøven bestemtes motstandsevnen mot slitasje ved dreining i kullstoffstål med 0,60 % C og med en brinellhårdhet på 230 HB. Skjærdybden var hele tiden 1,5 mm, matning 0,205 mm/omdr. og skjærhastigheten 90 m/min. Etter hver 5 min. kjøring ble slitasje på span- og klaringssiden kontrollert ved måling i målemikro-skop. Resultatene av denne prøvning finnes i tabell 5. Det fremgår av resultatene at forskjel-len mellom de to kvaliteter er ganske liten både hva angår middelfase-slitasjen og kratersli-tasjen. With the same shear angles as in the impact toughness test, the resistance to wear during turning was determined in carbon steel with 0.60% C and a Brinell hardness of 230 HB. The cutting depth was always 1.5 mm, feed 0.205 mm/rev. and the cutting speed 90 m/min. After every 5 min. driving, wear on the span and clearance side was checked by measuring in a measuring microscope. The results of this test can be found in table 5. It appears from the results that the difference between the two grades is quite small both with regard to the medium phase wear and the crater wear.

Som resume av sammenlikningen bør frem-holdes at hårdmetallegeringen i henhold til opp- As a summary of the comparison, it should be emphasized that the hard metal alloy according to

finnelsen er overlegen overfor den legering den er sammenliknet med. Evnen til å motstå slagpåkjenninger er således betraktelig større, samtidig som egenskaper med hensyn til slitestyrke er bibeholdt. the invention is superior to the alloy with which it is compared. The ability to withstand impact stresses is thus considerably greater, while at the same time properties with regard to wear resistance are maintained.

Ovenstående eksempler viser den markante og The above examples show the marked and

overraskende overlegenhet hos hårdmetallegeringen i henhold til opprinnelsen ved dreining surprising superiority of the hard metal alloy according to the origin of turning

under særskilt vanskelige og ugunstige betingelser når verktøyet ble utsatt for gjentatte slagpåkjenninger, samtidig som dets egenskaper under particularly difficult and unfavorable conditions when the tool was exposed to repeated impact stresses, at the same time as its properties

med hensyn til slitasje er i paritet med de beste in terms of wear and tear is on par with the best

kvaliteter av denne type som forekommer på qualities of this type occurring on

markedet. the market.

Claims (2)

1. Sintret hårdmetall-legering bestående av 78 — 80 % WC, 2 — 4 % TaC, 3 — 5 % TiC, 12,5 — 15 % Co samt eventuelt opp til 3 % av en eller flere karbider, nitrider, borider eller silisider av ytterligere metaller tilhørende gruppene 4a, 5a og 6a i det periodiske system, karakterisert ved at det totale kullstoffinnhold er 92 — 96,5 %, hensiktsmessig 93 — 95 % av det støkiometriske prosentuelle innhold av kullstoff og innholdet av fritt kullstoff når i det høyeste 0,10 %, hensiktsmessig høyt 0,05 %, og hvorunder middelkornstørrelsen er 1 — 2/ i.1. Sintered carbide alloy consisting of 78 — 80% WC, 2 — 4% TaC, 3 — 5% TiC, 12.5 — 15% Co and possibly up to 3% of one or more carbides, nitrides, borides or silicides of additional metals belonging to groups 4a, 5a and 6a in the periodic table, characterized in that the total carbon content is 92 — 96.5%, suitably 93 — 95% of the stoichiometric percentage content of carbon and the content of free carbon reaches at most 0.10%, suitably high 0.05%, and below which the mean grain size is 1 — 2/ i. 2. Hårdmetall-legering som angitt i påstand 1, bestående av 79 % WC, 3 % TaC, 4 % TiC og 14 % Co, hvorunder det totale kullstoffinnhold er 5,50 — 5,65 % og innholdet av fritt kullstoff når opp til ca. 0,05 %2. Carbide alloy as set forth in claim 1, consisting of 79% WC, 3% TaC, 4% TiC and 14% Co, wherein the total carbon content is 5.50 - 5.65% and the free carbon content reaches about. 0.05%
NO155035A 1963-10-22 1964-10-06 NO115102B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI206263 1963-10-22

Publications (1)

Publication Number Publication Date
NO115102B true NO115102B (en) 1968-07-22

Family

ID=8506618

Family Applications (1)

Application Number Title Priority Date Filing Date
NO155035A NO115102B (en) 1963-10-22 1964-10-06

Country Status (4)

Country Link
US (1) US3309904A (en)
DE (1) DE1428564A1 (en)
GB (2) GB1087057A (en)
NO (1) NO115102B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899560A (en) * 1989-03-17 1990-02-13 Chen Chang Yu Laminated padlock
US6014876A (en) * 1999-01-04 2000-01-18 Ford Global Technologies, Inc. Adjustable locking for hood latch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1881809A (en) * 1929-05-04 1932-10-11 Yale & Towne Mfg Co Padlock
US2409424A (en) * 1944-09-27 1946-10-15 Independent Lock Co Laminated lock
US2578211A (en) * 1948-07-16 1951-12-11 Yale & Towne Mfg Co Side bar cylinder lock
FR974389A (en) * 1948-10-28 1951-02-21 New autofretted type padlocks
US2948141A (en) * 1957-05-31 1960-08-09 American Hardware Corp Means for retaining a lock cylinder in a panel

Also Published As

Publication number Publication date
DE1428564A1 (en) 1968-11-21
US3309904A (en) 1967-03-21
GB1087057A (en) 1967-10-11
GB1087032A (en) 1967-10-11

Similar Documents

Publication Publication Date Title
Da Silva et al. Performance of cryogenically treated HSS tools
Posti et al. Influence of coating thickness on the life of TiN-coated high speed steel cutting tools
M'Saoubi et al. Machinability of powder metallurgy steels using PcBN inserts
JPS63169361A (en) Tool steel
US3840367A (en) Tool alloy compositions and methods of fabrication
CN108138306A (en) Hard film and hard film coating component
Lim et al. Mapping the wear of some cutting-tool materials
NO115102B (en)
da Silva et al. Relationship between mechanical and metallurgical properties with machinability when drilling high-strength cast irons
Trigger Progress Report No. 2 on tool-chip interface temperatures
JPS6017818B2 (en) A sintered powder compact useful as a cutting tool and its manufacturing method
US2289449A (en) Die steel for hot working
Jaharah et al. Machinability of FCD 500 ductile cast iron using coated carbide tool in dry machining condition
Boston et al. The torque and thrust of small drills operating in various metals
Serdyuk et al. The influence of thermal compression treatment parameters on quality characteristics and wear mechanisms of T5K10 carbide inserts in rough turning
Trigger et al. Tool forces and tool-chip adhesion in the machining of nodular cast iron
US3144362A (en) Forged and nitrided steel roll
Shaw et al. The influence of lead on metal-cutting forces and temperatures
US2697035A (en) Free-machining stainless steel and method
Stanton et al. Cutting Tools Research Committee. Report on an Experimental Study of the Forces Exerted on the Surface of a Cutting Tool
US2297687A (en) Alloy and cutting tool
Wallén et al. Intermittent metal cutting at small cutting depths—1. Dead zone phenomena and surface finish
US1894820A (en) Wear resisting ferrous alloy
SE178622C1 (en)
Meena et al. Microstructure induced wear mechanisms of pvd-coated carbide tools during dry drilling of newly produced adi