US3840367A - Tool alloy compositions and methods of fabrication - Google Patents
Tool alloy compositions and methods of fabrication Download PDFInfo
- Publication number
- US3840367A US3840367A US00226013A US22601372A US3840367A US 3840367 A US3840367 A US 3840367A US 00226013 A US00226013 A US 00226013A US 22601372 A US22601372 A US 22601372A US 3840367 A US3840367 A US 3840367A
- Authority
- US
- United States
- Prior art keywords
- composition
- carbide
- molybdenum
- titanium
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 134
- 229910045601 alloy Inorganic materials 0.000 title claims description 45
- 239000000956 alloy Substances 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 53
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000011733 molybdenum Substances 0.000 claims abstract description 47
- 239000011230 binding agent Substances 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 29
- 238000005520 cutting process Methods 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000010936 titanium Substances 0.000 claims description 41
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- 229910052719 titanium Inorganic materials 0.000 claims description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 25
- 239000002131 composite material Substances 0.000 claims description 25
- 239000006104 solid solution Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 239000010937 tungsten Substances 0.000 claims description 11
- 229910017052 cobalt Inorganic materials 0.000 claims description 10
- 239000010941 cobalt Substances 0.000 claims description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- TXKRDMUDKYVBLB-UHFFFAOYSA-N methane;titanium Chemical compound C.[Ti] TXKRDMUDKYVBLB-UHFFFAOYSA-N 0.000 claims description 5
- -1 IRON METALS Chemical class 0.000 claims description 4
- 239000010953 base metal Substances 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 229910039444 MoC Inorganic materials 0.000 abstract description 5
- ZPZCREMGFMRIRR-UHFFFAOYSA-N molybdenum titanium Chemical compound [Ti].[Mo] ZPZCREMGFMRIRR-UHFFFAOYSA-N 0.000 abstract description 4
- 229910003178 Mo2C Inorganic materials 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 30
- 229910000831 Steel Inorganic materials 0.000 description 22
- 239000010959 steel Substances 0.000 description 22
- 150000001247 metal acetylides Chemical class 0.000 description 16
- 238000003754 machining Methods 0.000 description 13
- 229910017318 Mo—Ni Inorganic materials 0.000 description 11
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 208000035155 Mitochondrial DNA-associated Leigh syndrome Diseases 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 208000003531 maternally-inherited Leigh syndrome Diseases 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical group [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910001009 interstitial alloy Inorganic materials 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9265—Special properties
- Y10S428/932—Abrasive or cutting feature
Definitions
- a composition of material comprising a titanium molybdenum carbide and an iron group metal binder is disclosed which is particularly useful as a metal cutting tool.
- the carbide phase of the composition is substantially richer in carbon than the prior art.
- the carbide phase contains more carbon than the composition line TiC- Mo C for the same ratio.
- the carbide phase can contain higher amounts of molybdenum than was used in the prior art.
- the present invention relates to improved cemented carbide alloys and more particularly to improved monocarbide alloys of titanium and molybdenum which are substantially richer in carbon than the prior art alloys of those metals and which, with a proper binder from the iron metal group, exhibits superior wear resistant characteristics.
- Wear resistance of these improved tools which can be termed TiC-Mo C-Mo-Ni tools, in cutting soft'and medium hard steels is generally much higher than the tungstencarbide-based sintered carbides, but tool reliability is usually low because of their brittleness and their tendency to notch at the scale line. As a result, the full potential of their inherent high wear and cratering resistance is rarely realized in practice.
- An additional shortcoming of the tool materials is their inability to machine hard steels, such as steels having a Rockwell hardness (R of 50 or higher, at competitive metal removal rates. Current usage is thus limited to machining of soft to medium hard low alloy steels under light cutting conditions, and machining of cast irons'and steels.
- cemented carbide alloys which are based on the monocarbide solid solution (Ti, M0)C and which have carbon contents higher than the composition line TiC-Mo- C.
- This monocarbide solid solution is cemented with an iron group metal binder which forms between 5 and 25 percent by weight of the total composition.
- the carbon content higher than the composition line TiC-Mo C is greater for higher exchange ratios of molybdenum for titanium.
- the value ofz can range from 0.972 to 0.985.
- the monocarbide solid solution within the ranges just described is cemented with between 8 and 12 percent by weight of an iron group metal binder, preferablynickel or cobalt or a combination of these metals.
- FIG. 1 is a graphical representation of the monocarbide solid solution phase of the present invention and also shows the composition of the carbide alloys of the prior art tool developments in this area which were discussed above;
- FIGS. 2' and 3 wear curves comparing the wear of tools according to the present invention and according to the prior art when subjected to identical test condi tions;
- FIGS. 4 through 6 show the wear rate of tools in accordance with the present invention as a function of the exchange ratio of molybdenum forv titanium (or the mole percent of molybdenum in the total metal content) for different test conditions.
- compositions of the carbide component used in the fabrication of the carbide-bindermetal composites of the invention can be expressed either in atomic percent of the constituent elements, for example as Ti- ,Mo C (u v w where u, v, and ware, re spectively, the atomic percent of titanium, molybdenum and carbon present in the alloy; or as relative mole fractions of metal and interstitial elements in the form (Ti,Mo )C (x y 1), whereby x and y are, respectively, the relative mole fractions (metal exchange) of titanium and molybdenum, and 2 measures the number of gramatoms carbon per gramatom metal.
- IOOy defines mole percent molybdenum exchange in (Ti,Mo,,)C and 100): defines mole percent titanium exchange.
- the two sets of composition variables are readily interconverted by the relatrons The latter method of defining the overall composition of the carbide component, the designation (Ti Mo )C-, is particularly useful in describing the concentration spaces of interstitial alloys and is used throughout the remainder of this specification.
- FIG. 1 is a graphical representation of the gross composition of the monocarbide solid solution (Ti, Mo,,)C and illustrates this phase of the composition of the present invention as well as the composition of the carbide alloys of the prior art tool developments in this area.
- the format of FIG. 1 was selected to show these compositions rather than the conventional triangular graph for showing ternary systems because in such a graph the ranges discussed below would be poorly shown due to excess compressions.
- the ordinate in FIG. 1 is the subscript z in the composition (Ti,Mo )C while the abscissa is the subscript y. Of course, the abscissa also defines x, since x y l.
- the ordinate is also shown as atomic percent carbon of the gross composition, with this atomic percent being equal to 1/1 z. The ordinate is linear for z, and is thus somewhat non-linear for atomic percent carbon.
- the abscissa is also shown as the percent exchange ratio of molybdenum for titanium, or the mole percent of molybdenum in the total metal content. This mole percent is equal to IOO-y.
- the line in FIG. 1 represents the composition line Ti-C-Mo C, or the composition in the chosen notation of a mixture of TiC and Mo C for varying ratios of the two compounds.
- the area bounded by ABCD represents the composition range investigated by R. Kieffer and D. Fister in the above referenced report.
- the area bounded by AB'C'D' represents the gross composition of most current commercial tools in this area.
- the composition at the point D, (Ti Mo -,)C approximately corresponds to the prior art comparison tool TiC-Mo C-Ni discussed below, and the point midway between B and C, or (Ti Mo )C when combined with a binder of 10 percent nickel, represents the optimum composition for the tools described in the above mentioned US. Pat. No. 2,967,349. This is the approximate composition of the prior art comparison tool TiC- Mo C-Mo-Ni discussed below.
- the gross carbide composition of the tool alloys in accordance with the present invention generally fall within the composition area bounded by EFGH, but preferably within the more confined area EF'GH.
- Carbide alloys located outside the area EF'GH', but inside the area EFGH, provide alloys of lesser quality when employed as cutting tools, but have other useful applications.
- the composition point, E corresponds to (Tl M0 )C point P to .l(7 .l.'l) .tl-'n Point to jo Qsol Jai d Point H to (Ti r,uM0,;,,,)C Point E corresponds to (Ti It is seen from FIG.
- the carbide phase of the composition of the present invention is characterized by being substantially richer in carbon than the prior art composition.
- the composition contains more carbon than the composition line TiC-Mo C for the same ratio.
- the prior art had assumed that this composition line represented the maximum possible carbon content for any given exchange ratio.
- higher amounts of molybdenum can be used than was possible with the prior art compositions. As is discussed in more detail below, this enables tools to cut under severe machining conditions as well as the light machining conditions to which the prior art TiC-Mo- C- Mo-Ni tools were limited.
- the carbide-metal composites of the invention may be fabricated by several different powder metallurgy techniques.
- a typical fabrication procedure is as follows: A mixture of carbide and binder alloy in the desired proportions are ball-milled in stainless steel jars for 3 to 4 days, using tungsten carbide-cobalt alloy balls and naphta or benzene as milling fluid. Depending on the power density, 3 to 5 weight percent pressing lubricant, usually paraffine, is added in solution with a suitable solvent such as benzene. The solvent for the paraffine is then evaporated, and the'dry powder mixture compactedinto the desired shapes at pressures ranging between 6 and '10 tons per square inch.
- the pressing lubricant is then removed by heating at temperatures between 200 and 700C under vacuum and the compacts, stacked on suitable support materials such as graphite, are sintered for l to 1% hrs. at temperatures between l350 and l450C under vacuum.
- suitable support materials such as graphite
- the sintered parts are ground on diamond wheels 'to the desired tool geometry.
- compositions formed in the manner just described can be termed-prehomogenized solid solutions.
- compositions of the present invention other method for making the compositions of the present invention is to first form such a prehomogenized solid solution which is a. molybdenum rich monocarbide solid solution, such as (Ti ,Mo )C and then reactively sintering it with suitable quantities of titanium monocarbide and binder material to bring the gross composition of the material to the desired levels.
- a prehomogenized solid solution which is a. molybdenum rich monocarbide solid solution, such as (Ti ,Mo )C
- suitable quantities of titanium monocarbide and binder material to bring the gross composition of the material to the desired levels.
- the bulk of the carbide grains in such composites if properly fabricated, will have a grain size equal orlcss than that in the as-milled condition. Wear-resistance. but especially top catering resistance, in machine-tool applications appears markedly improved by the presence of unreacted TiC in the core of a fraction of the carbide grains. Tendency towards plastic deformation under highcutting loads is somewhat'higher than in composites preparedfrom preformed solid. solutions and binder alloy with the same gross composition. Consequently, a lower binder content is used in reactively sintered composites for machine tool applications.
- TEST CONDITION A (wear test) 4340 steel, R22 to 29; cutting speed, 500 surface feet per minute; feed rate, 0.0151 inch per revolution; depth of cut, 0.060 inch; no coolant. SNG 433 inserts.
- TEST CONDITION B (roughing test) 4340 steel, R22 to 29; cutting speed, 500 surface feet per minute; feed rate, 0.0203 inch per revolution; depth ofcut, 0.125 inch; no coolant. SNG 433 inserts.
- TEST CONDITION D finishing hardened steel 4340 steel, R46 to 55; cutting speed, 250 surface feet per minute; feed rate, 0.0051 inch per revolution; depth of cut, 0.050 inch; no coolant. SNG 432 inserts.
- the wearland was measured at suitable time intervals with the aid of a tool microscope. Plastic deformation of the cutting edge and crater depth were measured on a metallograph.
- the flank data presented in the graphs and tables refer to the uniform wear zone of the tools.
- FIGS. 2 and 3 and the following Tables 1 through 4 show the performance of these four examples and of the leading prior art tools when subjected to the above described test conditions.
- EXAMPLE 1 v A powder blend consisting of 91.50 weight'percent of an alloy (Ti Mo )C and 8.50 weight percent nickel was prepared as a prehomogenized solid solution in the manner described above and the compacts sintered for 1 hour and 10 minutes at 1385C under vacuum. Average linearshrinkage during sintering was 16.4 percent. Average grain size of the carbide phase was approximately 4 micrometers and the hardness was 93.0 on the Rockwell A scale.
- EXAMPLE 2 titanium-molybdenum monocarbide solid solutions, with the outermost layer approximately corresponding to a carbide containing approximately (Ti r,Mo,.-,:,)C A hardness of 92.9 on the Rockwell A scale was measured for the sintered composite.
- EXAMPLE 3 A powder blend consisting of 33.6 weight percent of a prehomogenized solid solution having the composition (TL M JC 55.1 weight percent TiC [resulting in a gross carbide composition of (Ti Mo JC L 5.65 percent nickel and 5.65 percent cobalt, was reactively sintered in the manner described before the compacts sintered for 1 hour and 30 minutes at l395C under vacuum.
- the carbide phase in the sintered compact had an average grain size of 3 micrometers and the v measured hardness of the composite RA 93.1.
- FIG. 2 shows the averaged corner and flank wear as a function of cutting time for tools formed from the above Examples l and 2 and the prior art tools TlCMOgC'MO'Nl and K7H when subjected to the Test Condition A.
- Curve 12 shows the wear of the K7H tool, curve 14 the wear of the TiC-Mo C-Mo-Ni tool, curve 16 the wear of the Example 1 tool and curve 18 the wear of the Example 2 'tool.
- FIG. 3 shows the averaged corner and flank wear as a function of cutting time for tools formed from the above Examples 1 and 2 and. the prior art tool K7H when subjected to the Test Condition D. No curve for the prior art tool TiC-Mo C-Mo-Ni is shown since this tool failed almost instantly when subjected to this test condition.
- Curve 20 shows the wear of the K7H tool when machining steel having a hardness of R,- 49 to 52.
- Curve 22 shows the wear of the Example 1 tool 20 when machining steel having a hardness of R.- 51 to 54.
- Curve 24 shows the wear of the Example 2 tool when machining steel having a hardness of R 47 to 49.
- Table 6 shows the wear rate Of repr the total metal content of the carbide phase, for differsentative prior art commercial carbide tools w en sub- 7 20 ent test conditions.
- the curve 26 shows the avjected to the Test Condition B: eraged corner and flank wear rates and the curve 28 Table 6 Carbide Range of Observed Wear Rates Class Mils per Minute Flank Crater REMARKS C-5.
- C-5A 9. to 12 4 to 5 3 to 5 mils thermal deformation at 1.5 minutes
- FIG. 5 shows the top cratering rate for Test Condition A.
- the curve 30 shows the averaged corner and flank wear rates and the curve 32 shows the top cratering rate for Test Condition B.
- FIG. 6 shows averaged corner and flank wear rates for Test Condition D.
- curve 34 shows these rates for machining hardened corner delamination usually at start of second pass
- the curve 36 shows these compositions according to the present invention are rates for machining hardened steel having an R.- 50 shown in FIG. 6, described below. to 55.
- FIGS. 4, 5 and 6 show the wear rate of tools formed within the composition range of the present invention, from compositions in accordance with the present infor progressively more severe machining test, it is desirvention as a function of the exchange ratio of molybdeable to have higher exchange ratios of molybdenum for num for titanium, or the mole per cent molybdenum in titanium.
- the composition of the present invention is formed from the above described carbides bonded with a binder from the iron metal group, such as nickel, cobalt and iron.
- the binder can form from 5 to percent by weight of the composition. If too little binder is used, the composition will be too brittle. If too much binder is used, the composition will be too soft and will deform. Preferably, the binder forms from 8 to 12 percent by weight of the composition.
- the selection of the proper binder is somewhat dependent upon the mole per cent molybdenum in the carbide phase of the composition. For compositions in which the carbide phase contains less than 40 mole per cent molybdenum, cutting performance of cobalt or nickel bonded tools is considered equivalent. Carbides with more than 55 mole per cent molybdenum show embrittlement when using a cobalt binder. Iron binders are useful only for carbides containing less than 35 mole per cent molybdenum. Carbides with more than 60 mole percent molybdenum are unstable inv the presence of cobalt, and iron and decompose under formation of titanium-richer monocarbide solutions, n-carhides, and free carbon. -n-carbide formation is especially pronounced in substantially carbon-deficient carbide solutions.
- the properties of the carbide-metal composites can be extensively modified by alloying.
- the following summary of the effects of the principal alloying ingredients are based on performance studies of the composites as tool materials in turning 4340 steel. However, low level alloying with other elements may also be accomplished without departing from the spirit of the invention.
- Tungsten can be alloyed in substantial quantities (up to mole per cent) in exchange for molybdenum in the composites of the inventionwithout impairment of performance.
- Small additions of tungsten (less than 5 mole per cent in exchange for molybdenum) are beneficial in retarding grain growth during sintering.
- Titanium carbide-rich alloys containing more than mole per cent TiC are especially insensitive towards higher concentrations of tungsten, while molybdenum-rich alloys tend to reject free graphite from the solid solution if thetungsten exchange for molybdenum exceeds 20 mole per cent. Formation of free graphite can be avoided by lowering thecarbon content of the alloys between 0.5 and 1.5 atomic per cent.
- Table 8 shows the wear rates for'a number of tools formed from compositions incorporating some of the alloy substitutions just discussed when these tools were subjected to Test Condition A:
- the composites of the invention also may be modified and adapted for special applications by surface coatings of wear-resistant alloys based on carbides and nitrides of the refractory transition metals.
- the wear data also indicate that no performance advantage in cutting steels is being gained by increasing the titanium exchange in the composites of the invention substantially above 80 mole percent (approximately 69 weight percent TiC): tool reliability decreases rapidly, especially in somewhat heavier cuts, and the failure mechanisms become similar to those of the prior art TiC'MOgC-MO'Ni tool materials.
- a composition of material comprising sintered carbide-binder metal in which said carbide has titanium and molybdenum as its base metal and has a gross composition falling within the area EFGH of FIG. 1, and in which said binder is selected from the iron group metals and comprises between and 25 weight percent of the composition.
- the method of claim 9 which further comprises the step of grinding the sintered composite into predetermined shape to form a metal cutting tool.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
- Ceramic Products (AREA)
Abstract
A composition of material comprising a titanium molybdenum carbide and an iron group metal binder is disclosed which is particularly useful as a metal cutting tool. The carbide phase of the composition is substantially richer in carbon than the prior art. For any given metal exchange ration, the carbide phase contains more carbon than the composition line TiC-Mo2C for the same ratio. Also, the carbide phase can contain higher amounts of molybdenum than was used in the prior art.
Description
United States Patent [191 Rudy [ TOOL ALLOY COMPOSITIONS AND METHODS OF FABRICATION [76] Inventor: Erwin Rudy, 15750 NW. Oak Hill Dr., Beaverton, Oreg. 97005 [22] Filed: Feb. 14, 1972 [21] Appl. No.: 226,013
[52] US. Cl. 75/203, 29/1827 [51] Int. Cl. C226 29/00 [58] Field of Search 29/1827, 182.8; 75/202,
[ References Cited UNITED STATES PATENTS 2,967,349 -l/l96l I 'Humenik et'al. 29/1827 3,532,148 10/1970 Kolbl 24/1827 FOREIGN PATENTS OR APPLICATIONS 1,041,958 9/1966 Great Britain 75/203 OTHER PUBLICATIONS Suzuki, Hret al., Chem Abs No .114998 Vol. 74,
[ 1 Oct. 8, 1974 Fukatsu, T. et al., Chem Abs, No. 39650 Vol. 63, 1965, QdlA5l.
Schwarzkopf P. et al., Cemented Carbides, Macmillan, New York, 1960, p. 91, TP 770 53.
Primary Examiner-Carl D. Quarforth Assistant Examiner-R. E. Schafer Attorney, Agent, or Firm-Ronald W. Reagin 57 ABSTRACT A composition of material comprising a titanium molybdenum carbide and an iron group metal binder is disclosed which is particularly useful as a metal cutting tool. The carbide phase of the composition is substantially richer in carbon than the prior art. For any given metal exchange ration, the carbide phase contains more carbon than the composition line TiC- Mo C for the same ratio. Also, the carbide phase can contain higher amounts of molybdenum than was used in the prior art.
Claims, 6 Drawing Figures MOLYBDENIUM EXCHANGE 0R MOLE PERCENT MOLYBDENIUM OF TOTAL METAL CONTENT 0% 10% 2 IN (Ti Mo lC a o u m ATOMIC PERCENT CARBON y m m, m ic PATENTEDum 8 I974 AVERAGED CORNER AND FLANK WEAR, MILS SHEET 2 III 3 MILS/MINUTE I I I I I I FAILURE BY CORNER CHIPPING K7H (R 491052) I EXAMPLE 1 (RC 511054) 2 EXAMPLE II (R 4710 49) I I I I I I I40 I60 CUTTING TIME MINUTES w METAL. EXCHANGE IN (TLMQC MOLE Mo TEST CONDITION A PATENTEDnm 8 I974 MILS /MINUTE WEAR RATE MILS /MINUTE WEAR RATE I I 1 l 20 30 4o 50 e0 METAL EXCHANGE IN (Ti,Mo)C MOLE Mo TEST CONDlTlON a I I I l 'METAL EXCHANGE IN (Ti,M0)C MOLE Mo TEST CQNDITION o TOOL ALLOY COMPOSITIONS AND METHODS OF FABRICATION The present invention relates to improved cemented carbide alloys and more particularly to improved monocarbide alloys of titanium and molybdenum which are substantially richer in carbon than the prior art alloys of those metals and which, with a proper binder from the iron metal group, exhibits superior wear resistant characteristics.
Early efforts to improve the wear-resistance of sintered cemented carbides, such as WC-Co. and WC- TiC-TaC-Co. for steel cutting resulted in tool materials based on the system TiC-Mo- ONi. Such a system was proposed as early as 1931 in Austrian Patent No. 160,172. More recent developments of such systems are reported by R. Kieffer and F. Benesovsky in Hartmetalle (Vienna, Springer, 1965). Certain improvements of the tool materials based on TiC-Mo C-Ni through addition of molybdenum to the nickel binder to enhance wettability of the titanium carbide and thus increase strength of the s'intered carbide is disclosed in US. Pat. No. 2,967,349. This finding of improved performance of the carbide alloys at carbon concentrations less than corresponding to the composition line TiC-Mo C was essentially subsstantiated by mechanical property and hardness measurements in a study by R. Kieffer and D. Fister reported at Plansee berichte fur Pulvermelallurgie, Bd. 18 (i970), pp 246-253.
Wear resistance of these improved tools, which can be termed TiC-Mo C-Mo-Ni tools, in cutting soft'and medium hard steels is generally much higher than the tungstencarbide-based sintered carbides, but tool reliability is usually low because of their brittleness and their tendency to notch at the scale line. As a result, the full potential of their inherent high wear and cratering resistance is rarely realized in practice. An additional shortcoming of the tool materials is their inability to machine hard steels, such as steels having a Rockwell hardness (R of 50 or higher, at competitive metal removal rates. Current usage is thus limited to machining of soft to medium hard low alloy steels under light cutting conditions, and machining of cast irons'and steels.
Efforts to adapt the TiC-Mo C-Mo-Ni tool materials for roughing steels by decreasing their brittleness through higher binder contents met only with limited success. When this is done, their wear resistance appears substantially impaired and the high binder tools show a marked tendency to plastically deform at increased thermal loads.
It is accordingly an object of the present-invention to provide an improved composition of material which exhibits improved wear resistant characteristics.
It is another object of the present invention to'provide an improved monocarbide alloy of titanium and molybdenum which is substantially richer in carbon than such prior art alloys and which, generally, also contains more molybdenum than is proposed by the prior art.
It is another object of this invention to provide such alloys which are stable in the presence of iron group metal binder alloys, in particular nickel, and which afford cemented carbide tool materials superior in their overall characteristics to the TiC-Mo C-Mo-Ni tool alloys.
It is a further object of this invention to provide such alloys which can be cemented using cobalt and iron, without causing embrittlement of the alloys by formation of brittle intermetallic phases of or of n-carbides, such as observed in carbon alloys with compositions falling in the area bounded by TiC-Mo C-Mo and TiC- Mo C-Mo-Ti.
Briefly stated, in accordance with the present invention, cemented carbide alloys are provided which are based on the monocarbide solid solution (Ti, M0)C and which have carbon contents higher than the composition line TiC-Mo- C. This monocarbide solid solution is cemented with an iron group metal binder which forms between 5 and 25 percent by weight of the total composition. The carbon content higher than the composition line TiC-Mo C is greater for higher exchange ratios of molybdenum for titanium. For example, it has been discovered in the present invention that from 6 to 60 percent of the titanium in the monocarbide can be exchanged for molybdenum. For the composition (Ti M0 C, the value ofz can range from 0.972 to 0.985. This is contrasted with a value of z of 0.969 on the composition line TiC-MoC for this metal exchange ratio. For the composition (Ti Mo C in which 60 percent of the titanium has been exchanged for molybdenum, the value of 2 can range from 0.71 to 0.90. This is contrasted with a value of z of 0.70 on the composition line TiC-Mo C for this metal exchange ratio.
In the preferred range of the present invention, from 12 to 50 percent of the titanium in the monocarbide has been exchanged for molybdenum. For the composition (Ti Mo C the value of z can range from 0.95 to 0.97. For the composition(Ti Mo C the value of 2 can range from 0.78 to'0.88. In the preferred range of the invention, the monocarbide solid solution within the ranges just described is cemented with between 8 and 12 percent by weight of an iron group metal binder, preferablynickel or cobalt or a combination of these metals. j
For a complete understanding of the present invention, together with an appreciation of its other objects and advantages, please see the following detailed description of the invention and the attached drawings, in which:
FIG. 1 is a graphical representation of the monocarbide solid solution phase of the present invention and also shows the composition of the carbide alloys of the prior art tool developments in this area which were discussed above;
FIGS. 2' and 3 wear curves comparing the wear of tools according to the present invention and according to the prior art when subjected to identical test condi tions; and
FIGS. 4 through 6 show the wear rate of tools in accordance with the present invention as a function of the exchange ratio of molybdenum forv titanium (or the mole percent of molybdenum in the total metal content) for different test conditions.
The-compositions of the carbide component used in the fabrication of the carbide-bindermetal composites of the invention can be expressed either in atomic percent of the constituent elements, for example as Ti- ,Mo C (u v w where u, v, and ware, re spectively, the atomic percent of titanium, molybdenum and carbon present in the alloy; or as relative mole fractions of metal and interstitial elements in the form (Ti,Mo )C (x y 1), whereby x and y are, respectively, the relative mole fractions (metal exchange) of titanium and molybdenum, and 2 measures the number of gramatoms carbon per gramatom metal.
It is noted that IOOy defines mole percent molybdenum exchange in (Ti,Mo,,)C and 100): defines mole percent titanium exchange. The two sets of composition variables are readily interconverted by the relatrons The latter method of defining the overall composition of the carbide component, the designation (Ti Mo )C-, is particularly useful in describing the concentration spaces of interstitial alloys and is used throughout the remainder of this specification.
FIG. 1 is a graphical representation of the gross composition of the monocarbide solid solution (Ti, Mo,,)C and illustrates this phase of the composition of the present invention as well as the composition of the carbide alloys of the prior art tool developments in this area. The format of FIG. 1 was selected to show these compositions rather than the conventional triangular graph for showing ternary systems because in such a graph the ranges discussed below would be poorly shown due to excess compressions.
The ordinate in FIG. 1 is the subscript z in the composition (Ti,Mo )C while the abscissa is the subscript y. Of course, the abscissa also defines x, since x y l. The ordinate is also shown as atomic percent carbon of the gross composition, with this atomic percent being equal to 1/1 z. The ordinate is linear for z, and is thus somewhat non-linear for atomic percent carbon. The abscissa is also shown as the percent exchange ratio of molybdenum for titanium, or the mole percent of molybdenum in the total metal content. This mole percent is equal to IOO-y.
The line in FIG. 1 represents the composition line Ti-C-Mo C, or the composition in the chosen notation of a mixture of TiC and Mo C for varying ratios of the two compounds. The area bounded by ABCD represents the composition range investigated by R. Kieffer and D. Fister in the above referenced report. The area bounded by AB'C'D' represents the gross composition of most current commercial tools in this area. The composition at the point D, (Ti Mo -,)C approximately corresponds to the prior art comparison tool TiC-Mo C-Ni discussed below, and the point midway between B and C, or (Ti Mo )C when combined with a binder of 10 percent nickel, represents the optimum composition for the tools described in the above mentioned US. Pat. No. 2,967,349. This is the approximate composition of the prior art comparison tool TiC- Mo C-Mo-Ni discussed below.
The gross carbide composition of the tool alloys in accordance with the present invention generally fall within the composition area bounded by EFGH, but preferably within the more confined area EF'GH. Carbide alloys located outside the area EF'GH', but inside the area EFGH, provide alloys of lesser quality when employed as cutting tools, but have other useful applications. In the chosen notation, the composition point, E corresponds to (Tl M0 )C point P to .l(7 .l.'l) .tl-'n Point to jo Qsol Jai d Point H to (Ti r,uM0,;,,,)C Point E corresponds to (Ti It is seen from FIG. 1 that the carbide phase of the composition of the present invention is characterized by being substantially richer in carbon than the prior art composition. For any given metal exchange ratio, the composition contains more carbon than the composition line TiC-Mo C for the same ratio. The prior art had assumed that this composition line represented the maximum possible carbon content for any given exchange ratio. Also, in accordance with the present invention, higher amounts of molybdenum can be used than was possible with the prior art compositions. As is discussed in more detail below, this enables tools to cut under severe machining conditions as well as the light machining conditions to which the prior art TiC-Mo- C- Mo-Ni tools were limited.
The carbide-metal composites of the invention may be fabricated by several different powder metallurgy techniques. A typical fabrication procedure is as follows: A mixture of carbide and binder alloy in the desired proportions are ball-milled in stainless steel jars for 3 to 4 days, using tungsten carbide-cobalt alloy balls and naphta or benzene as milling fluid. Depending on the power density, 3 to 5 weight percent pressing lubricant, usually paraffine, is added in solution with a suitable solvent such as benzene. The solvent for the paraffine is then evaporated, and the'dry powder mixture compactedinto the desired shapes at pressures ranging between 6 and '10 tons per square inch. The pressing lubricant is then removed by heating at temperatures between 200 and 700C under vacuum and the compacts, stacked on suitable support materials such as graphite, are sintered for l to 1% hrs. at temperatures between l350 and l450C under vacuum. For the evaluation of the alloys of the invention are machine tools, the sintered parts are ground on diamond wheels 'to the desired tool geometry.
A typical fabrication procedure for an alloy containing titanium and molybdenum in the molar ratios 6:4 and having a carbon content of 47.9 atomic percent, is described below. The composition of this alloy in the previously described notation is (Ti Mow) C A carefully blended powder mixture consisting of 46 weight percent TiC, 52.17 weight percent Mo C and 1.83 weight percent carbon was hot pressed in graphite dies at approximately 2000C to a density corresponding to about 75 percent of the theoretical. The compacts were then placed in a graphite container, homogenized for 3 hours at 2000C under a vacuum of 3 X 10 torr. and then crushed and ball milled to yield a grain size of less than 47 micrometers. The master alloy powder was then analyzed and homogeneity'was ascertained by X-ray diffraction.
Compositions formed in the manner just described can be termed-prehomogenized solid solutions. An-
, other method for making the compositions of the present invention is to first form such a prehomogenized solid solution which is a. molybdenum rich monocarbide solid solution, such as (Ti ,Mo )C and then reactively sintering it with suitable quantities of titanium monocarbide and binder material to bring the gross composition of the material to the desired levels.
Aside from the routine fabrication variables, choice of composition of the carbide ingredient for a given gross composition of the composite strongly influences microstructure and phase distribution and, as a result,
the properties of the sintered compacts. Thus, for example, very fme-grained composites are obtained by the reactive sintering method just discussed. The finegrained structures in such composites are attributable to dissolution of the carbide components in the binder at sintering temperatures and reprecipitation of the more stable, equilibrium carbide solid solution from the liquid binder alloys. Concurrent with these dissolution/precipitation reactions are reactions involving a preferential transport of molybdenum-rich monocarbide solid solution to the titanium carbide grains to form an alloyed surface layer which, owing to its higher molybdenum content, is better wetted by the binder alloy and thus affords a stronger bond than is possible between TiC and binder metal alone. In general, the bulk of the carbide grains in such composites. if properly fabricated, will have a grain size equal orlcss than that in the as-milled condition. Wear-resistance. but especially top catering resistance, in machine-tool applications appears markedly improved by the presence of unreacted TiC in the core of a fraction of the carbide grains. Tendency towards plastic deformation under highcutting loads is somewhat'higher than in composites preparedfrom preformed solid. solutions and binder alloy with the same gross composition. Consequently, a lower binder content is used in reactively sintered composites for machine tool applications.
In general, studies of the performanceof the alloys of ple, carbide deficient gross compositions could be formed, mixed with binder and sintered in a carburizing atmosphere.
The following tables and graphs show the performance of a large number of tools having different composotions within the range of the invention and also give comparison data for a number of prior art tools which to 38, R,.46 to 50, and R to 55. Unless otherwise noted, test conditions referred to inthe tables were:
TEST CONDITION A=(wear test) 4340 steel, R22 to 29; cutting speed, 500 surface feet per minute; feed rate, 0.0151 inch per revolution; depth of cut, 0.060 inch; no coolant. SNG 433 inserts.
TEST CONDITION B (roughing test) 4340 steel, R22 to 29; cutting speed, 500 surface feet per minute; feed rate, 0.0203 inch per revolution; depth ofcut, 0.125 inch; no coolant. SNG 433 inserts.
TEST CONDITION C 4340 steel, R33 to 38; cutting speed, 500 surface feet per minute; feed rate, 0.0102 inch per revolution; depth of cut; 0.060 inch; no coolant. SNG 433 inserts.
TEST CONDITION D (finishing hardened steel) 4340 steel, R46 to 55; cutting speed, 250 surface feet per minute; feed rate, 0.0051 inch per revolution; depth of cut, 0.050 inch; no coolant. SNG 432 inserts.
The wearland was measured at suitable time intervals with the aid of a tool microscope. Plastic deformation of the cutting edge and crater depth were measured on a metallograph. The flank data presented in the graphs and tables refer to the uniform wear zone of the tools.
To obtain a comparative performance evaluation of the composites of the invention, a cross section of representative tools from different manufacturers were also tested under identical conditions and the best performing tools selected as comparison standards; Tools from the C 5and C-6 class carbides manufactured by different companies proved fairly equivalent andare thus not specifically identified in the tables. Large differences in the cutting performance of the C-7 and C-8 class of carbides were noted, however, in machining fully hardened 4340 steel. The grade K7H manufactured by the Kennametal Company, 1000 Lloyd Avenue, Latrobe, Pennsylvania was selected as the main comparison tool for this particular application because this is a tool which is widely used commercially for this type of machining.
The following four examples, which are representative of the compositions of the present invention, describe in detail four specific compositions and the manner in which they were fabricated. FIGS. 2 and 3 and the following Tables 1 through 4 show the performance of these four examples and of the leading prior art tools when subjected to the above described test conditions.
EXAMPLE 1 v A powder blend consisting of 91.50 weight'percent of an alloy (Ti Mo )C and 8.50 weight percent nickel was prepared as a prehomogenized solid solution in the manner described above and the compacts sintered for 1 hour and 10 minutes at 1385C under vacuum. Average linearshrinkage during sintering was 16.4 percent. Average grain size of the carbide phase was approximately 4 micrometers and the hardness was 93.0 on the Rockwell A scale.
EXAMPLE 2 titanium-molybdenum monocarbide solid solutions, with the outermost layer approximately corresponding to a carbide containing approximately (Ti r,Mo,.-,:,)C A hardness of 92.9 on the Rockwell A scale was measured for the sintered composite.
EXAMPLE 3 A powder blend consisting of 33.6 weight percent of a prehomogenized solid solution having the composition (TL M JC 55.1 weight percent TiC [resulting in a gross carbide composition of (Ti Mo JC L 5.65 percent nickel and 5.65 percent cobalt, was reactively sintered in the manner described before the compacts sintered for 1 hour and 30 minutes at l395C under vacuum. The carbide phase in the sintered compact had an average grain size of 3 micrometers and the v measured hardness of the composite RA 93.1.
EXAMPLE 4 Table 1 Wear Pattern of the Tools Described in Examples 1 through 4 in Comparison to Commercial Sintered Carbides. Test Condition A Total Cutting Time WEAR PATTERN" Crater Tool Minutes A B C D Depth Remarks Example 1 40.00 .00l" .006" .010" .005" .0031" Example 2 60.20 .001" .005" .007" .003" .003" Example 3 31.79 .001" .007" .006" .002" .002" Example 4 79.05 .001" .008" .012" .002" .0034" K7H 49.89 .002" .010" .021 .006" .0085" TiC-Mo,C-Mo-Ni 46.03 .0Ol .007" .012" .038" .0023" Failed chipping at scale line t) Wear Pattern Nomenclature: A....Notch due to crater breakout 8....Corncr wear C....Flank wear D....Notch at scale line Table 2 Wear Pattern of the Tools Described in Examples 1 through 4 in Comparison to Commercial Sintered Carbides. Test Condition B Total Cutting Time Wear Pattern* Crater Edge Re- Tool Minutes A B D Depth Deform marks Example 1 8.18 .00l .004" .004" .006" .0015" .0005" fntlmtd at e Example 2 10.05 .001 .006+" .005" .004" .0015 .O005 fnot ailed Example 3 5.06 .001" .007 .006" .003" .001" .002" K7H 9.82 .020" .008" .006" .014" .0052" .0005" chipped at scale line TiC-Mo,C-Mo-Ni 4.68 .001" .010+" .008 .022" .0017" .0028 chipped at scale line C-5 1.70 .006" .020" .016" .002" .0067 .0045
() Wear pattern nomenclature same as Table 1.
Table 3 Wear Pattern of the Tools Described in Examples 1 and 2 in Comparison to Commercial Sintered Carbides Test Condition C Total Cutting Time Wear Pattern Crater Tool Minutes A B D Depth Remarks Example 1 45.58 .00l" .006" .008 .002" .002" Example 2 60.66 .00l" .005" .006" .002" .0021 K7H 34.87 .001 .009 .012" .004" .005" TiC-Mo CMo-Ni 53.24 .004" .005" .007" .007" .0015" t) Wear Pattern Nomenclature same as Table l.
Table 4 Wear Pattern of the Tools Described in Examples 1 and 2 in Comparison to Commercial Sintered Carbides Test Condition D Total 7 Hardness Cutting Time Wear Pattern* Crater Re- Tool of Steel Minutes A B C D Depth marks Exam- R51 to 54 107.42 .001" .OO6" -.008" .001" .00075" not ple 1 failed Exam- R SS to 57 9.82 .00l" .004-" .004" .00l" not ple l failed Ex'am- R47 to 49 157.77 .00l" .005" .006" .00l .0007" not pie 2 failed K7H R,49 to 52 88.47 .021" .007" 010+" .001" chipped at (A) K7H R55 to 57 9.96 .001" 005+" .024 .001 edge breakdown Wear Pattern Nomenclature same as Table l FIGS. 2 and 3 are graphical representations of some of the tests which provided the data for Tables 1 and 4 respectively. FIG. 2 shows the averaged corner and flank wear as a function of cutting time for tools formed from the above Examples l and 2 and the prior art tools TlCMOgC'MO'Nl and K7H when subjected to the Test Condition A. Curve 12 shows the wear of the K7H tool, curve 14 the wear of the TiC-Mo C-Mo-Ni tool, curve 16 the wear of the Example 1 tool and curve 18 the wear of the Example 2 'tool.
FIG. 3 shows the averaged corner and flank wear as a function of cutting time for tools formed from the above Examples 1 and 2 and. the prior art tool K7H when subjected to the Test Condition D. No curve for the prior art tool TiC-Mo C-Mo-Ni is shown since this tool failed almost instantly when subjected to this test condition. Curve 20 shows the wear of the K7H tool when machining steel having a hardness of R,- 49 to 52. Curve 22 shows the wear of the Example 1 tool 20 when machining steel having a hardness of R.- 51 to 54. Curve 24 shows the wear of the Example 2 tool when machining steel having a hardness of R 47 to 49.
It is seen from the curves of FIGS. 2 and 3 that the same compositions according to the present invention have superior wear characteristics over both the best The following Table 5 shows the wear rate of a large number of tools formed from specific compositions in accordance with the present invention and also of several prior art tools when subjected to the Test Condition A.
Table 5 Gross Composition of Observed Wear Rates .Mils per Minute Table Continued Gross ()hscrvctl Wear Rates Composition of Mils per Minute Carbide Phase Binder Flank Crater Remarks Prior Art Tools C-5. C-SA l.3l .7 .40-.80 typical tool life 7 to minutes TiC-Mo C-Ni .l5.25 .03.O6 Notching at scale line TiCMo C-Mo-Ni .09.2I .05 Severe notching at scale line.
Cast Carbide (Ti-W-C base) .30.35 .09
TiN coated C-5 (for life of coating) .l2.l8 .03-.I0 Typical tool life minutes TiC coated C-6 (for life of coating) .l4-.l6 .08-.l2
The following Table 6 shows the wear rate Of repr the total metal content of the carbide phase, for differsentative prior art commercial carbide tools w en sub- 7 20 ent test conditions. In FIG. 4 the curve 26 shows the avjected to the Test Condition B: eraged corner and flank wear rates and the curve 28 Table 6 Carbide Range of Observed Wear Rates Class Mils per Minute Flank Crater REMARKS C-5. C-5A 9. to 12 4 to 5 3 to 5 mils thermal deformation at 1.5 minutes C-6, C-7 .55 to .85 .5 to .7 l to 3 mils thermal deformation after 5 to 10 minutes.
TiC-Mo C-Mo-Ni .7 to .9 .35 to .45 Frequent tool breakage, 2 to 3 mils thermal deformation after 4 to 6 minutes The corresponding wear rates for tools formed from compositions according to the present invention are shown in FIG. 5, described below.
The following Table 7 shows the wear rates of representative prior art commercial carbide tools when subiected to Test Condition D:
shows the top cratering rate for Test Condition A. In FIG. 5 the curve 30 shows the averaged corner and flank wear rates and the curve 32 shows the top cratering rate for Test Condition B. FIG. 6 shows averaged corner and flank wear rates for Test Condition D. The
FIGS. 4, 5 and 6 show the wear rate of tools formed within the composition range of the present invention, from compositions in accordance with the present infor progressively more severe machining test, it is desirvention as a function of the exchange ratio of molybdeable to have higher exchange ratios of molybdenum for num for titanium, or the mole per cent molybdenum in titanium.
script 1 in (Ti,Mo .,)C This is because it has been found that, within the range of the present invention as shown in FIG. 1, the performance of a tool is a function of the metal exchange ratio, but for a given metal exchange ratio varies very little with changes in carbon. This is contrasted with the prior art compositions in which the carbon content was critical, and in which slight changes in the carbon content could change a satisfactory material into a very brittle material. Thus, it is much easier to formulate the compositions of the present invention.
The composition of the present invention is formed from the above described carbides bonded with a binder from the iron metal group, such as nickel, cobalt and iron. The binder can form from 5 to percent by weight of the composition. If too little binder is used, the composition will be too brittle. If too much binder is used, the composition will be too soft and will deform. Preferably, the binder forms from 8 to 12 percent by weight of the composition.
The selection of the proper binder is somewhat dependent upon the mole per cent molybdenum in the carbide phase of the composition. For compositions in which the carbide phase contains less than 40 mole per cent molybdenum, cutting performance of cobalt or nickel bonded tools is considered equivalent. Carbides with more than 55 mole per cent molybdenum show embrittlement when using a cobalt binder. Iron binders are useful only for carbides containing less than 35 mole per cent molybdenum. Carbides with more than 60 mole percent molybdenum are unstable inv the presence of cobalt, and iron and decompose under formation of titanium-richer monocarbide solutions, n-carhides, and free carbon. -n-carbide formation is especially pronounced in substantially carbon-deficient carbide solutions.
The properties of the carbide-metal composites can be extensively modified by alloying. The following summary of the effects of the principal alloying ingredients are based on performance studies of the composites as tool materials in turning 4340 steel. However, low level alloying with other elements may also be accomplished without departing from the spirit of the invention.
1. Substituting vanadium for up to 20 percent of the 1 amount of titanium present proves essentially inert with respect to cutting performance. Carbide grain growth during sintering, however, appears en-' hanced, necessitating lower'sintering temperatures and more careful temperature control in the fabrication of vanadium-alloyed composites.
2. Niobium, tantalum, and hafnium added in ex- Gross change for up to 30 mole per cent of the titanium in molybdenum-rich alloys, or alloys containing more than 40 mole per cent molybdenum, decrease tool deformability and thus permits the use of higher binder contents than is possible with the unalloyed composite. Alloying of high titanium alloys with these elements does not result in beneficial effects.
3. Addition of zirconium in exchange for titanium causes'a marked decrease in the performance of the composites as machine tools.
4. Tungsten can be alloyed in substantial quantities (up to mole per cent) in exchange for molybdenum in the composites of the inventionwithout impairment of performance. Small additions of tungsten (less than 5 mole per cent in exchange for molybdenum) are beneficial in retarding grain growth during sintering. Titanium carbide-rich alloys containing more than mole per cent TiC are especially insensitive towards higher concentrations of tungsten, while molybdenum-rich alloys tend to reject free graphite from the solid solution if thetungsten exchange for molybdenum exceeds 20 mole per cent. Formation of free graphite can be avoided by lowering thecarbon content of the alloys between 0.5 and 1.5 atomic per cent. The use of cobalt and iron-base binders is not recommended for substantially carbon-deficient, tungsten-containing carbides, as they invariably cause embrittlement of the composite by ry-carbide formation. v V Y 5. Low level (less than 10 mole percent) additions of chromium in exchange for molybdenum (or for molybdenum and tungsten'if tungsten is also used) appeared to be inert, while larger additions resulted in apronounced decrease in the performance of the composites as machine tools.
6. Addition of nitrogen in partial replacement (up to 25 mole percent) for carbon slightly "improves wear-resistance of the composites under light cutting conditions. v I it Alloying with other transition metal carbides was accomplishedby using preformed solid solutions of these carbides with TiC, such as (T,W)C and (Ti,Hf)C, or with MoC such as, for example, (Ta,Mo)C, and (V,Mo)C,. Preparation of these carbide solid solutions was analogous to the procedures described for the titanium-molybdenum carbide alloy.
The following Table 8 shows the wear rates for'a number of tools formed from compositions incorporating some of the alloy substitutions just discussed when these tools were subjected to Test Condition A:
Table 8 Observed Wear Rates Composition of Mils per Minute Carbide Phase Binder Flank crater Remarks (Ti ,Ta ,Mo .,')C l 1%Ni 28 I9 Brittle (Ti ,Ta ,Mo -,)C l3%Ni 19 I6 (Ti V MOsJC 12%Ni l8 l3 (Ti Nb Mo mC I3%Ni I2 07 i iaz am aul .im
Excess carbon Brittle Edge chipping The composites of the invention also may be modified and adapted for special applications by surface coatings of wear-resistant alloys based on carbides and nitrides of the refractory transition metals.
The data shown in the above discussed tables and graphs is representative of many other alloys within the range of the invention which were prepared and tested. It becomes evident from a comparison of the perform-' ance data that the carbide-metal composites of this invention afford a substantial improvement of the existing carbides in terms of tool reliability, wear performance, and versatility of application. It is noted from the results presented that the molybdenum-richer compositions are particularly suited for rough cutting soft and medium hard steels and for machining hardened steels, while the titanium-richer composition (greater than 70 mole percent titanium) are better suited for light cutting and finishing of soft and medium hard steels. The wear data also indicate that no performance advantage in cutting steels is being gained by increasing the titanium exchange in the composites of the invention substantially above 80 mole percent (approximately 69 weight percent TiC): tool reliability decreases rapidly, especially in somewhat heavier cuts, and the failure mechanisms become similar to those of the prior art TiC'MOgC-MO'Ni tool materials.
While the principal application of the new composite materials ofthe invention is envisioned to be in the area of machine tools. their high wear-resistance will make them also suitable for applications where currently tungsten carbide-based cemented are used, such as wear-resistant linings, gage-blocks, bearings, etc.. and for milling and drilling in the mining industry.
While the invention is thus disclosed and many specific embodiments described in detail. it is not intended that the invention be limited to those shown embodiments. Instead, many modifications will occur to those skilled in the art which fall within the spirit and scope of the invention. It is intended that the invention be limited only by the appended claims.
What is claimed is:
1. A composition of material comprising sintered carbide-binder metal in which said carbide has titanium and molybdenum as its base metal and has a gross composition falling within the area EFGH of FIG. 1, and in which said binder is selected from the iron group metals and comprises between and 25 weight percent of the composition.
2. A composition of material according to claim 1 in which said carbide has a gross composition falling within the area E'F'GH' of FIG. 1.
3. A composition of material according to claim 2 in which said binder is selected from the group consisting of nickel and cobalt and comprises between 8 and 12 weight percent of the composition.
4. A composition of material according to claim 1 in which up to 30 mole percent of the total amount of titanium in the composition is replaced by a material chosen from the group consisting of hafnium. niobium and tantalum.
5. A composition of material according to claim 1 in which up to 50 mole percent of the total amount of molybdenum in the composition is replaced by tungsten.
6. A composition of material according to claim 5 in which up to 10 mole percent of the combined amounts of molybdenum and tungsten in the composition is replaced by chromium.
7. A composition of material according to claim 1 in which up to 25 mole percent of -the total amount of carbon in the composition is replaced by nitrogen.
8. A composition of material according to claim 1 in which up to 20 mole percent of the total amount of titanium in the composition is replaced by vanadium.
9. The method of forming a composition of material comprising a sintered carbide-binder metal in which said carbidehas titanium and molybdenum as its base metal and has a predetermined gross composition falling with the area EFGH of FIG. 1, comprising the steps of;
forming a homogeneous solid solution powder alloy of (Ti.Mo)C which contains a higher mole percent molybdenum than said predetermined gross composition,
adding a sufficient amount of titanium monocarbide to said homogeneous solid solution powder alloy so that said powder alloy and said titanium monocarbide together have said predetermined gross composition,
adding binder material to said mixture,
mechanically blending said mixture until it has a uniform consistency,
compacting said mixture into a desired shape, and
sintering the composites so formed at an elevated temperature.
1.0. The method of claim 9 which further comprises the step of grinding the sintered composite into predetermined shape to form a metal cutting tool.
Claims (10)
1. A COMPOSITION OF MATERIAL COMPRISING SINTERED CARBIDEBINDER METAL IN WHICH SAID CARBIDE HAS TITANIUM AND MOLYBDENUM AS ITS BASE METAL AND HAS A GROSS COMPOSITION FALLING WITHIN THE AREA EFGH OF FIG. 1, AND IN WHICH SAID BINDER IS SELECTED FROM THE IRON METALS AND COMPRISES BETWEEN 5 AND 25 WEIGHT PERCENT OF THE COMPOSITION.
2. A composition of material according to claim 1 in which said carbide has a gross composition falling within the area E''F''G''H'' of FIG. 1.
3. A composition of material according to claim 2 in which said binder is selected from the group consisting of nickel and cobalt and comprises between 8 and 12 weight percent of the composition.
4. A composition of material according to claim 1 in which up to 30 mole percent of the total amount of titanium in the composition is replaced by a material chosen from the group consisting of hafnium, niobium and tantalum.
5. A composition of material according to claim 1 in which up to 50 mole percent of the total amount of molybdenum in the composition is replaced by tungsten.
6. A composition of material according to claim 5 in which up to 10 mole percent of the combined amounts of molybdenum and tungsten in the composition is replaced by chromium.
7. A composition of material according to claim 1 in which up to 25 mole percent of the total amount of carbon in the composition is replaced by nitrogen.
8. A composition of material according to claim 1 in which up to 20 mole percent of the total amount of titanium in the composition is replaced by vanadium.
9. The method of forming a composition of material comprising a sintered carbide-binder metal in which said carbide has titanium and molybdenum as its base metal and has a predetermined gross composition falling with the area EFGH of FIG. 1, comprising the steps of: forming a homogeneous solid solution powder alloy of (Ti,Mo)C which contains a higher mole percent molybdenum than said predetermined Gross composition, adding a sufficient amount of titanium monocarbide to said homogeneous solid solution powder alloy so that said powder alloy and said titanium monocarbide together have said predetermined gross composition, adding binder material to said mixture, mechanically blending said mixture until it has a uniform consistency, compacting said mixture into a desired shape, and sintering the composites so formed at an elevated temperature.
10. The method of claim 9 which further comprises the step of grinding the sintered composite into predetermined shape to form a metal cutting tool.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE794383D BE794383A (en) | 1972-02-14 | CARBIDE ALLOYS FOR CUTTING TOOLS | |
US00226013A US3840367A (en) | 1972-02-14 | 1972-02-14 | Tool alloy compositions and methods of fabrication |
CA157,528A CA976388A (en) | 1972-02-14 | 1972-11-27 | Tool alloy compositions and methods of fabrication |
IT55157/72A IT974419B (en) | 1972-02-14 | 1972-12-29 | COMPOSITION OF MATERIAL METALS CO FOR TOOLS AND METHOD OF PRODUCING IT |
GB184673A GB1419982A (en) | 1972-02-14 | 1973-01-12 | Metallic compositions |
FR7301286A FR2172097B1 (en) | 1972-02-14 | 1973-01-15 | |
DE2302317A DE2302317C3 (en) | 1972-02-14 | 1973-01-18 | Hard carbide alloy and process for its manufacture |
BR73967A BR7300967D0 (en) | 1972-02-14 | 1973-02-08 | COMPOSITION OF SINTERED MATERIAL AND SAME FORMATION PROCESS |
JP48017586A JPS4889807A (en) | 1972-02-14 | 1973-02-14 | |
AT132773A AT329289B (en) | 1972-02-14 | 1973-02-14 | SINTER CARBIDE AND METHOD FOR ITS PRODUCTION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00226013A US3840367A (en) | 1972-02-14 | 1972-02-14 | Tool alloy compositions and methods of fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
US3840367A true US3840367A (en) | 1974-10-08 |
Family
ID=22847201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00226013A Expired - Lifetime US3840367A (en) | 1972-02-14 | 1972-02-14 | Tool alloy compositions and methods of fabrication |
Country Status (10)
Country | Link |
---|---|
US (1) | US3840367A (en) |
JP (1) | JPS4889807A (en) |
AT (1) | AT329289B (en) |
BE (1) | BE794383A (en) |
BR (1) | BR7300967D0 (en) |
CA (1) | CA976388A (en) |
DE (1) | DE2302317C3 (en) |
FR (1) | FR2172097B1 (en) |
GB (1) | GB1419982A (en) |
IT (1) | IT974419B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4047897A (en) * | 1975-10-14 | 1977-09-13 | Ngk Spark Plug Co., Ltd. | Sintered alloy for cutting tools |
US4049380A (en) * | 1975-05-29 | 1977-09-20 | Teledyne Industries, Inc. | Cemented carbides containing hexagonal molybdenum |
US4066451A (en) * | 1976-02-17 | 1978-01-03 | Erwin Rudy | Carbide compositions for wear-resistant facings and method of fabrication |
US4101318A (en) * | 1976-12-10 | 1978-07-18 | Erwin Rudy | Cemented carbide-steel composites for earthmoving and mining applications |
US4120719A (en) * | 1976-12-06 | 1978-10-17 | Sumitomo Electric Industries, Ltd. | Cemented carbonitride alloys containing tantalum |
US4716019A (en) * | 1987-06-04 | 1987-12-29 | Gte Products Corporation | Process for producing composite agglomerates of molybdenum and molybdenum carbide |
DE3806602A1 (en) * | 1988-03-02 | 1988-07-07 | Krupp Gmbh | CARBIDE BODY |
US20050106056A1 (en) * | 2003-11-18 | 2005-05-19 | Dwa Technologies, Inc. | Manufacturing method for high yield rate of metal matrix composite sheet production |
US20050158230A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Methods for producing fine oxides of a metal from a feed material using multi-carbide grinding media |
US20050158227A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method for producing fine dehydrided metal particles using multi-carbide grinding media |
US20060162492A1 (en) * | 2003-05-20 | 2006-07-27 | Chun Changmin | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
CN100398440C (en) * | 2003-03-11 | 2008-07-02 | 普里梅精密材料有限公司 | Multi-carbide material manufacture and use |
US7442338B2 (en) * | 2001-11-13 | 2008-10-28 | Fundacion Inasmet | Product manufacture in structural metallic materials reinforced with carbides |
AU2006275742B2 (en) * | 2005-07-29 | 2010-09-09 | Primet Precision Materials, Inc. | Grinding media and methods associated with the same |
US10195612B2 (en) | 2005-10-27 | 2019-02-05 | Primet Precision Materials, Inc. | Small particle compositions and associated methods |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971656A (en) * | 1973-06-18 | 1976-07-27 | Erwin Rudy | Spinodal carbonitride alloys for tool and wear applications |
AU501073B2 (en) * | 1974-10-18 | 1979-06-07 | Sumitomo Electric Industries, Ltd. | Cemented carbonitride alloys |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR874342A (en) * | 1940-08-12 | 1942-08-04 | Comm Aciers Soc Ind | Process for the manufacture of hard alloys for tools and work instruments |
FR986190A (en) * | 1948-07-10 | 1951-07-27 | Metallwerk Plansee G M B H | Hard metal alloy and its manufacturing process |
DE918050C (en) * | 1950-06-03 | 1954-09-16 | Boehler & Co Ag Geb | Hard metal alloy |
FR1043475A (en) * | 1951-10-05 | 1953-11-09 | Boehler & Co Ag Geb | Process for the production of sintered alloys of hard metals |
-
0
- BE BE794383D patent/BE794383A/en unknown
-
1972
- 1972-02-14 US US00226013A patent/US3840367A/en not_active Expired - Lifetime
- 1972-11-27 CA CA157,528A patent/CA976388A/en not_active Expired
- 1972-12-29 IT IT55157/72A patent/IT974419B/en active
-
1973
- 1973-01-12 GB GB184673A patent/GB1419982A/en not_active Expired
- 1973-01-15 FR FR7301286A patent/FR2172097B1/fr not_active Expired
- 1973-01-18 DE DE2302317A patent/DE2302317C3/en not_active Expired
- 1973-02-08 BR BR73967A patent/BR7300967D0/en unknown
- 1973-02-14 JP JP48017586A patent/JPS4889807A/ja active Pending
- 1973-02-14 AT AT132773A patent/AT329289B/en not_active IP Right Cessation
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4049380A (en) * | 1975-05-29 | 1977-09-20 | Teledyne Industries, Inc. | Cemented carbides containing hexagonal molybdenum |
US4047897A (en) * | 1975-10-14 | 1977-09-13 | Ngk Spark Plug Co., Ltd. | Sintered alloy for cutting tools |
US4066451A (en) * | 1976-02-17 | 1978-01-03 | Erwin Rudy | Carbide compositions for wear-resistant facings and method of fabrication |
US4120719A (en) * | 1976-12-06 | 1978-10-17 | Sumitomo Electric Industries, Ltd. | Cemented carbonitride alloys containing tantalum |
US4101318A (en) * | 1976-12-10 | 1978-07-18 | Erwin Rudy | Cemented carbide-steel composites for earthmoving and mining applications |
US4716019A (en) * | 1987-06-04 | 1987-12-29 | Gte Products Corporation | Process for producing composite agglomerates of molybdenum and molybdenum carbide |
DE3806602A1 (en) * | 1988-03-02 | 1988-07-07 | Krupp Gmbh | CARBIDE BODY |
US4944800A (en) * | 1988-03-02 | 1990-07-31 | Krupp Widia Gmbh | Process for producing a sintered hard metal body and sintered hard metal body produced thereby |
US7442338B2 (en) * | 2001-11-13 | 2008-10-28 | Fundacion Inasmet | Product manufacture in structural metallic materials reinforced with carbides |
US7267292B2 (en) * | 2003-03-11 | 2007-09-11 | Primet Precision Materials, Inc. | Method for producing fine alumina particles using multi-carbide grinding media |
US7140567B1 (en) * | 2003-03-11 | 2006-11-28 | Primet Precision Materials, Inc. | Multi-carbide material manufacture and use as grinding media |
US20050158231A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method for producing highly transparent oxides of titanium using multi-carbide grinding media |
US20050155455A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Methods for producing titanium metal using multi-carbide grinding media |
US20050158227A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method for producing fine dehydrided metal particles using multi-carbide grinding media |
US20050158229A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method of increasing a reactive rate per mass of a catalyst |
US20050159494A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method for producing fluids having suspended ultrasmall particles using multi-carbide grinding media |
US20050158233A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method for producing fine alumina particles using multi-carbide ginding media |
US20050158232A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method for producing fine silicon carbide particles using multi-carbide grinding media |
US20050161540A1 (en) * | 2003-03-11 | 2005-07-28 | Robert Dobbs | Method for producing an ultrasmall device using multi-carbide grinding media |
US20050200035A1 (en) * | 2003-03-11 | 2005-09-15 | Robert Dobbs | Method of making multi-carbide spherical grinding media |
US20060157603A1 (en) * | 2003-03-11 | 2006-07-20 | Robert Dobbs | Method for producing diamond particles using multi-carbide grinding media |
US7665678B2 (en) | 2003-03-11 | 2010-02-23 | Primet Precision Materials, Inc. | Method for producing fine denitrided metal particles using grinding media |
US20050158234A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Method of making particles of an intermetallic compound |
US7213776B2 (en) | 2003-03-11 | 2007-05-08 | Primet Precision Materials, Inc. | Method of making particles of an intermetallic compound |
US20050158230A1 (en) * | 2003-03-11 | 2005-07-21 | Robert Dobbs | Methods for producing fine oxides of a metal from a feed material using multi-carbide grinding media |
US7578457B2 (en) | 2003-03-11 | 2009-08-25 | Primet Precision Materials, Inc. | Method for producing fine dehydrided metal particles using grinding media |
US7329303B2 (en) | 2003-03-11 | 2008-02-12 | Primet Precision Materials, Inc. | Methods for producing titanium metal using grinding media |
CN100398440C (en) * | 2003-03-11 | 2008-07-02 | 普里梅精密材料有限公司 | Multi-carbide material manufacture and use |
US7416141B2 (en) | 2003-03-11 | 2008-08-26 | Primet Precision Materials, Inc. | Method for producing diamond particles using grinding media |
US7288132B2 (en) * | 2003-05-20 | 2007-10-30 | Exxonmobil Research And Engineering Company | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
US20060162492A1 (en) * | 2003-05-20 | 2006-07-27 | Chun Changmin | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
US20050106056A1 (en) * | 2003-11-18 | 2005-05-19 | Dwa Technologies, Inc. | Manufacturing method for high yield rate of metal matrix composite sheet production |
US7625520B2 (en) * | 2003-11-18 | 2009-12-01 | Dwa Technologies, Inc. | Manufacturing method for high yield rate of metal matrix composite sheet production |
AU2006275742B2 (en) * | 2005-07-29 | 2010-09-09 | Primet Precision Materials, Inc. | Grinding media and methods associated with the same |
US10195612B2 (en) | 2005-10-27 | 2019-02-05 | Primet Precision Materials, Inc. | Small particle compositions and associated methods |
Also Published As
Publication number | Publication date |
---|---|
BR7300967D0 (en) | 1973-09-25 |
BE794383A (en) | 1973-07-23 |
CA976388A (en) | 1975-10-21 |
DE2302317A1 (en) | 1973-09-06 |
FR2172097A1 (en) | 1973-09-28 |
DE2302317B2 (en) | 1974-07-25 |
IT974419B (en) | 1974-06-20 |
FR2172097B1 (en) | 1976-11-05 |
AT329289B (en) | 1976-05-10 |
GB1419982A (en) | 1976-01-07 |
DE2302317C3 (en) | 1975-05-07 |
JPS4889807A (en) | 1973-11-24 |
ATA132773A (en) | 1975-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3840367A (en) | Tool alloy compositions and methods of fabrication | |
CA1078136A (en) | Cemented carbides containing hexagonal molybdenum carbide | |
US3971656A (en) | Spinodal carbonitride alloys for tool and wear applications | |
US3994692A (en) | Sintered carbonitride tool materials | |
US3490901A (en) | Method of producing a titanium carbide-containing hard metallic composition of high toughness | |
EP0380096B1 (en) | Cemented carbide drill | |
US4022584A (en) | Sintered cermets for tool and wear applications | |
US5288676A (en) | Cemented carbide | |
US4330333A (en) | High titanium nitride cutting material | |
JP2622131B2 (en) | Alloys for cutting tools | |
EP0635580A1 (en) | Nitrogen-containing hard sintered alloy | |
US4120719A (en) | Cemented carbonitride alloys containing tantalum | |
EP0417333B1 (en) | Cermet and process of producing the same | |
US3737289A (en) | Carbide alloy | |
US4019874A (en) | Cemented titanium carbide tool for intermittent cutting application | |
US4400213A (en) | Novel hard compositions and methods of preparation | |
JPS6020456B2 (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPS5823455B2 (en) | sintered hard alloy | |
US3746517A (en) | Hard sintered composition | |
JPH08176719A (en) | Nitrogen-containing sintered hard alloy | |
JPS61199048A (en) | Sintered hard alloy and its production | |
JPS5942067B2 (en) | Tough tungsten carbide-based cemented carbide for cutting tools | |
US3725055A (en) | Carbide-metal composites | |
JPS6056781B2 (en) | Cermets for cutting tools and hot working tools | |
KR890004538B1 (en) | Material for cutting tool with superior characteristic at high temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TELEDYNE INDUSTRIES, INC., 1901 AVENUE OF THE STAR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RUDY, ERWIN;REEL/FRAME:004008/0913 Effective date: 19820611 |