NO115029B - - Google Patents

Download PDF

Info

Publication number
NO115029B
NO115029B NO161127A NO16112762A NO115029B NO 115029 B NO115029 B NO 115029B NO 161127 A NO161127 A NO 161127A NO 16112762 A NO16112762 A NO 16112762A NO 115029 B NO115029 B NO 115029B
Authority
NO
Norway
Prior art keywords
oscillations
machine
stated
bilge
sieve
Prior art date
Application number
NO161127A
Other languages
Norwegian (no)
Inventor
E Schultz
J Sprague
Original Assignee
Merck & Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck & Co Inc filed Critical Merck & Co Inc
Publication of NO115029B publication Critical patent/NO115029B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/76Unsaturated compounds containing keto groups
    • C07C59/90Unsaturated compounds containing keto groups containing singly bound oxygen-containing groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • C07C45/292Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups with chromium derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/363Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/373Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in doubly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • C07C59/66Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings
    • C07C59/68Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring
    • C07C59/70Ethers of hydroxy-acetic acid, e.g. substitutes on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/76Unsaturated compounds containing keto groups
    • C07C59/84Unsaturated compounds containing keto groups containing six membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/32Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups
    • C07C65/40Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups containing singly bound oxygen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Paper (AREA)

Description

Framgangsmåte til påvirkning av fiberfordelingen på silpartiet av papir- og pappmaskiner ved hjelp av rettlinjede svingninger, samt maskin til utførelse av framgangsmåten. Method for influencing the fiber distribution on the sieve part of paper and cardboard machines by means of rectilinear oscillations, as well as a machine for carrying out the method.

Det er kjent at særlig det på langsilpapir-maskiner framstilte papir og papp har forskjellige mekaniske egenskaper i silbanens It is known that especially the paper and cardboard produced on long screen paper machines have different mechanical properties in the screen path

lengde- og tverretning. Denne omstendighet longitudinal and transverse direction. This circumstance

skyldes at de fibre som danner papiret har is because the fibers that form the paper have

svært ulike lengde- og tverrdimensjoner og very different length and width dimensions and

lange, tynne fibre blir — når papirstoffsus-pensjonen (massen) strømmer ut på den van-drende papirmaskinsil — av strømkreftene long, thin fibers become — when the paper material suspension (pulp) flows out onto the moving paper machine screen — by the current forces

rettet ut likt og jevnt i silbanens retning. aligned equally and evenly in the direction of the silage path.

Hertil kommer at massens hastighet aldri In addition, the velocity of the mass never

svarer til papirmaskinsilens hastighet, idet corresponds to the speed of the paper machine sieve, as

den som oftest er mindre, men i enkelte spe-sielle tilfeller kan den også være større enn which is most often smaller, but in some special cases it can also be larger than

silens hastighet. the speed of the strainer.

For å oppnå en jevn sammenfiltning av To achieve an even interweaving of

fibrene og for i senere tørr tilstand å gi papiret noenlunde samme mekaniske egenskaper såvel i som på tvers av maskinretningen, the fibers and in later dry state to give the paper roughly the same mechanical properties both in and across the machine direction,

har man allerede anbrakt innretninger som have you already installed facilities such as

setter hele eller deler av silpartiet i rystinger, shakes all or parts of the sieve section,

som oftest i silens plan og tvers på dens be-vegelsesretning. Det finnes også innretninger most often in the plane of the strainer and across its direction of movement. There are also facilities

som setter bare den såkalte brystvalse i rys-tebevegelse, men alt etter omstendighetene which only sets the so-called breast roll in shaking motion, but depending on the circumstances

kan dessuten en bestemt registervalse rystes a certain register roller can also be shaken

med på samme måte. Tallrike forsøk befatter with in the same way. Numerous attempts involve

seg med utførelsen av den innretning som itself with the execution of the device which

frambringer disse rystebevegelser. Herved produce these shaking movements. Hereby

kan man i alminnelighet oppnå opp til 500 can generally achieve up to 500

svingninger (rystinger) pr. min. og med en oscillations (shakes) per my. and with one

amplitude fra 5 til 20 mm. amplitude from 5 to 20 mm.

Det er også kjent, ikke bare å ryste pa-pirmaskinsilen i dens eget plan, dvs. horison-talt, men også loddrett på dette, altså verti-kalt. Men såvel denne som alle andre fram-gangsmåter til å ryste hele eller deler av pa-pirmaskinens silparti lider av den mangel at med tiltagende arbeidsbredde og driftshastig-het av maskinen, tiltar den masse (fiberstoff-vannmengde) som pr. tidsenhet kommer til silen så kraftig at de for omplasering av fibrene på silen nødvendige energimengder, som jo må være vesentlig større enn massens strømningsenergi, ikke mere kan overføres i form av grove mekaniske rystebevegelser. Det er uten teoretiske utredninger forståelig at hurtige rystelser på grunn av den store vekt av silpartiet ved moderne hurtiggående papirmaskiner forlanger meget store krefter hos rysteinnretningen. Da rystekreftene er direkte proporsjonale med den masse som be-veges, så kreves det meget dyre konstruksjo-ner som dessuten er utsatt for meget sterk slitasje. It is also known not only to shake the pa-pir machine sieve in its own plane, i.e. horizontally, but also vertically to this, i.e. vertically. But both this and all other methods of shaking all or parts of the paper machine's sieve part suffer from the shortcoming that with increasing working width and operating speed of the machine, it increases in mass (fiber material-water quantity) which per unit of time comes to the sieve so strongly that the amounts of energy required for repositioning the fibers on the sieve, which must be significantly greater than the flow energy of the mass, can no longer be transferred in the form of coarse mechanical shaking movements. Without theoretical studies, it is understandable that rapid shaking due to the large weight of the sieve part in modern high-speed paper machines requires very large forces from the shaking device. As the shaking forces are directly proportional to the mass being moved, very expensive constructions are required which are also exposed to very strong wear and tear.

Hertil kommer at massen når den strøm-mer ut på silen straks avgir vann, hvorved fibrene som befinner seg på silen med en gang avlagrer seg på denne og papirdannelsen tar sin begynnelse. Det på silen avlagrede fibersjikt vil imidlertid, selv ved ganske ster-ke rystelser, ikke lengre kunne forandre sin struktur. Derfor virker alle de hittil kjente rysteinnretninger i det minste ikke på de fi-berlag som under dannelsen av papiret ligger nærmest silbanen. In addition, when the mass flows out onto the sieve, it immediately emits water, whereby the fibers that are on the sieve are immediately deposited on it and the formation of paper begins. However, the fiber layer deposited on the sieve will no longer be able to change its structure, even with fairly strong vibrations. Therefore, all the hitherto known shaking devices at least do not act on the fiber layers which, during the formation of the paper, lie closest to the silage path.

Det er derfor allerede foreslått å forsinke avvanningen av massen og i den hensikt er det under silen og etter massepådraget anbrakt kar i hvilket det bortstrømmende vann stues opp igjen. På denne måte forsinkes og-så papirdannelsen og ved forholdsvis lang-somt gående papirmaskiner blir også ryste-virkningen noe forbedret i oppstuingssonen. Men ved de moderne hurtiggående maskiner med silrysting har oppstuingskarene ingen forbedrende virkning. It has therefore already been proposed to delay the dewatering of the pulp and, for that purpose, a vessel has been placed under the strainer and after the pulp has been applied, in which the water flowing away is stored again. In this way, the formation of paper is also delayed and, with relatively slow-moving paper machines, the shaking effect is also somewhat improved in the upwelling zone. However, with the modern high-speed machines with sieve shaking, the storage tanks have no improving effect.

Videre er det kjent ved fordeling av fi-bermasse i vann eller andre væsker å frambringe en avfiltning (klumpf jerning) som kan føre til frilegging av enkeltfibrene. Denne avfiltning oppnås ved at man homogeniserer den passende fortynnede masse ved hjelp av mekaniske svingninger, endog under eller etter bankingen, malingen eller defibreringen, eller på et senere stadium av massens bear-beidelse, f. eks. i våtpressen, formmaskinen, langsilmaskinen og liknende. Men denne av-filtningsprosess ved massens beredning og be-arbeidelse har et ganske annet formål enn den til grunn for oppfinnelsen liggende framgangsmåte som går ut på ved hjelp av svingninger å påvirke forløpet av fiberfiltingen ved framstilling av papirbaner. Furthermore, it is known when fiber mass is distributed in water or other liquids to produce a felting (clump formation) which can lead to the exposure of the individual fibres. This de-felting is achieved by homogenising the suitably diluted mass by means of mechanical oscillations, even during or after the beating, grinding or defibration, or at a later stage of the processing of the mass, e.g. in the wet press, the forming machine, the long sieve machine and the like. But this de-felting process during the preparation and processing of the pulp has a quite different purpose from the method underlying the invention, which is to use oscillations to influence the progress of the fiber felting in the production of paper webs.

Man har nå funnet at den til fibrenes omplasering i massen nødvendige energi som skal tilføres mot strømretningen, bedre og mere virkningsfullt kan foregå ved hjelp av oppstuingsvannet. Oppfinnelsen angår derfor en framgangsmåte til påvirkning av fiberfordelingen på silpartiet til papir- og papplangsilmaskiner ved hjelp av rettlinjede svingninger. Og framgangsmåten utmerker seg ved at der umiddelbart bak massepåløpet og før fiberstoffsuspensjonens avvanning tilveiebringes en oppstuingsvannsone og at der ved hjelp av oppstuingsvannet som svingnings-overførende middel blir det frambrakt svingninger med et svingetall på minst 1000 pr. min. og en amplitude på høyst 2 mm. Disse svingninger rettes i alminnelighet loddrett på silen til papirmaskinen, hvorfor det i samsvar med oppfinnelsen er mulig å avstemme sving-ningsbetingelsene og svingningsretningen slik i forhold til papirmassens strukturegenskaper at det inntrer en mest mulig uordnet fiber-fordeling. De gunstigste verdier av sving-ningenes frekvens og amplitude avhenger av gjennomsnittslengden, malingsgraden, egen-skapene og avvanningsevnen hos fibrene, tettheten (konsentrasjonen) av massen og dens innhold av fyll- og limstcff samt av ma-skinens hastighet, og disse verdier kan be-stemmes f. eks. ved forsøk. It has now been found that the energy required for the relocation of the fibers in the mass, which must be supplied against the direction of flow, can take place better and more effectively with the help of the make-up water. The invention therefore relates to a method for influencing the fiber distribution on the sieve part of paper and cardboard sieve machines by means of rectilinear oscillations. And the procedure is distinguished by the fact that immediately behind the mass application and before the dewatering of the fiber suspension, a backwater zone is provided and that by means of the backwater as a vibration-transmitting agent, oscillations are produced with a number of oscillations of at least 1,000 per second. my. and an amplitude of no more than 2 mm. These oscillations are generally directed perpendicularly to the screen of the paper machine, which is why, in accordance with the invention, it is possible to match the oscillation conditions and the direction of oscillation in such a way in relation to the structural properties of the paper pulp that the most disordered fiber distribution occurs. The most favorable values of the frequency and amplitude of the oscillations depend on the average length, the degree of grinding, the properties and dewatering ability of the fibers, the density (concentration) of the mass and its content of fillers and adhesives as well as on the speed of the machine, and these values can be - is voiced, e.g. by trial.

Like overfor den kjente framgangsmåte, hvor silen tjener til overføring av svingninger, får man etter oppfinnelsen på grunn av den betraktelig høyere frekvens og de små amplituder, en kraftigere bevegelse av fibrene i seg selv. Disse støter ofte mot hverandre og filter seg derfor jevnt. Dessuten er det ikke påkrevet å bevege silpartier med dets store og tunge masser. De svingninger som overføres av oppstuingsvannet påvirker i det hele tatt slett ikke selve silen, da dennes masse har betraktelig større treghet enn fi-bermassesuspensjoncn. Frambringelsen av svingninger i oppstuingsvannet foregår etter i og for seg kjente, pålitelige framgangsmå-ter og ved hjelp av innretninger til å frambringe svingninger i flytende medier. Eksempelvis kan det i oppstuingskarene være anbrakt, eller det kan være tilkoplet, mekaniske svingningsgeneratorer av den type som vil være kjent fra undervannsetterrelningsfor-midling. Hensiktsmessig kan det anordnes svingningsgeneratorer med elektromagnetisk, elektrostriktive eller liknende på elektrisk måte frembrakte impulser. Det er dessuten mulig å utforme i det minste en vegg i opp-stuingsaggregatet som svingningomembran. Directly opposite the known method, where the sieve serves to transmit oscillations, the invention results, due to the considerably higher frequency and the small amplitudes, in a stronger movement of the fibers themselves. These often bump into each other and therefore filter evenly. Furthermore, it is not required to move sieve parts with their large and heavy masses. The fluctuations transmitted by the back-up water do not affect the sieve itself at all, as its mass has considerably greater inertia than the fiber mass suspension. The production of oscillations in the bilge water takes place according to known, reliable procedures and with the help of devices for producing oscillations in liquid media. For example, mechanical oscillation generators of the type that will be known from underwater tracking media may be placed in the bilge vessels, or may be connected. Oscillation generators with electromagnetically, electrostrictive or similar electrically generated impulses can be suitably arranged. It is also possible to design at least one wall in the stowing unit as an oscillation membrane.

I samsvar med oppfinnelsen kan man dessuten i forskjellige soner av silpartiet og tilpasset massens forskjellige strukturtilstan-der eller det under dannelse værende papir bringe svingninger med forskjellige egenskaper og retning til å virke. Selve oppsluings-karet kan ved tverr- og/eller langvegger de-les opp i en rekke kamre som, i det minste gruppevis, er tilsluttet av hverandre uavhengige svingningsgeneratorer. Oppdelingen av oppstuingskaret kan dessuten tjene til å for-hindre eller svekke eventuelt oppstående in-terferens som virker forstyrrende på svingningene. Ved en slik celleformet eller kon-struktiv oppdeling av oppstuingskaret kan man oppnå en trinnvis regulering av avvanningen ved samtidig, jevn eller forskjellig svingningspåvirkning på massen eller på det papir som holder på å danne seg. In accordance with the invention, oscillations with different properties and direction can also be brought into effect in different zones of the screen section and adapted to the different structural states of the pulp or the paper being formed. The immersion vessel itself can be divided by transverse and/or longitudinal walls into a number of chambers which, at least in groups, are connected to mutually independent oscillation generators. The division of the upwelling vessel can also serve to prevent or weaken any interference that may arise which has a disturbing effect on the oscillations. With such a cell-shaped or constructive division of the storage vessel, a step-by-step regulation of the dewatering can be achieved by simultaneous, uniform or different oscillating effects on the pulp or on the paper that is being formed.

I fig. 1 betegner A massetiiløpet ved en langsilpapirmaskin, hvorav en del er vist i lengdesnitt. Silen C løper over en brystvalse B og umiddelbart bak denne over et oppstuingskar S. Her er det bare vist ett slikt kar, men det kan anordnes flere slike etter hver-andré og med eller uten innbyrdes mellom-rom. Oppstuingskaret er ved tverrvegger Q delt opp i kamre ai, a. 2, a.-s, ai og a.-,, hvilke kamre er atskilt fra bunnen i oppstuingskaret S ved hjelp av elastiske membraner M, som på tegningen er vist bølgeformet. De under membranene værende hulrom er parvis og gjennom en rørledning forbundet med en svingningsgenerator. Således er rommene ai og a. 2 forbundet med en svingningsgenerator Di og rommene a:j, a+ med en generator Di>. Rommene og ledningene er f. eks. fyllt med en væske som overfører de av generatorene frambrakte svingninger på væsken i rommene og derved på membranene M i form av trykk-slag. På liknende måte kan det frambringes svingninger ved hjelp av en svingningsgenerator som er anbrakt direkte i oppstuingskaret. Membranen kan også settes i svingninger på mekanisk eller elektrisk måte. Bredden og oppdelingen av oppstuingskaret eller bru-ken av flere slike retter seg i første linje etter hastigheten på maskinen og massens egenskaper. In fig. 1, A denotes the pulp feed of a long-screen paper machine, part of which is shown in longitudinal section. The strainer C runs over a breast roller B and immediately behind this over a storage vessel S. Here only one such vessel is shown, but several such vessels can be arranged one after the other and with or without spaces between them. The bilge vessel is divided by cross walls Q into chambers ai, a. 2, a.-s, ai and a.-,, which chambers are separated from the bottom of the bilge vessel S by means of elastic membranes M, which are shown wavy in the drawing. The cavities under the membranes are connected in pairs and through a pipeline to an oscillation generator. Thus, the spaces ai and a. 2 are connected with an oscillation generator Di and the spaces a:j, a+ with a generator Di>. The rooms and the cables are e.g. filled with a liquid which transfers the oscillations produced by the generators to the liquid in the rooms and thereby to the membranes M in the form of pressure strokes. In a similar way, oscillations can be produced by means of an oscillation generator which is placed directly in the bilge tank. The membrane can also be set into oscillations mechanically or electrically. The width and division of the bulking vessel or the use of several of these are primarily based on the speed of the machine and the characteristics of the mass.

Fig. 2 viser oppstuingskaret i snittet Xi Fig. 2 shows the bilge vessel in section Xi

—Xl>. Her er det eksempelvis vist langsgående vegger L som deler opp oppstuingskaret i lengdekamre am, a. 20, a:«>, osv. Membranen er også her betegnet med M og de underlig-gende rom med K. Membranen kan også byg-ges direkte inn i bunnen H og i enkelte tilfelle tjene til å frambringe svingninger loddrett på silens retning men parallell med dens plan. For å holde kamrene stadig fyllt med væske er det ved siden av karet anbrakt en trakt E med et 1 høyden stillbart cverløpsrør F. Oppstuingskaret hviler under silen C på de to register-skinner R. Fig. 3 er et grunnriss av det i fig. 1 og 2 viste oppstuingskar med silen bare antydet —Xl>. Here, for example, longitudinal walls L are shown which divide the bilge vessel into longitudinal chambers am, a. 20, a:«>, etc. The membrane is also denoted here by M and the underlying rooms by K. The membrane can also be built directly into the bottom H and in some cases serve to produce oscillations perpendicular to the direction of the sieve but parallel to its plane. In order to keep the chambers constantly filled with liquid, a funnel E with a 1 height-adjustable crossflow pipe F has been placed next to the vessel. The back-up vessel rests under the strainer C on the two register rails R. Fig. 3 is a ground plan of the one in fig. 1 and 2 showed bilge vessels with the strainer only indicated

for oversiktens skyld. Massen strømmer fra for the sake of overview. The mass flows from

tilløpet A og ned på den opp over brystvalsen inlet A and down on it up above the breast roll

B kommende sil C. Karet har såvel tversgåen-de som langsgående skillevegger Q resp. L. B future strainer C. The vessel has both transverse and longitudinal partitions Q or L.

Etter å ha passert et eller flere oppstuinskar After passing one or more flowerpots

føres silen på vanlig måte over registerval-sene G som hviler på registerskinnene R. the sieve is passed in the usual way over the register rollers G which rest on the register rails R.

Claims (8)

1. Framgangsmåte til påvirkning av fiberfordelingen på silpartiet av papir- og1. Procedure for influencing the fiber distribution on the sieve part of paper and papplangsilmaskiner ved rettlinjede svingninger, karakterisert ved at der umiddelbart bak massepåløpet og før fiberstoffsuspensjonens avvanning tilveiebringes en oppstuingsvannsone og at der ved hjelp av oppstuingsvannet som svingningsoverførbar frambringes svingninger med en frekvens pr. minutt på minst 1000 og en amplitude på høyst 2 mm. cardboard laminating machines with rectilinear oscillations, characterized by the fact that immediately behind the mass application and before the dewatering of the fiber suspension, a backwash water zone is provided and that with the help of the backwash water, which can transmit oscillations, oscillations are produced with a frequency per minute of at least 1000 and an amplitude of no more than 2 mm. 2. Framgangsmåte som angitt i påstand 1, karakterisert ved at svingningene med hensyn til frekvens, amplitude og retning er således avpasset til fibrenes struktur og fi-bersuspensjonens art, at en mest mulig ideell uordnet fibersammenfiltring oppnås. 2. Method as stated in claim 1, characterized in that the oscillations with respect to frequency, amplitude and direction are so adapted to the structure of the fibers and the nature of the fiber suspension, that the most ideal possible disordered fiber entanglement is achieved. 3. Framgangsmåte som angitt i påstand 1 eller 2, karakterisert ved at svingninger av forskjellig art bringes til innvirkning i forskjellige soner av oppstuingskaranlegget. 3. Procedure as stated in claim 1 or 2, characterized in that oscillations of different types are brought into effect in different zones of the bilge system. 4. Maskin for utførelse av den i påstand 1—3 angitte framgangsmåte, ved hvilken for istandbringelse av en oppstuingsvannsone, sil-partiets begynnelsesdel er forsynt med et oppstuingskaranlegg, karakterisert ved at der i oppstuingskaranlegget forefinnes innretninger til frambringelse av rettlinjede svingninger med en frekvens pr. minutt på minst 1000 og en amplitude på høyst 2 mm i vanninn-holdet. 4. Machine for carrying out the procedure specified in claims 1-3, whereby for the establishment of a backwater zone, the beginning part of the sieve section is provided with a backwater vessel system, characterized in that the backwater vessel system contains devices for producing rectilinear oscillations with a frequency per . minute of at least 1000 and an amplitude of no more than 2 mm in the water content. 5. Maskin som angitt i påstand 4, karakterisert ved at svingningsgeneratorene arbei-der med på elektrisk vei frambrakte impulser. 5. Machine as stated in claim 4, characterized in that the oscillation generators work with electrically generated impulses. 6. Maskin som angitt i påstand 4 eller 5 karakterisert ved at oppstuingskaranlegget er oppdelt i celler som i det minste gruppevis er tilforordnet innbyrdes uavhengige svingningsgeneratorer. 6. Machine as specified in claim 4 or 5, characterized in that the bilge vessel system is divided into cells which are assigned, at least in groups, mutually independent oscillation generators. 7. Maskin som angitt i påstand 4, karakterisert ved at i det minste en side av oppstuingskaranlegget er utformet som sving-ningsavgivende membran (M). 7. Machine as stated in claim 4, characterized in that at least one side of the bilge vessel system is designed as a vibration-emitting membrane (M). 8. Maskin som angitt i påstand 4 eller 5 karakterisert ved at forskjellige celler av oppstuingskaranlegget er tilforordnet svingningsgeneratorer som frambringer svingninger av innbyrdes forskjellig art.8. Machine as stated in claim 4 or 5, characterized in that different cells of the bilge system are assigned oscillation generators which produce oscillations of mutually different types.
NO161127A 1961-01-19 1962-01-17 NO115029B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8363561A 1961-01-19 1961-01-19

Publications (1)

Publication Number Publication Date
NO115029B true NO115029B (en) 1968-07-08

Family

ID=22179683

Family Applications (1)

Application Number Title Priority Date Filing Date
NO161127A NO115029B (en) 1961-01-19 1962-01-17

Country Status (15)

Country Link
AT (1) AT245558B (en)
BE (1) BE612755A (en)
CH (2) CH452500A (en)
CY (1) CY360A (en)
DE (1) DE1468201C2 (en)
DK (2) DK111445B (en)
ES (1) ES273990A1 (en)
FI (2) FI41548B (en)
FR (1) FR6189M (en)
GB (1) GB998835A (en)
MY (1) MY6700039A (en)
NL (3) NL6918625A (en)
NO (1) NO115029B (en)
OA (1) OA01269A (en)
SE (2) SE318865B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320306A (en) * 1964-01-29 1967-05-16 Merck & Co Inc Process for the preparation of 4-(2-methylenealkanoyl)phenoxy alkanoic acids by decarboxylation
GB1108575A (en) * 1964-06-16 1968-04-03 Merck & Co Inc Preparation of substituted phenoxyacetic acids
US4887995A (en) * 1985-01-22 1989-12-19 University Of Pittsburgh Method of treating sickle cell anemia
DE3512179A1 (en) * 1985-04-03 1986-12-04 Merck Patent Gmbh, 6100 Darmstadt PHOTO INITIATORS FOR PHOTOPOLYMERIZATION IN AQUEOUS SYSTEMS
US4731473A (en) * 1986-04-04 1988-03-15 Merck & Co., Inc. Compounds useful in treating sickle cell anemia
US4699926A (en) * 1986-04-04 1987-10-13 Merck & Co., Inc. Compounds useful in treating sickle cell anemia
US4731381A (en) * 1986-04-04 1988-03-15 Merck & Co., Inc. Method of treating a person for sickle cell anemia
US5741818A (en) 1995-06-07 1998-04-21 University Of Saskatchewan Semicarbazones having CNS activity and pharmaceutical preparations containing same
BR9809288A (en) 1997-04-22 2001-08-07 Cocensys Inc Carbocyclic and heterocyclic substituted semicarbazones and thiosemicarbazones and their use
EP0947494A1 (en) * 1998-03-30 1999-10-06 F. Hoffmann-La Roche Ag Derivatives of phenoxy acetic acid and phenoxymethyltetrazole having antitumor activity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH211822A (en) * 1937-09-18 1940-10-15 Chem Ind Basel Process for the preparation of an azo dye.
CH211819A (en) * 1937-09-18 1940-10-15 Chem Ind Basel Process for the preparation of an azo dye.
CH291376A (en) * 1950-02-13 1953-06-15 Lilly Co Eli Process for the preparation of o- (N-2- (B-oxy-ethoxy) -3-oxymerkuri-propyl-carbamido) -phenoxyacetic acid.
US2694069A (en) * 1952-10-24 1954-11-09 Searle & Co Basic esters of hydroxy-and alkoxy-substituted phenyloxoalkenoic acids and their salts

Also Published As

Publication number Publication date
MY6700039A (en) 1967-12-31
DE1468201C2 (en) 1972-06-08
SE318865B (en) 1969-12-22
SE332168B (en) 1971-02-01
CY360A (en) 1967-01-13
NL6918625A (en) 1970-02-23
BE612755A (en) 1962-07-17
FI41548B (en) 1969-09-01
GB998835A (en) 1965-07-21
CH452500A (en) 1968-05-31
ES273990A1 (en) 1962-06-16
NL129087C (en)
DK113286B (en) 1969-03-10
FR6189M (en) 1968-07-22
NL273765A (en)
AT245558B (en) 1966-03-10
FI42539B (en) 1970-06-01
CH454830A (en) 1968-04-30
DE1468201B1 (en) 1971-11-11
DK111445B (en) 1968-08-26
OA01269A (en) 1969-02-15

Similar Documents

Publication Publication Date Title
NO115029B (en)
US3042576A (en) Method and apparatus for producing nonwoven fibrous sheets
US2584053A (en) Means for the application of alternating shear at sonic frequencies to the treatmentof material
NO145099B (en) ISOCYANATE / CATALYST SYSTEM AND PROCEDURE FOR ITS PREPARATION
US3376609A (en) Method for spreading tows of continuous filaments into sheets
US3201305A (en) Sheet forming method and apparatus
US4391672A (en) Method used in paper making for treatment of a weave
NO152208B (en) PROCEDURE FOR CLEANING SILICONE
US3190790A (en) Method and apparatus for preparing continuous webs of fibrous material
US3810817A (en) Twin-wire papermaking machine with vibrators connected to suction and liquid delivery boxes located beneath the converging wires
NO753232L (en)
NO142452B (en) PROCEDURE AND DEVICE FOR AA FORMING A CONTINUOUS MATERIAL MATERIAL OF FIBER
US2665189A (en) Method of treating a running blanket of staple length artificial fibers
US1907046A (en) Process of making boards and apparatus therefor
US3729961A (en) Apparatus for the washing of preferably cellulosic pulp
US2076991A (en) Method of attaining improved felting of the fibers in paper pulp on the wet part of paper and board making machines
CN107044069A (en) The manufacture craft of cupstock
CA2049952C (en) A process and apparatus for continuous filtering and liquid displacement of a liquid suspension of a fibrous or finely-divided material
EA000255B1 (en) Apparatus for papermaking
US736596A (en) Paper-making machine.
US3769153A (en) Papermaking machine headbox with multiple stiff, vibrational rods or plates extending downstream in the slice chamber
US20020121354A1 (en) System and method of using acoustic foil for enhanced dewatering and formation
US3451630A (en) Beating device for the continuous processing of material stock
JPH01162891A (en) Method for forming fibrous web in papermaking machine
US2917245A (en) Pulping apparatus and method