NL9000880A - Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load - Google Patents
Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load Download PDFInfo
- Publication number
- NL9000880A NL9000880A NL9000880A NL9000880A NL9000880A NL 9000880 A NL9000880 A NL 9000880A NL 9000880 A NL9000880 A NL 9000880A NL 9000880 A NL9000880 A NL 9000880A NL 9000880 A NL9000880 A NL 9000880A
- Authority
- NL
- Netherlands
- Prior art keywords
- sulphide
- sulfur
- sulfide
- sludge
- load
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/02—Preparation of sulfur; Purification
- C01B17/06—Preparation of sulfur; Purification from non-gaseous sulfides or materials containing such sulfides, e.g. ores
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/06—Aerobic processes using submerged filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/345—Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
Werkwijze voor het verwijderen van zwavel verbindingen en ionen van zware metalen uit water.Method for removing sulfur compounds and heavy metal ions from water.
De uitvinding heeft betrekking op een werkwijze voor het verwijderen van zwavelverbindingen en ionen van zware metalen uit water, waarbij in een anaerobe reducerende stap zwavelverbindingen worden omgezet in sulfide-ionen, die met de metaalionen reageren tot onoplosbare metaal-sulfiden.The invention relates to a process for removing sulfur compounds and heavy metal ions from water, wherein sulfur compounds are converted in an anaerobic reducing step into sulfide ions, which react with the metal ions to form insoluble metal sulfides.
Een dergelijke werkwijze is bekend uit de Nederlandse octrooiaanvrage 80.20.157· Daarbij worden de sulfaat-reducerende bacteriën gekweekt in kweekreservoirs bij aanwezigheid van een voedingsoplossing en een gedeelte van het te behandelen afvalwater en wordt de geproduceerde sulfide bevattende waterige oplossing toegevoerd aan een precipitatie-reservoir tezamen met het resterende hoofdgedeelte van het afvalwater. In het precipitatiereservoir sedimenteren de metaalsulfiden in de vorm van een vlokachtig neerslag, in het bijzonder wanneer het afval ijzer(III)ionen bevat. Door gebruik te maken van een gescheiden kweekre-servoir kan de hoeveelheid toegevoegd organisch materiaal verminderd worden, waardoor de werkwijze economischer is. Als metalen, die geprecipiteerd kunnen worden, worden Pb, Hg, Cd, Fe, Cu, Ni, Zn, Co, Mn en Ag genoemd.Such a method is known from Dutch patent application 80.20.157 · The sulphate-reducing bacteria are grown in culture reservoirs in the presence of a nutrient solution and part of the waste water to be treated and the produced sulphide-containing aqueous solution is supplied to a precipitation reservoir together with the remaining main part of the wastewater. In the precipitation reservoir, the metal sulfides sediment in the form of a flaky precipitate, especially when the waste contains iron (III) ions. By using a separate culture reservoir, the amount of added organic material can be reduced, making the process more economical. Pb, Hg, Cd, Fe, Cu, Ni, Zn, Co, Mn and Ag are mentioned as metals which can be precipitated.
Het is algemeen bekend, dat de aanwezigheid van zware metalen, zelfs in zeer lage concentratie, ongewenst is vanwege de hoge toxiciteit voor mens, plant en dier. Conventionele verwijderingsmethoden, zoals hydroxide-vorming en afscheiding, omgekeerse osmose en ionenwisselaars zijn ingewikkeld of leveren niet het gewenste resultaat.It is well known that the presence of heavy metals, even at a very low concentration, is undesirable because of the high toxicity to humans, plants and animals. Conventional removal methods such as hydroxide formation and separation, reverse osmosis and ion exchangers are complicated or do not produce the desired result.
De aanwezigheid van zwavelverbindingen in water is meestal een onaanvaardbare factor. In het geval van sulfaat zijn de voornaamste bezwaren aantasting van het riool, eutrofiëring en verzilting. Ook bij de drinkwaterproduktie is de aanwezigheid van sulfaat een toenemend probleem doordat grondwater, dat voor de drinkwaterproduktie wordt gebruikt, steeds meer sulfaat bevat waarvoor geen geschikte verwijde-ringsmethode beschikbaar is. In het geval van andere organische zwavelverbindingen, zoals sulfiet, thiosulfaat, tetrathionaat en dergelijke is vooral de zuurstofvraag (COD) van deze stoffen een probleem. Bij de tot nu toe toegepaste zuiveringsmethoden wordt steeds uitgegaan van oxydatie tot sulfaat, maar dat is in verband met het bovenstaande vaak een slechte oplossing. In het geval van organische, al of niet gereduceerde zwavelverbindingen zoals koolstofdisulfide, dialkylsulfiden, dialkyldi-sulfiden, en mercaptanen treden naast de hierboven genoemde nadelen nog de problemen van een onaanvaardbare stank en toxiciteit op.The presence of sulfur compounds in water is usually an unacceptable factor. In the case of sulfate, the main drawbacks are sewage deterioration, eutrophication and salinization. The presence of sulphate is also an increasing problem in drinking water production, because groundwater used for drinking water production increasingly contains sulphate for which no suitable method of disposal is available. In the case of other organic sulfur compounds, such as sulfite, thiosulfate, tetrathionate and the like, the oxygen demand (COD) of these substances is especially a problem. The purification methods used hitherto always start from oxidation to sulfate, but this is often a poor solution in view of the above. In the case of organic, whether or not reduced sulfur compounds such as carbon disulfide, dialkyl sulfides, dialkyldisulfides, and mercaptans, in addition to the above-mentioned drawbacks, problems of unacceptable stench and toxicity still arise.
Uiteraard vormt afvalwater, waarin zich zowel zware metaalionen als zwavelverbindingen bevinden, een extra groot probleem.Of course, waste water, which contains both heavy metal ions and sulfur compounds, is an extra big problem.
Volgens de uitvinding wordt beoogd een werkwijze te verschaffen voor de gecombineerde verwijdering van zwavelverbindingen en zware metalen (zoals de bovengenoemde) uit water.The object of the invention is to provide a method for the combined removal of sulfur compounds and heavy metals (such as the above) from water.
De uitvinding heeft betrekking op een werkwijze voor het verwijderen van zwavelverbindingen en ionen van zware metalen uit water, waarbij a) in een anaerobe reducerende stap zwavelverbindingen worden omgezet in sulfide-ionen die met de metaalionen reageren tot onoplosbare metaalsul-fiden, b) in een aerobe stap het resterende sulfide wordt omgezet in elementaire zwavel, c) de in stap a) en b) gevormde metaalsulfiden respectievelijk elementaire zwavel worden afgescheiden, waarbij in de anaerobe stap een zwavel/metaalverhouding wordt toegepast, die voldoende is om een in hoofdzaak volledige precipitatie van zware metaalionen te waarborgen.The invention relates to a process for removing sulfur compounds and heavy metal ions from water, wherein a) in an anaerobic reducing step, sulfur compounds are converted into sulfide ions which react with the metal ions to form insoluble metal sulfides, b) in a aerobic step the residual sulfide is converted into elemental sulfur, c) the metal sulfides formed in step a) and b) and elemental sulfur respectively are separated off, wherein in the anaerobic step a sulfur / metal ratio is used which is sufficient for a substantially complete precipitation of heavy metal ions.
Het verdient bij de werkwijze volgens de uitvinding de voorkeur, dat de in stap a) en stap b) gevormde metaalsulfiden respectievelijk elementaire zwavel tezamen na stap b) worden afgescheiden, bijvoorbeeld door bezinking, filtratie, centrifugering en flotatie.It is preferred in the process according to the invention that the metal sulfides formed in step a) and step b) and elemental sulfur, respectively, are separated together after step b), for example by settling, filtration, centrifugation and flotation.
Voor de reductie van zwavelverbindingen tot sulfide in stap a) van de werkwijze volgens de uitvinding komen vooral zwavel- en sulfaat-reducerende bacteriën in aanmerking, zoals Desulfovibrio sp., Desulfotomaculum sp., Desulfomonas sp.,Sulfur compounds to sulfide in step a) of the process according to the invention are particularly suitable for the reduction of sulfur and sulfate-reducing bacteria, such as Desulfovibrio sp., Desulfotomaculum sp., Desulfomonas sp.,
Desulfobulbus sp., Desulfobacter sp., Desulfococcus sp.,Desulfobulbus sp., Desulfobacter sp., Desulfococcus sp.,
Desulfonema sp., Desulfosarcina sp., Desulfobacterium sp. en Desulforomas sp.. Dergelijke bacteriën zijn in het algemeen uit diverse anaerobe culturen beschikbaar en/of groeien spontaan in de toegepaste reactoren.Desulfonema sp., Desulfosarcina sp., Desulfobacterium sp. and Desulforomas sp. Such bacteria are generally available from various anaerobic cultures and / or grow spontaneously in the reactors used.
Om de zwavelverbindingen tot sulfide te reduceren kan het gewenst zijn een voedingsstof (elektronendonor) toe te voegen. Indien water moet worden gezuiverd, dat geen organische afvalstoffen bevat, moet een dergelijke elektronendonor zelfs worden toegevoegd. Afhankelijk van de toepassing komen hiervoor bijvoorbeeld in aanmerking: waterstof, kool-stofmonoxide en organische verbindingen zoals mierezuur, suikers, vetzuren, alcoholen en zetmelen. Zonodig worden ook voedingselementen (nutriënten) toegevoegd in de vorm van stikstof, fosfaat en sporenelementen.In order to reduce the sulfur compounds to sulfide, it may be desirable to add a nutrient (electron donor). If water is to be purified that does not contain any organic waste, such an electron donor must even be added. Depending on the application, for example, these include: hydrogen, carbon monoxide and organic compounds such as formic acid, sugars, fatty acids, alcohols and starches. If necessary, nutritional elements (nutrients) are also added in the form of nitrogen, phosphate and trace elements.
Het is de bedoeling dat in stap a) alle zware metaalionen worden weggevangen door sulfide. Eventueel wordt tijdens stap a) een zwavelver-binding toegepast zoals elementaire zwavel of sulfaat. Zwavel verdient de voorkeurIt is intended that in step a) all heavy metal ions are trapped by sulfide. Optionally, a sulfur compound such as elemental sulfur or sulfate is used during step a). Sulfur is preferred
Voorbeelden van soorten water, die volgens de werkwijze van de uitvinding kunnen worden gezuiverd, zijn grondwater, mijnafvalwater, industrieel afvalwater, bijvoorbeeld de fotografische industrie, de metaalindustrie en spoelwater uit rookgasreinigers.Examples of types of water that can be purified according to the method of the invention are groundwater, mine waste water, industrial waste water, for example the photographic industry, the metal industry and flushing water from flue gas purifiers.
Wanneer de verwijdering of retentie van de bij stap b) gevormde metaalsulfiden in de anaerobe eerste trap onvoldoende is, bestaat het gevaar dat deze uitspoelen naar de tweede trap, d.w.z. de micro-aerofie-le sulfide-oxyderende trap, alwaar mogelijke oxydatie leidt tot het weer in oplossing gaan van de metaalzouten.If the removal or retention of the metal sulphides formed in step b) in the anaerobic first stage is insufficient, there is a risk that they will leach into the second stage, ie the micro-aerophilic sulphide oxidizing stage, where possible oxidation leads to the dissolving the metal salts again.
De verblijftijd van de metaalsulfiden in stap b) dient voldoende kort te zijn om oxydatie tegen te gaan. Wanneer de oxydatie van sulfide volledig wordt uitgevoerd, kunnen de metaalsulfiden niet als neerslag blijven bestaan.The residence time of the metal sulfides in step b) should be short enough to prevent oxidation. When the oxidation of sulfide is completely carried out, the metal sulfides cannot remain as a precipitate.
Indien de uitgangsstroom een relatief lage zwavel/metaalverhouding bezit, kan eventueel sulfaat of een andere zwavelverbinding worden toegevoegd zodat de metaalverwijdering door sulfidevorming volledig of nagenoeg volledig is.If the starting stream has a relatively low sulfur / metal ratio, sulfate or another sulfur compound may optionally be added so that the metal removal by sulfide formation is complete or nearly complete.
Het handhaven van een lage restsulfide-concentratie in stap b) (de micro-aerofiele sulfide-oxydatie) en in de scheidingsstap c), waar elementaire zwavel en aangegroeide biomassa worden afgescheiden van de waterstroom, voorkomt dat de metalen weer in oplossing gaan. Deze concentratie kan binnen een ruim gebied variëren en bijvoorbeeld 0,1-50 mg/1, bij voorkeur 1-10 mg sulfide/1 bedragen.Maintaining a low residual sulfide concentration in step b) (the micro-aerophilic sulfide oxidation) and in the separation step c), where elemental sulfur and grown biomass are separated from the water stream, prevents the metals from dissolving again. This concentration can vary over a wide range and may be, for example, 0.1-50 mg / l, preferably 1-10 mg sulfide / l.
Het handhaven van de vereiste sulfide-concentratie in stap b) en c) kan bijvoorbeeld worden geregeld door de sulfide-concentratie ter plaatse van stap b) of c) of de redoxpotentiaal te meten. Tijdens stap b) en c) dient de redoxpotentiaal bij voorkeur negatief te zijn, bijvoorbeeld lager dan -100 mV. Opgemerkt wordt, dat de redoxpotentiaal tijdens stap a) in het algemeen een waarde in het gebied van -200 tot -400 mV dient te bezitten.Maintaining the required sulfide concentration in step b) and c) can be controlled, for example, by measuring the sulfide concentration at step b) or c) or the redox potential. During steps b) and c), the redox potential should preferably be negative, for example less than -100 mV. It should be noted that the redox potential should generally have a value in the range of -200 to -400 mV during step a).
Eventueel na scheidingsstap c) resterende sulfide-ionen kunnen op op zichzelf bekende wijze tot bijvoorbeeld sulfaat worden geoxydeerd (bijvoorbeeld door beluchting of peroxidedosering) voordat lozing plaatsvindt. Opgemerkt wordt, dat bij stap b) van de werkwijze volgens de uitvinding gebruik kan worden gemaakt van de werkwijze volgens de Nederlandse octrooiaanvrage 88.01.009.Optionally after separation step c) residual sulfide ions can be oxidized in a manner known per se to, for example, sulfate (for instance by aeration or peroxide dosing) before discharge takes place. It is noted that in step b) of the method according to the invention use can be made of the method according to Dutch patent application 88.01.009.
De werkwijze volgens de uitvinding kan bijvoorbeeld worden uitgevoerd in een installatie zoals schematisch weergegeven in de figuur. Volgens dit figuur wordt de te zuiveren afvalwaterstroom (influent) bij 7 toegevoerd aan een buffer/mengtank 1. Via 8 kunnen nutriënten en elektronendonor worden toegevoerd. De vloeistof wordt via 9 uit de buffertank afgevoerd en toegevoerd aan een anaerobe reactor 2, waarin de zwavelverbindingen tot sulfide worden gereduceerd en metaal-sulfiden worden gevormd. Deze worden aan de onderzijde van reactor 2 (niet weergegeven) afgevoerd. De bij dit anaerobe proces gevormde gassen worden via 10 naar een gasbehandelingsinrichting 3 geleid, alwaar verbranding c.q. verwijdering van H2S kan plaatsvinden. De in reactor 2 gevormde, sulfide bevattende vloeistof wordt via 11 toegevoerd aan eern aerobe reactor 4, waar de oxydatie van sulfide tot elementaire zwavel plaatsvindt. In de aerobe reactor 4 wordt via 12 lucht gebracht. Via 13 wordt gas afgevoerd naar een stankbehandelingsinrichting 5·The method according to the invention can for instance be carried out in an installation as shown schematically in the figure. According to this figure, the waste water flow (influent) to be purified is supplied at 7 to a buffer / mixing tank 1. Nutrients and electron donor can be supplied via 8. The liquid is discharged from the buffer tank via 9 and is fed to an anaerobic reactor 2, in which the sulfur compounds are reduced to sulfide and metal sulfides are formed. These are discharged from the bottom of reactor 2 (not shown). The gases formed in this anaerobic process are led via 10 to a gas treatment device 3, where combustion or removal of H 2 S can take place. The sulfide-containing liquid formed in reactor 2 is supplied via 11 to an aerobic reactor 4, where the oxidation of sulfide to elemental sulfur takes place. Air is introduced into the aerobic reactor 4 via 12. Gas is discharged via 13 to a stench treatment device 5
De zwavel bevattende vloeistof wordt via 14 af gevoerd uit de aerobe reactor 4 en toegevoerd aan een inrichting 6 voor het afscheiden van zwavel. Zwavel wordt afgescheiden via 15, terwijl de gezuiverde waterstroom via 16 de afscheidingsinrichting 6 verlaat.The sulfur-containing liquid is discharged from the aerobic reactor 4 via 14 and supplied to a sulfur separation device 6. Sulfur is separated via 15, while the purified water stream leaves the separator 6 via 16.
Meetresultaten, die betrekking hebben op een zuiveringssysteem dat volgens de werkwijze van de uitvinding wordt bedreven, zijn in de onderstaande Tabellen A en B gegeven.Measurement results relating to a purification system operated according to the method of the invention are given in Tables A and B below.
Tabel A (concentraties hoofdbestanddelen in stap a t/m c) stap zink sulfaat sulfide zwavel ethanol redox (mg/1) (mg/1) (mg/1) (mg/1) (mg/1) (mV) inf1.145 960 0 0 500 + 150 na a 0,5 10 245 0 <10 - 410 na b <0,1 15 4 205 < 1 300 na c <0,1 15 3 5 <1-200Table A (concentrations of main constituents in step a to mc) step zinc sulfate sulfide sulfur ethanol redox (mg / 1) (mg / 1) (mg / 1) (mg / 1) (mg / 1) (mV) inf1.145 960 0 0 500 + 150 after a 0.5 10 245 0 <10 - 410 after b <0.1 15 4 205 <1 300 after c <0.1 15 3 5 <1-200
De ethanol in het influent is toegevoegd; er wordt ook ongeveer 350 mg/1 metaalsulfideneerslag gevormd.The ethanol in the influent is added; about 350 mg / l metal sulfide precipitate is also formed.
Tabel B (concentraties andere metalen in infl. en na stap c) metaalsoort in influent na stap c(=effluent) (mg/1) (mg/1) cadmium 0,95 < 0,01 ijzer totaal 25 0,05 lood 46 <0,01 koper 0,57 < 0,02 kobalt 0,10 < 0,015 nikkel 0,10 < 0,015 mangaan 7.0 3.5 magnesium 15 7 calcium 4l0 275 aluminium 10 1Table B (concentrations of other metals in inflation and after step c) metal type in influent after step c (= effluent) (mg / 1) (mg / 1) cadmium 0.95 <0.01 iron total 25 0.05 lead 46 <0.01 copper 0.57 <0.02 cobalt 0.10 <0.015 nickel 0.10 <0.015 manganese 7.0 3.5 magnesium 15 7 calcium 410 275 aluminum 10 1
Claims (7)
Priority Applications (27)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9000880A NL9000880A (en) | 1990-04-12 | 1990-04-12 | Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load |
US07/775,991 US5366633A (en) | 1990-04-12 | 1991-04-11 | Process for the treatment of water containing sulphur compounds |
EP91907891A EP0477338B1 (en) | 1990-04-12 | 1991-04-11 | Process for the treatment of water containing sulphur compounds |
PL91293028A PL168378B1 (en) | 1990-04-12 | 1991-04-11 | Method of purifying water containing sulfur compounds |
SU915010587A RU2079450C1 (en) | 1990-04-12 | 1991-04-11 | Method of processing water containing sulfur compounds |
JP3507727A JP2603392B2 (en) | 1990-04-12 | 1991-04-11 | Treatment method for sulfur compound-containing water |
HU913895A HU213847B (en) | 1990-04-12 | 1991-04-11 | Processes for the treatment of water containing sulphur compounds |
BR9105710A BR9105710A (en) | 1990-04-12 | 1991-04-11 | PROCESSES FOR PURIFICATION OF WATER CONTAINING SULPHIDE, FOR THE AEROBIC TREATMENT OF SEWAGE WATER AND FOR THE REMOVAL OF HEAVY METAL IONS OF WATER |
DE69102848T DE69102848T2 (en) | 1990-04-12 | 1991-04-11 | METHOD FOR THE TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS. |
PCT/NL1991/000059 WO1991016269A1 (en) | 1990-04-12 | 1991-04-11 | Process for the treatment of water containing sulphur compounds |
CA 2057861 CA2057861C (en) | 1990-04-12 | 1991-04-11 | Process for the treatment of water containing sulphur compounds |
KR1019910701830A KR100196556B1 (en) | 1990-04-12 | 1991-04-11 | Process for the treatment of water containing sulphur compounds |
AT91907891T ATE108422T1 (en) | 1990-04-12 | 1991-04-11 | PROCESSES FOR TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS. |
DK91907891T DK0477338T3 (en) | 1990-04-12 | 1991-04-11 | Process for treating water containing sulfur compounds |
ES91907891T ES2056647T3 (en) | 1990-04-12 | 1991-04-11 | PROCEDURE FOR THE TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS. |
AU76837/91A AU639561B2 (en) | 1990-04-12 | 1991-04-11 | Process for the treatment of water containing sulphur compounds |
RO148928A RO108674B1 (en) | 1990-04-12 | 1991-04-11 | Waters treatment processes which contain sulphur compounds |
SK1039-91A SK280745B6 (en) | 1990-04-12 | 1991-04-12 | Process for the treatment of wastewater containing sulphur compounds |
YU66891A YU66891A (en) | 1990-04-12 | 1991-04-12 | PROCEDURE FOR TREATMENT OF WATER CONTAINING SULFUR COMPOUNDS |
CS911039A CZ284751B6 (en) | 1990-04-12 | 1991-04-12 | Process for treating waste water containing sulfides |
SI9110668A SI9110668B (en) | 1990-04-12 | 1991-04-12 | Process for treatment of water containing sulphur compounds |
FI915681A FI101290B (en) | 1990-04-12 | 1991-12-02 | Process for treating water containing sulfur compounds |
NO914804A NO302942B1 (en) | 1990-04-12 | 1991-12-06 | Process for treating water containing sulfur compounds |
BG95615A BG61072B1 (en) | 1990-04-12 | 1991-12-11 | Method for the treatment of sulphur compound containing water |
LVP-93-710A LV11024B (en) | 1990-04-12 | 1993-06-28 | Process for the treatment of water containing sulphur compounds |
BY1319A BY2005C1 (en) | 1990-04-12 | 1993-11-18 | |
US08/166,840 US5449460A (en) | 1990-04-12 | 1993-12-15 | Process for the treatment of water containing sulphur compounds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9000880 | 1990-04-12 | ||
NL9000880A NL9000880A (en) | 1990-04-12 | 1990-04-12 | Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load |
Publications (1)
Publication Number | Publication Date |
---|---|
NL9000880A true NL9000880A (en) | 1991-11-01 |
Family
ID=19856928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NL9000880A NL9000880A (en) | 1990-04-12 | 1990-04-12 | Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load |
Country Status (1)
Country | Link |
---|---|
NL (1) | NL9000880A (en) |
-
1990
- 1990-04-12 NL NL9000880A patent/NL9000880A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5366633A (en) | Process for the treatment of water containing sulphur compounds | |
RU2178391C2 (en) | Method of treating water containing heavy metal ions | |
US20120080374A1 (en) | Ozone and anaerobic biological pretreatment for a desalination process | |
EP1016633A1 (en) | Process for the treatment of waste water containing heavy metals | |
KR970001454B1 (en) | Method for removing sulphur compounds from water | |
NL9000876A (en) | METHOD FOR REMOVING SULFUR COMPOUNDS FROM WATER. | |
US5518619A (en) | Process for removing sulphur compounds from water | |
Greben et al. | Improved sulphate removal rates at increased sulphide concentration in the sulphidogenic bioreactor | |
Yavuz et al. | Autotrophic removal of sulphide from industrial wastewaters using oxygen and nitrate as electron acceptors | |
JP2799247B2 (en) | How to remove sulfur compounds from water | |
NL9000880A (en) | Water treatment to remove sulphide(s) - by oxidising in aerobic reactor having specified minimum sludge load | |
JP2603392B2 (en) | Treatment method for sulfur compound-containing water | |
CA1329957C (en) | Process for removing metal contaminants from liquids and slurries | |
PL169170B1 (en) | Method of removing heavy metal ions from water containing sulphur compounds | |
ES2326062B1 (en) | PHYSICAL-CHEMICAL AND BIOLOGICAL PROCEDURE FOR THE DEPURATION OF RESIDUAL LIQUIDS CONTAINING OXIDIZED SULFUR COMPOUNDS. | |
LT3624B (en) | Process for the treatment of water containing sulphur compounds | |
PL169127B1 (en) | Method of oxygen-free treating sewage of high sulphur compounds content | |
Gallegos-García et al. | Treatment of Synthetic Acid Mine Drainage Using a Sulfidogenic Inverse Fluidized Bed Reactor | |
NL9201268A (en) | Method of removing sulphur compounds from water | |
Widanapathirana | Biotechnology of waste water treatment with special reference to removal of toxic metals from industrial waste waters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1B | A search report has been drawn up | ||
BV | The patent application has lapsed |