NL8003329A - REGISTRATION MEDIUM. - Google Patents

REGISTRATION MEDIUM. Download PDF

Info

Publication number
NL8003329A
NL8003329A NL8003329A NL8003329A NL8003329A NL 8003329 A NL8003329 A NL 8003329A NL 8003329 A NL8003329 A NL 8003329A NL 8003329 A NL8003329 A NL 8003329A NL 8003329 A NL8003329 A NL 8003329A
Authority
NL
Netherlands
Prior art keywords
layer
light
recording
nanometers
recording medium
Prior art date
Application number
NL8003329A
Other languages
Dutch (nl)
Original Assignee
Rca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rca Corp filed Critical Rca Corp
Publication of NL8003329A publication Critical patent/NL8003329A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

>· * VO 468> · * VO 468

Registratiemedium.Recording medium.

De uitvinding heeft betreKKing op een optisch registratiemedium waarin informatie bij één golflengte Kan worden geregistreerd en bij een tweede golflengte Kan worden uitgelezen, welK medium bij elK van deze golflengten een gereduceerde reflectivi-5 text, de verhouding van de gereflecteerde tot de invallende licht intensiteit, bezit.The invention relates to an optical recording medium in which information can be recorded at one wavelength and can be read at a second wavelength, which medium at each of these wavelengths has a reduced reflectivity, the ratio of the reflected to the incident light intensity, possession.

In het AmeriKaanse octrooischrift 4.097.895 is een ablatief optisch registratiemedium ten gebruiKe in een optisch registratie-stelsel beschreven, welK medium is voorzien van een licht reflec-10 terende laag, die met een dunne film van een lichtabsorptief orga nisch materiaal is beKleed. Een gefocusseerde, gemoduleerde lichtbundel, zoals een lichtbundel uit argonionenlaser, verdampt of abla-teert de lichtabsorptielaag wanneer deze bundel op het registratiemedium wordt gericht, waardoor in de lichtabsorptielaag een opening 15 ontstaat en de licht reflecterende laag wordt vrijgegeven. De diKte van de lichtabsorptielaag wordt zodanig geKozen, dat de reflectivi-teit van het registratiemedium wordt gereduceerd.U.S. Pat. No. 4,097,895 discloses an ablative optical recording medium for use in an optical recording system, which medium is provided with a light reflecting layer coated with a thin film of a light absorbing organic material. A focused, modulated light beam, such as an argon ion laser light beam, evaporates or ablates the light absorption layer when this beam is aimed at the recording medium, thereby creating an opening in the light absorption layer and releasing the light reflecting layer. The thickness of the light absorption layer is chosen such that the reflectivity of the recording medium is reduced.

In de AmeriKaanse octrooiaanvrage Serial No.054.437 is een ablatief optisch registratiemedium ten gebruiKe bij een optisch 20 registratiestelsel beschreven. Het optische registratiemedium omvat een licht refleeterende laag, een laag van een licht overdragend materiaal, die zich op de licht reflecterende laag bevindt, en een laag van een lichtabsorptiemateriaal, welKe zich op de licht overdragende laag bevindt. De diKte van de lichtabsorptielaag staat in 25 een zodanig verband tot de diKte van de licht overdragende laag en de optische constanten van de licht reflecterende, licht cverdra-gende en licht absorberende lagen, dat de optische reflectectivi-teit van het registratiemedium zodanig wordt gereduceerd, dat een maximale fractie van licht, dat het registratiemedium treft vanuit 30 een gefocusseerde, gemoduleerde lichtbundel met een vooraf bepaalde 800 3 3 29 - 2 - golflengte, wordt geabsorbeerd en in de lichtabsorptielaag in thermische energie wordt omgezet.U.S. Patent Application Serial No. 054,437 discloses an ablative optical recording medium used in an optical recording system. The optical recording medium includes a light-reflecting layer, a layer of a light-transmitting material, which is on the light-reflecting layer, and a layer of a light-absorbing material, which is on the light-transmitting layer. The thickness of the light absorption layer is so related to the thickness of the light transmitting layer and the optical constants of the light reflecting, light tolerant and light absorbing layers that the optical reflectivity of the recording medium is reduced such that that a maximum fraction of light striking the recording medium is absorbed from a focused, modulated light beam with a predetermined 800 3 3 29 - 2 wavelength and converted into thermal energy in the light absorption layer.

De thermische energie doet de lichtabsorptielaag smelten of ablateren, waardoor in de lichtabsorptielaag een opening ontstaat, 5 zodat de zich daaronder bevindende licht reflecterende laag via de lichtoverdragende laag wordt vrijgegeven.The thermal energy melts or ablates the light absorption layer, creating an opening in the light absorption layer, so that the light-reflecting layer underneath it is released via the light-transmitting layer.

De reflectiviteit in het gebied van de opening in de lichtabsorptielaag is in wezen gelijk aan die van de licht reflecterende laag en is veel groter dan die van het omgevende niet-belichte 10 gebied. Tijdens het uitlezen wordt dit verschil in reflectiviteit optisch gedetecteerd en omgezet in een elektrisch eignaal, dat representatief is voor de geregistreerde informatie.The reflectivity in the area of the opening in the light absorption layer is essentially the same as that of the light reflecting layer and is much greater than that of the surrounding unexposed area. During readout, this difference in reflectivity is detected optically and converted into an electrical signal representative of the recorded information.

Het registratieproces vereist meer in het bijzonder een laser met groot vermogen, zoals een argonionenlaser, in verband met 15 de geringe gevoeligheid van het registratiemedium. Voor het uitle zen evenwel is slechts een laser met gering vermogen, zoals een helium-neon- of een halfgeleiderinjectielaser nodig. Bij registratie- en uitleesstelsels, die extra slechts uitlezende posten vereisen of bij stelsels met slechts uitlezing, verdient het de voor-20 keur voor het uitlezen dergelijke lasers met gering vermogen te gebruiken. De reflectiviteit van het registratiemedium wordt evenwel bij de registratiegolflengte tot een minimum teruggebracht om de gevoeligheid tijdens het registratieproces maximaal te maken.More specifically, the recording process requires a high power laser, such as an argon ion laser, due to the low sensitivity of the recording medium. However, the readout requires only a low power laser, such as a helium neon or a semiconductor injection laser. In recording and readout systems, which additionally require only readout posts or in readout only systems, it is preferable to use such low power lasers for reading out. However, the reflectivity of the recording medium is minimized at the recording wavelength to maximize the sensitivity during the recording process.

Dit leidt in het algemeen tot een reductie in het refleetiviteits-25 verschil tussen belichte en niet-belichte gebieden van het registra tiemedium wanneer de uitleesgolflengte sterk van de registratiegolflengte verschilt. Dit gereduceerde reflectiviteitsverschil leidt tot een afname van de signaal-ruis-verhouding, die bij uitlezing kan worden verkregen, waardoor de totale werking van het stel-30 sel wordt gedegradeerd. Derhalve dienen voor een maximale werking de registratie- en uitleesgolflengten ongeveer aan elkaar gelijk te zijn.This generally leads to a reduction in the reflectivity difference between exposed and unexposed areas of the recording medium when the reading wavelength is very different from the recording wavelength. This reduced reflectivity difference leads to a decrease in the signal-to-noise ratio, which can be obtained on reading, degrading the overall operation of the system. Therefore, for maximum operation, the recording and reading wavelengths should be approximately the same.

Het is gewenst te beschikken over een registratiemedium waarvan de reflectiviteit tegelijkertijd bij zowel registratie-35 als uitleesgolflengte gering is, waarbij deze golflengten aanmerke- 800 3 3 29 r * - 3 - lijk van elkaar verschillen, waardoor men bij registratie een grote gevoeligheid en bij uitlezen een grote signaal-ruis-verhouding verkrijgt.It is desirable to have a recording medium whose reflectivity at the same time is low for both recording 35 and read wavelength, these wavelengths being significantly different from each other, so that high sensitivity and recording a large signal-to-noise ratio is obtained.

Daartoe voorziet de uitvinding in een optisch registratie-5 medium, dat voorzien is van een licht reflecterende laag, een licht □verdragende laag, die zich op de licht reflecterende laag bevindt, en een licht absorberende laag, die zich op de licht averdragende laag bevindt, waarbij de optische constanten van de licht reflecterende laag, de licht overdragende laag en de licht absorberende 10 laag en de dikten van de overdragende en absorberende lagen zodanig zijn, dat de som van de reflectiviteiten van het registratiemedium bij de registratie- en uitleesgolflengten, die met tenminste 100 nanometer in golflengte van elkaar verschillen, minder is dan ongeveer 0,3. —-— 15 De uitvinding zal onderstaand nader worden toegelicht onder verwijzing naar de tekening. Daarbij toont: fig.l een schematische dwarsdoorsnede van een registratiemedium volgens de uitvinding; en fig.2 een schematische dwarsdoorsnede van een registratie-20 medium volgens de uitvinding, waarin informatie is geregistreerd.To this end, the invention provides an optical recording medium, which is provided with a light-reflecting layer, a light-bearing layer, which is located on the light-reflecting layer, and a light-absorbing layer, which is on the light-bearing layer wherein the optical constants of the light reflecting layer, the light transmitting layer and the light absorbing layer and the thicknesses of the transmitting and absorbing layers are such that the sum of the reflectivities of the recording medium at the recording and read wavelengths differ by at least 100 nanometers in wavelength, less than about 0.3. The invention will be explained in more detail below with reference to the drawing. 1 shows a schematic cross-section of a recording medium according to the invention; and Fig. 2 shows a schematic cross section of a recording medium according to the invention, in which information has been recorded.

Fig.l toont een illustratieve uitvoeringsvorm van een registratiemedium 10 volgens de uitvinding, dat voorzien is van een substraat 12 met een oppervlak 14, een licht reflecterende laag 16, die zich op het oppervlak 14 van de substraat 12 bevindt, en welke 25 licht bij de golflengten van de registratie- en uitleeslichtbundels reflecteert, een licht overdragende laag 1Θ, die zich op de licht reflecterende laag 16 bevindt, en welke laag 18 in hoofdzaak transparant is bij de registratie- en uitleesgolflengten, en een licht absorberende laag 20, die zich op de licht overdragende laag 18 be-30 vindt en licht bij de·golflengten van de registratie- en uitlees lichtbundels absorbeert.Fig. 1 shows an illustrative embodiment of a recording medium 10 according to the invention, which is provided with a substrate 12 with a surface 14, a light-reflecting layer 16, which is located on the surface 14 of the substrate 12, and which light reflects the wavelengths of the recording and reading light beams, a light transmitting layer 1Θ, which is on the light reflecting layer 16, and which layer 18 is substantially transparent at the recording and reading wavelengths, and a light absorbing layer 20, which is on the light-transmitting layer 18 and absorbs light beams at the wavelengths of the recording and reading.

De substraat 12 kan bestaan uit een glas of een kunststof, zoals polyvinylchloride, en heeft meer in het bijzonder de vorm van een schijf. De substraat 12 kan ook bestaan uit een materiaal, 35 zoals aluminium, dat bij zowel de registratie- als uitleesgolfleng- 800 3 3 29 - 4 - te licht reflecteert, waardoor de functies van de substraat 12 en de licht reflecterende laag 16 met elkaar worden gecombineerd.The substrate 12 may consist of a glass or a plastic, such as polyvinyl chloride, and more particularly has the form of a disc. The substrate 12 may also consist of a material, such as aluminum, which reflects too light at both the recording and read wavelength 800 3 3 29 - 4, thereby interfering with the functions of the substrate 12 and the light reflecting layer 16. combined.

Een substraat behoeft, indien deze aanwezig is, slechts voldoende dik te zijn om de rest van het stelsel te ondersteunen.A substrate, if present, need only be thick enough to support the rest of the system.

5 De ruwheid van het oppervlak 14 op de schaal van de diameter van de gefocusseerde lichtbundel veroorzaakt tijdens het uitlezen ruis in het signaalkanaal. Een niet-conformele bekleding van een kunststof, zoals een epoxyhars, op het oppervlak 14 voordat daarop- de licht reflecterende laag 16 wordt gevormd, leidt tot een 10 microscopisch glad oppervlak, waardoor deze ruisbron wordt geëlimi neerd .The roughness of the surface 14 on the scale of the diameter of the focused light beam causes noise in the signal channel during reading. A non-conformal coating of a plastic, such as an epoxy resin, on the surface 14 before light reflecting layer 16 is subsequently formed, results in a microscopically smooth surface, thereby eliminating this noise source.

De licht reflecterende laag 16 reflecteert een aanmerkelijke fractie van het invallende licht bij zowel de registratie- als uit-leesgolflengte en bestaat meer in het bijzonder uit een metaal, 15 zoals aluminium of goud, dat bij de beide golflengten een grote reflectiviteit vertoont. Deze laag, welke meer in het bijzonder een dikte van ongeveer 30 - 60 nanometer heeft, kan onder gebruik van een vacuum-opdampmethode op het oppervlak 14 van de substraat 12 worden aangebracht.The light reflecting layer 16 reflects a significant fraction of the incident light at both the recording and reading wavelength and more particularly consists of a metal, such as aluminum or gold, which has a high reflectivity at both wavelengths. This layer, which in particular has a thickness of about 30-60 nanometers, can be applied to the surface 14 of the substrate 12 using a vacuum vapor deposition method.

20 De licht overdragende laag 18 bestaat uit een materiaal, dat bij zowel de registratie- als uitleesgolflengte in hoofdzaak transparant is. Een materiaal, dat voor deze laag geschikt is, is siliciumdioxyde, dat onder gebruik van een elektronenbundel-opdampmethode op de licht reflecterende laag 16 kan worden opge-25 bracht.The light-transmitting layer 18 consists of a material which is substantially transparent at both the recording and the reading wavelength. A material suitable for this layer is silicon dioxide, which can be applied to the light-reflecting layer 16 using an electron beam evaporation method.

De licht absorberende laag 20 bestaat uit een materiaal, dat bij zowel de registratie- als uitleesgolflengte licht absorbeert. Geschikte materialen omvatten titaan, rhodium, bismuth, telluur en op telluur gebaseerde legeringen, die op een geschikte wijze 30 b.v. door opdampen in vacuo worden aangebracht. Na blootstelling aan de temperatuur oxyderen enige van deze materialen, waardoor men een absorptielaag verkrijgt, die dunner is dan de oorspronkelijk aangebrachte laag. Dit effect kan worden gecompenseerd door een laag aan te brengen, welke dikker is dan die gewenst is, waarbij 35 de daaropvolgende oxydatie de effectieve dikte van de laag tot een gewenste waarde reduceert. De later nog te noemen dikten van de ab- 800 33 29 r * - 5 - / sorberende laag zijn gewenste waarden hiervoor.The light absorbing layer 20 consists of a material that absorbs light at both the recording and read wavelength. Suitable materials include titanium, rhodium, bismuth, tellurium and tellurium-based alloys, which are suitably prepared e.g. can be applied in vacuo by evaporation. After exposure to the temperature, some of these materials oxidize to yield an absorption layer thinner than the originally applied layer. This effect can be compensated for by applying a layer which is thicker than that desired, the subsequent oxidation reducing the effective thickness of the layer to a desired value. The thicknesses of the ab- 800 33 29 r * - 5 - / sorbing layer to be mentioned later are desirable values for this.

Om signaaldefecten, welke worden veroorzaakt door stof aan het oppervlak, dat vanuit de omgeving wordt geprecipiteerd, te elimineren of te reduceren, wordt op de licht absorberende laag een 5 deklaag met een dikte van ongeveer 0,05 tot ongeveer 1 mm aange bracht. Stofdeeltjes, welke zich op het bovenvlak van de deklaag afzetten, bevinden zich op een zo grote afstand van het brand-puntsvlak van het optische stelsel, dat hun invloed op de registratie: .of uitlezing van informatie van da schijf aanmerkelijk wordt · 10 gereduceerd. Een nuttig materiaal, voor deze laag is een silicon- hars.To eliminate or reduce signal defects caused by surface dust that is precipitated from the environment, a coating with a thickness of about 0.05 to about 1 mm is applied to the light absorbing layer. Dust particles that deposit on the top surface of the coating are so far away from the focal plane of the optical system that their influence on recording or reading information from the disc is significantly reduced. A useful material for this layer is a silicone resin.

Oe dikten van de licht overdragende laag 18 en de licht absorberende laag 20 houden met elkaar verband en worden zodanig ingesteld, dat de reflectiviteiten van het registratiemedium bij zo-15 wel de registratie- als uitleesgolflengte gelijktijdig worden ge reduceerd. Bij voorkeur is de som van de reflectiviteiten van het registratiemedium bij de registratie- en uitleesgolflengten kleiner dan 0,3.The thicknesses of the light-transmitting layer 18 and the light-absorbing layer 20 are interrelated and adjusted so that the reflectivities of the recording medium are simultaneously reduced at both the recording and read wavelength. Preferably, the sum of the reflectivities of the recording medium at the recording and read wavelengths is less than 0.3.

De optimale waarden van de dikten van de overdragende en ab-20 sorberende lagen kan men berekenen onder gebruik van b.v. de ma trixmethode, zoals deze is beschreven in "Optical Properties of Thin Solid Films" van O.S.Heavens, Dover Publications Inc.,The optimal values of the thicknesses of the transfer and absorbent layers can be calculated using e.g. the matrix method, as described in "Optical Properties of Thin Solid Films" of O. Heavens, Dover Publications Inc.,

New York, 1965, pagina 69. Bij deze of bij andere benaderingen wordt gebruik gemaakt van de complexe optische constanten van de 25 licht reflecterende laag, de licht overdragende laag en de licht absorberende laag, de registratie- en uitleesgolflengten, en constante dikte van of de licht overdragende af de licht absorberende laag om de dikte van de resterende laag te bepalen, welke leidt tot een minimum in de reflectiviteit bij de registratie- en uitlees-30 golflengten.New York, 1965, page 69. These or other approaches use the complex optical constants of the light reflecting layer, the light transmitting layer and the light absorbing layer, the recording and reading wavelengths, and constant thickness of or the light transmitting the light absorbing layer to determine the thickness of the remaining layer, which results in a minimum in reflectivity at the recording and reading wavelengths.

Nuttige waarden voor de dikte van de licht overdragende en absorberende lagen kunnen ook worden verkregen door de licht overdragende laag op de bovenbeschreven wijze aan te brengen en daarna de licht absorberende laag aan te brengen waarbij de reflectiviteit 35 van het registratiemedium bij zowel de registratie- als uitlees- onn x τ 90 - 6 - golflengte wordt gecontroleerd. Het neerslagproces voor de licht absorberende laag wordt dan beëindigd in het punt, waar de som van de reflectiviteiten bij de twee golflengten Kleiner is dan 0,3.Useful values for the thickness of the light-transmitting and absorbing layers can also be obtained by applying the light-transmitting layer in the manner described above and then applying the light-absorbing layer, the reflectivity of the recording medium in both the recording and recording medium. readout x τ 90 - 6 - wavelength is checked. The precipitation process for the light absorbing layer is then ended at the point where the sum of the reflectivities at the two wavelengths is Less than 0.3.

Oe licht overdragende laag heeft een dikte van tenminste 10 5 nanometer en heeft meer in het bijzonder een dikte van ongeveer 20 nanometer tot ongeveer 150 nanometer. Typische waarden voor de dik te van de absorberende laag zijn.-die van ongeveer 2 nanometer tot ongeveer 30 nanometer. Enige dikten van de overdragende en absorberende lagen van het registratiemedium, dat een gereduceerde reflec-10 tiviteit vertoont bij een registratiegolflengte van 480 nanometer en een uitleesgolflengte van 800 nanometer, en welke geschikt zijn om te worden toegepast in een stelsel voor optische registratie en uitlezing, zijn aangegeven in de onderstaande tabellen A en B.The light-transmitting layer has a thickness of at least 105 nanometers and more particularly has a thickness of from about 20 nanometers to about 150 nanometers. Typical values for the thickness of the absorbent layer are from about 2 nanometers to about 30 nanometers. Any thicknesses of the transferring and absorbing layers of the recording medium, which exhibits a reduced reflectivity at a recording wavelength of 480 nanometers and a read wavelength of 800 nanometers, and which are suitable for use in an optical recording and reading system, are indicated in Tables A and B below.

In tabel A bestaat de licht absorberende laag uit titaan en in ta-15 bel B bestaat de licht absorberende laag uit telluur. In de tabel len zijn R-qq en Rann de berekende reflectiviteiten van het regi-stratiemedium bij resp. 488 en 800 nanometer en is S de som van de reflectiviteiten R^8Q + Rqqq· In beide gevallen bestaat de licht overdragende laag uit siliciumdioxyde.In Table A the light absorbing layer consists of titanium and in Table B the light absorbing layer consists of tellurium. In the tables len, R-qq and Rann are the calculated reflectivities of the recording medium at resp. 488 and 800 nanometers and S is the sum of the reflectivities R ^ 8Q + Rqqq · In both cases, the light-transmitting layer consists of silicon dioxide.

20 Tabel A20 Table A

Dikte R4a8 Rqqq sThickness R4a8 Rqqq s

Ti Si°2 R488 + R800 7 nm 50 nm 0,000 0,11 0,11 25 7 nm 80 nm 0,16 0,000 0,16 8 nm 55 nm 0,02 0,05 0,07Ti Si ° 2 R488 + R800 7 nm 50 nm 0.000 0.11 0.11 25 7 nm 80 nm 0.16 0.000 0.16 8 nm 55 nm 0.02 0.05 0.07

Tabel BTable B

DiKte R488 R800 SThickness R488 R800 S

30 Te Si02 R468 + RS0Ó 3,5 nm 75 nm 0,000 0,05 0,05 6 nm 52,5 nm 0,14 0,000 0,14 4 nm 72,5 nm 0,01 0,03 0,04 800 3 3 29 - 7 -30 Te Si02 R468 + RS0Ó 3.5 nm 75 nm 0.000 0.05 0.05 6 nm 52.5 nm 0.14 0.000 0.14 4 nm 72.5 nm 0.01 0.03 0.04 800 3 3 29 - 7 -

In de onderstaande tabel C is informatie opgegeven ten aanzien van de reflectiviteiten bij 488 nanometer en 800 nanometer en de som van deze reflectiviteiten voor een registratiemedium met een licht overdragende laag van siliciumdioxyde en een licht absor-5 berende laag van titaan. In beide gevallen is de reflectiviteit bij de onderste golflengte minder dan 0,3, terwijl de reflectiviteit bij de grootste golflengte en de som van de reflectiviteiten beide groter zijn dan 0,3.Table C below lists information regarding the reflectivities at 488 nanometers and 800 nanometers and the sum of these reflectivities for a recording medium having a light transfer layer of silicon dioxide and a light absorbing layer of titanium. In both cases, the reflectivity at the lower wavelength is less than 0.3, while the reflectivity at the largest wavelength and the sum of the reflectivities are both greater than 0.3.

Tabel CTable C

10 Dikte R48a Ra00 S10 Thickness R48a Ra00 S

Ti Si02 R488 + R800 3 nm 25 nm 0,19 0,41 0,60 6 nm 25 nm 0,25 0,47 0,72 15 7 nm 30 nm 0,11 0,34 0,45 9 nm 25 nm 0,11 0,31 0,42Ti Si02 R488 + R800 3 nm 25 nm 0.19 0.41 0.60 6 nm 25 nm 0.25 0.47 0.72 15 7 nm 30 nm 0.11 0.34 0.45 9 nm 25 nm 0 , 11 0.31 0.42

Fig.2 toont een illustratieve uitvoeringsvorm van een registratiemedium 30 volgens de uitvinding waarin informatie is geregistreerd. De figuur toont een dwarsdoorsnede van een informatie-20 spoor, dat is geregistreerd in de vorm van een reeks openingen 22 in de licht absorberende laag 20, waardoor een informatieregistra-tie wordt gevormd. Meer in het bijzonder is de informatie op’de schijf gecodeerd door de lengte van de openingen 22 en van de niet-belichte gebieden 24 van de licht absorberende laag 20 tussen de 25 openingen 22 in de richting van het spoor te variëren. De lengte van de openingen 22 wordt bepaald door de periode gedurende welke de schijf aan de registratielichtbundel wordt blootgesteld en de snelheid waarmede de schijf door het brandpuntsvlak van de registratielichtbundel wordt bewogen.Fig. 2 shows an illustrative embodiment of a recording medium 30 according to the invention in which information is recorded. The figure shows a cross section of an information track 20, which is recorded in the form of a series of openings 22 in the light absorbing layer 20, thereby forming an information record. More specifically, the information on the disc is encoded by varying the length of the openings 22 and of the unexposed areas 24 of the light absorbing layer 20 between the openings 22 in the direction of the track. The length of the apertures 22 is determined by the period during which the disk is exposed to the recording light beam and the speed at which the disk is moved through the focal plane of the recording light beam.

30 Men verkrijgt bij registratie een grote gevoeligheid, meer in het bijzonder bij 488 nanometer of 514,5 nanometer omdat de fractie van het invallende licht, die reflectie verloren gaat, gering is. Tegelijkertijd wordt het contrast in reflectiviteit tussen de openingen en de niet-belichte gebieden van de schijf bij de uitlees-35 golflengte, meer in het bijzonder 632,8 of ongeveer 800 nanometer, 80 0 3 3 29 - a - op een hoge waarde gehouden, hetgeen voor een uitlezing met goede Kwaliteit van de geregistreerde informatie gewenst is.A high sensitivity is obtained on registration, more particularly at 488 nanometers or 514.5 nanometers, because the fraction of the incident light, which loses reflection, is small. At the same time, the contrast in reflectivity between the apertures and the unexposed areas of the disc at the read-out wavelength, more particularly 632.8 or about 800 nanometers, 80 0 3 3 29 - a - is maintained at a high value , which is desirable for a good quality reading of the registered information.

800 3 3 29800 3 3 29

Claims (14)

1. Registratiemedium ten gebruiKe in een optisch registratie-en uitleesstelsel, waarbij gebruik wordt gemaakt van registratie-en uitleeslichtbundels, waarvan de golflengte met tenminste 100 nanometer verschilt, voorzien van een licht reflecterende laag, 5 die licht bij de registratie- en uitleesgolflengte reflecteert, een licht overdragende laag, die zich op de licht reflecterende laag bevindt, en uit een materiaal bestaat, dat bij de registratie-en uitleesgolflengten in hoofdzaak transparant is en welke laag een dikte heeft, welke meer dan ongeveer 10 nanometer bedraagt, 10 en een licht absorberende, laag, die zich op. de licht overdragende laag bevindt en uit een materiaal bestaat, dat bij de registratie-en uitleesgolflengten licht kan absorberen, met het kenmerk, dat de optische constanten van de reflecterende, de overdragende en de absorberende lagen (16 resp. 18 resp. 20) en de dikten van de overdragende en absorberende lagen (18 resp. 20) zodanig zijn, dat de 15 som van de reflectiviteiten van het registratiemedium (10) bij de registratie- en uitleesgolflengten kleiner is dan ongeveer 0,3.1. Recording medium for use in an optical recording and reading system, using recording and reading light beams, the wavelength of which differs by at least 100 nanometers, provided with a light-reflecting layer, 5 which reflects light at the recording and read wavelength, a light-transmitting layer, which is located on the light-reflecting layer, and which consists of a material which is substantially transparent at the recording and read wavelengths and which layer has a thickness of more than about 10 nanometers, 10 and a light absorbent, layer, which is on. the light-transmitting layer is comprised of a material which can absorb light at the recording and read wavelengths, characterized in that the optical constants of the reflecting, transmitting and absorbing layers (16 and 18 and 20 respectively) and the thicknesses of the transferring and absorbing layers (18 and 20, respectively) are such that the sum of the reflectivities of the recording medium (10) at the recording and read wavelengths is less than about 0.3. 2. Registratiemedium volgens conclusie 1, met het kenmerk, dat de reflecterende laag (16) op het substraat (12) wordt ondersteund.Recording medium according to claim 1, characterized in that the reflective layer (16) is supported on the substrate (12). 3. Registratiemedium volgens conclusie 1, met het kenmerk, dat 20 de reflecterende laag (16) uit aluminium bestaat.Recording medium according to claim 1, characterized in that the reflective layer (16) consists of aluminum. 4. Registratiemedium volgens conclusie 1, met het kenmerk, dat de overdragende laag (18) uit siliciumdioxyde bestaat.Recording medium according to claim 1, characterized in that the transfer layer (18) consists of silicon dioxide. 5. Registratiemedium volgens conclusie 4, met het kenmerk, dat de dikte van de overdragende laag (18) is gelegen in een gebied 25 van ongeveer 20 nanometer tot ongeveer 150 nanometer.Recording medium according to claim 4, characterized in that the thickness of the transfer layer (18) is in a range from about 20 nanometers to about 150 nanometers. 6. Registratiemedium volgens conclusie 1, met het kenmerk, dat de absorberende laag (20) bestaat uit een materiaal, gekozen uit de groep bestaande uit titaan, rhodium, bismuth, telluur en op tel-luur gebaseerde legeringen.Recording medium according to claim 1, characterized in that the absorbent layer (20) consists of a material selected from the group consisting of titanium, rhodium, bismuth, tellurium and count-based alloys. 7. Registratiemedium volgens conclusie 6, met het kenmerk, dat de dikte van de absorberende laag (20) is gelegen in een gebied 800 3 3 29 - 10 - van ongeveer 2 nanometer tot ongeveer 30 nanometer.Recording medium according to claim 6, characterized in that the thickness of the absorbent layer (20) is in a range 800 3 3 29 - 10 - from about 2 nanometers to about 30 nanometers. 8. Informatieregistratiedrager ten gebruike in een optisch registratie- en uitleesstelsel, waarbij gebruik wordt gemaakt van registratie- en uitleeslichtbundels waarvan de golflengte met ten-5 minste 100 nanometer verschilt, voorzien van een licht reflecte rende laag, die licht bij de registratie- en uitleesgolflengten reflecteert, een licht overdragende laag,, welke zich op de licht reflecterende laag bevindt en uit een materiaal bestaat, dat bij de registratie- en uitleesgolflengten in hoofdzaak transparant 10 voor licht is, waarbij de laag een dikte heeft, welke meer dan 10 nanometer bedraagt, en een licht absorberende laag, welke zich op de licht overdragende laag bevindt en uit een materiaal bestaat, dat bij de registratie- en uitleesgolflengten licht kan absorberen waarbij in deze laag een informatiespoor is gevormd, met het ken-15 merk, dat de optische constanten van de reflecterende, d e~ over dragende en de absorberende lagen (16 resp. 18 resp. 20) en de dikten van de overdragende en absorberende lagen (18 resp. 20) zodanig zijn, dat de som van de reflectiviteiten van de informatieregistratiedrager (30) bij de registratie- en uitleesgolflengten kleiner' 20 is dan ongeveer 0,3, en het informatiespoor (22) bestaat uit een reeks openingen (22) in de absorberende laag (20) met variaties in de lengte van de openingen (22) langs het spoor en/of de afstand (24) tussen opeenvolgende openingen (22), welke variaties representatief zijn voor geregistreerde informatie.8. Information record carrier for use in an optical recording and reading system, using recording and reading light beams whose wavelength differs by at least 100 nanometers, provided with a light-reflecting layer, which emits light at the recording and read wavelengths reflects, a light-transmitting layer, which is on the light-reflecting layer and consists of a material which is substantially transparent to light at the recording and read wavelengths, the layer having a thickness of more than 10 nanometers , and a light absorbing layer, which is located on the light transmitting layer and consists of a material which can absorb light at the recording and read wavelengths, in which an information track is formed in this layer, characterized in that the optical constants of the reflective, the ~ transferable and the absorbent layers (16 and 18 and 20 respectively) and the thicknesses of the transfer agitating and absorbent layers (18 resp. 20) such that the sum of the reflectivities of the information record carrier (30) at the record and read wavelengths is less than about 0.3, and the information track (22) consists of a series of openings (22) in the absorbent layer (20) with variations in the length of the openings (22) along the track and / or the distance (24) between successive openings (22), which variations are representative of recorded information. 9. Informatieregistratiedrager volgens conclusie 8, met het kenmerk, dat de reflecterende laag (16) door een substraat (12) wordt ondersteund.Information record carrier according to claim 8, characterized in that the reflective layer (16) is supported by a substrate (12). 10. Informatieregistratiedrager volgens conclusie 8, met het kenmerk, dat de reflecterende laag (16) uit aluminium bestaat.Information record carrier according to claim 8, characterized in that the reflective layer (16) consists of aluminum. 11. Informatieregistratiedrager volgens conclusie 8, met het kenmerk, dat de overdragende laag (18) uit siliciumdioxyde bestaat.Information record carrier according to claim 8, characterized in that the transfer layer (18) consists of silicon dioxide. 12. Informatieregistratiedrager volgens conclusie 11, met het kenmerk, dat de dikte van de overdragende laag (18) is gelegen in het gebied van ongeveer 20 nanometer tot ongeveer 150 nanometer.Information record carrier according to claim 11, characterized in that the thickness of the transferring layer (18) is in the range from about 20 nanometers to about 150 nanometers. 13. Informatieregistratiedrager volgens conclusie 8, met het 800 3 3 29 vS· S5* - 11 - Kenmerk, dat de absorberende laag C203 bestaat uit een materiaal, gekozen uit een groep bestaande uit titaan, rhodium, bismuth, tel-luur en op telluur gebaseerde legeringen.Information record carrier as claimed in claim 8, characterized in that the absorbing layer C203 consists of a material selected from a group consisting of titanium, rhodium, bismuth, counting acid and on tellurium based alloys. 14. Informatieregistratiedrager volgens conclusie 13, met het 5 kenmerk, dat de dikte van de absorberende laag C2D) is gelegen in het gebied van ongeveer 2 nanometer tot ongeveer 30 nanometer. 800 33 29Information record carrier according to claim 13, characterized in that the thickness of the absorbing layer C2D) is in the range from about 2 nanometers to about 30 nanometers. 800 33 29
NL8003329A 1979-10-09 1980-06-06 REGISTRATION MEDIUM. NL8003329A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8273479A 1979-10-09 1979-10-09
US8273479 1979-10-09

Publications (1)

Publication Number Publication Date
NL8003329A true NL8003329A (en) 1981-04-13

Family

ID=22173097

Family Applications (1)

Application Number Title Priority Date Filing Date
NL8003329A NL8003329A (en) 1979-10-09 1980-06-06 REGISTRATION MEDIUM.

Country Status (6)

Country Link
JP (1) JPS5660988A (en)
DE (1) DE3021103A1 (en)
FR (1) FR2467460A1 (en)
GB (1) GB2060973A (en)
IT (1) IT1130751B (en)
NL (1) NL8003329A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285056A (en) * 1979-10-17 1981-08-18 Rca Corporation Replicable optical recording medium
NL8202229A (en) * 1982-06-02 1984-01-02 Docdata Bv MEDIUM FOR RECORDING OPTICALLY READABLE INFORMATION.
CN113380278B (en) * 2018-11-20 2023-03-31 中国科学院上海高等研究院 Optical disk reading method, reading device and optical disk reading and writing device based on nano photoetching

Also Published As

Publication number Publication date
FR2467460A1 (en) 1981-04-17
IT1130751B (en) 1986-06-18
JPS5660988A (en) 1981-05-26
GB2060973A (en) 1981-05-07
DE3021103A1 (en) 1981-04-23
IT8022305A0 (en) 1980-05-23

Similar Documents

Publication Publication Date Title
US4425570A (en) Reversible recording medium and information record
US4285056A (en) Replicable optical recording medium
KR890004230B1 (en) Light disk memory
US4394661A (en) Recording material for storage of digital information and a recording method for storage of digital information
GB2079031A (en) Optical information record and a method of reversibly recording and erasing information thereon
EP0092113B1 (en) Optical recording medium for use in an optical storage system and method for making such recording medium
JP2000163795A (en) Information recorder and information reproducer
JPS5847771B2 (en) Kogakutekiyomidashyou data kiyariya
NL8005699A (en) COPYABLE OPTICAL RECORDING MEDIA; INFORMATION REGISTRATION; METHOD FOR COPYING INFORMATION RECORDED ON A RECORDING MEDIA
US4387381A (en) Optical recording medium and information record with tracking aid
JPS5928478B2 (en) Laser beam recording method
GB2055218A (en) Optical recording member
US4383311A (en) Optical recording medium and information record with indented overcoat
JPH03292632A (en) Signal reproducing method for optical disk
JPH0535489B2 (en)
NL8003329A (en) REGISTRATION MEDIUM.
JP2889880B2 (en) Laminate, compound used for laminate, and optical information carrier having laminate
JPS59113534A (en) Optical recording medium
JPS5920474B2 (en) Heat mode laser beam recording method
NL8203213A (en) OPTICAL RECORD MEDIUM AND INFORMATION CARRIER, AND METHOD FOR MANUFACTURING THESE.
JP4199731B2 (en) Optical recording medium, optical information processing apparatus, and optical recording / reproducing method
JPH05205314A (en) Optical disk
JPS59104996A (en) Optical recording medium
RU2174715C1 (en) Information carrier of optical storage and process of recording of optical information on it
EP0156555A1 (en) Optical reproducing apparatus & method

Legal Events

Date Code Title Description
BV The patent application has lapsed