NL7905871A - Spectrofotometer. - Google Patents

Spectrofotometer. Download PDF

Info

Publication number
NL7905871A
NL7905871A NL7905871A NL7905871A NL7905871A NL 7905871 A NL7905871 A NL 7905871A NL 7905871 A NL7905871 A NL 7905871A NL 7905871 A NL7905871 A NL 7905871A NL 7905871 A NL7905871 A NL 7905871A
Authority
NL
Netherlands
Prior art keywords
spectrograph
spectrum
light
spectrophotometer
output
Prior art date
Application number
NL7905871A
Other languages
English (en)
Original Assignee
Jan Willem Frederikse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jan Willem Frederikse filed Critical Jan Willem Frederikse
Priority to NL7905871A priority Critical patent/NL7905871A/nl
Publication of NL7905871A publication Critical patent/NL7905871A/nl

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • G01J3/0221Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers the fibers defining an entry slit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy

Description

* # . ' ijk t | VO 8135 - 1 -
Jan Willem Frederikse en Muharrem Elmas Zeist en Maam
Uitvinder: Muharrem Elmas
Spectrofotometer.
De uitvinding heeft "betrekking op een spectrofotometer, voorzien van een spectrograaf met een ingangsopening en een uitgang, welke spectrograaf is ingericht :om vanrop de ingangsopening gericht licht de spectrale energieverdeling te bepalen en de desbetreffende infor-5 matie in de vorm van een spectrum aan de uitgang aan te bieden, en voorzien van een detectieorgaan dat het aan de uitgang van de spectrograaf aangeboden spectrum ‘detecteert en omzet in voor verdere verwerking geschikte signalen.
t ·
Dergelijke spectrofotometers zijn algemeen bekend en dienen 10 voor het analyseren van de spectrale energieverdeling van een lichtbron of van een absorberend medium. Met de spectrograaf wordt een dergelijke spectrale energieverdeling bepaald en met een geschikte detector wordt het door de spectrograaf geleverde spectrum gedetecteerd en omgezet in geschikte signalen. Deze signalen kunnen bijvoorbeeld αχεί 5 nen voor weergave van het opgenomen spectrum op een televisiescherm of voor het anderszins weergeven van het spectrum. Om enige uitspraak te kunnen doen over de spectrale energieverdeling van een bepaalde lichtbron is het nodig het van deze lichtbron opgenomen spectrum te vergelijken met een spectrum van een standaard-lichtbron. Zonder een 20 dergelijke calibratie is de verkregen informatie van de onderzochte lichtbron of het onderzochte absorberende medium van beperkte waarde.
In de praktijk wordt een spectrofotometer bijvoorbeeld gebruikt voor het vergelijken van de kleur van een produkt met een standaard, teneinde kleurverloop tijdens de produktie te kunnen tegengaan. Dit is 25 van belang in de textielindustrie om slechts een voorbeeld te noemen;
Calibratie bij bekende spectrofotometers vindt gewoonlijk plaats door toepassing van een chopper-spiegel om achtereenvolgens het te onderzoeken monster en de standaard af te tasten, terwijl tegelijkertijd een optisch verwerkingsorgaan van de spectrograaf, meestal in 30 de vorm van een rooster, mechanisch wordt bewogen voor het bewerken 790 58 71 if* 'f* - 2 - van een golflengteselectie, of vindt plaats door eerst de. standaard over het gewenste gebied van golflengten te meten en de gegevens "betreffende de .spectrale energieverdeling op te slaan om later daarmee te kunnen vergelijken.
5 Een nadeel van de eerste methode is dat daarbij mechanische bewegingen met grote frequentie nodig zijn, hetgeen problemen kan opleveren met betrekking tot betrouwbaarheid, juiste werking en ali-neëring. Een nadeel van de tweede methode is de stabiliteit op slechts korte termijn van de achtergeschakelde elektronica. Hiérdoor is de be- \.
10 trouwbaarheid beperkt en de reproduceerbaarheid van de meetresultaten eveneens. Daarnaast is het bij geen van beide typen spectrofotometers mogelijk snelle veranderingen te volgen, aangezien zij te langzaam responderen.
De uitvinding nu heeft tot doel een spectrofotometer te ver-15 schaffen waarbij zich de bovengenoemde problemen niet voordoen en die in staat is de spectrale ener giever deling van een emitterend of absorberend medium binnen een zeer kleine fractie van een seconde vast te stellen en vast te. leggen.
Het gestelde doel wordt bereikt met een spectrofotometer waar-20 pij de ingangsopening van de spectrograaf is ingericht om licht van twee verschillende bronnen afzonderlijk en gescheiden tegelijkertijd ' te ontvangen. Op geschikte wijze bestaat daarbij de ingangsopening uit een plaatje van voor licht ondoorlaatbaar materiaal., waarin twee spleten zijn voorzien. Bij voorkeur is daarbij de minimale afstand 25 tussen de twee spleten in het plaatje zodanig dat aan de uitgang van de spectrograaf nog gescheiden spectrums worden voortgebracht van licht dat op de ene spleet wordt gericht en van licht dat op de andere spleet wordt gericht. Voorts kan de spectrofotometer Volgens de uitvinding op geschikte wijze zijn voorzien van twee fiberoptische 30 organen, die aan hun uiteinde zijn aangesloten op de ingangsopening van de spectrograaf om daarop afzonderlijk en gescheiden licht te werpen. Het andere uiteinde van de fiberoptische organen zal daarbij respectievelijk gericht zijn op een te meten monster en op een refe-rentiestandaard in een te onderzoeken experiment.
35 Bij een voorkeursuitvoeringsvorm van de spectrofotometer vol- 79 0 5 8 71 * - 3 - •5.
geus de uitvinding is tussen spectrograaf en deteetieorgaan een masker opgesteld met zodanige vorm en afmetingen, dat wordt verhinderd dat hogere buigingsorden van het ene spectrum het andere spectrum beïnvloeden en omgekeerd hogere buigingsorden van. het andere spectrum 5 het ene spectrum beïnvloeden.
Een voordeel van de spectrofótometer volgens de uitvinding is dat daarin geen mechanisch bewegende delen voorkomen. Door bijvoor- < beeld met behulp van fiberoptische organen zowel het monsteroppervlak als het referentieoppervlak te projecteren op de ingangsopening van 10 een spectrograaf met gewenst scheidend vermogen en golflengtegebied en de "gescheiden spectrums van het monster en van de referentiestan-daard op de uitgang van de spectrograaf af te beelden kunnen de ener-gieverdelingen van het spectrum van zowel de standaard als het monster met een en dezelfde detector worden gedetecteerd. De responsivi-15 teit van de detector kan daarbij worden gekozen aanpassend aan het golflengtegebied van de spectrograaf en het experiment. De detector is daarbij een enkel orgaan met meer· detectie-elementen, bijvoorbeeld een vidicontype opneembuis, image disectorbuis of een diodestelsel.
Aangezien zowel het meetspectrum als het referenti'espectrum met een en 20 dezelfde detector worden gedetecteerd zijn detector-detector variaties automatisch uitgesloten. Nauwkeurige calibratie vindt daarbij automatisch plaats. Aangezien voorts het meetspectrum en het referentie-spectrum tegelijkertijd worden gedetecteerd over het gehele spectrale gebied dat wordt bepaald door de combinatie van detector en spectro-25 graaf kunnen gebeurtenissen worden geregistreerd die plaats vinden binnen minder dan 500 nanoseconde. Wanneer een vidiconbuis als detector wordt toegepast kunnen de twee spectrums worden weergegeven en waargenomen op een televisiebeeldscherm. Van de detector afkomstige signalen kunnen worden verwerkt met behulp van een geschikte datapro— 30 cessor. Daarmee is, zoals bekend, opslag, eventueel optische weergave op een scherm of weergave op andere wijze mogelijk.
De uitvinding wordt toegelicht aan de hand van de tekening,· waarin: figuur 1 een schematische weergave is van een uitvoeringsvorm 35 van de spectrofotometer volgens de uitvinding, en 790 5 8 71 ν'· . ' - u - figuur 2 een bovenaanzicht is van een. plaatje met ingangsspleten voor de inrichting volgens figuur 1.
In figuur 1 is een uitvoeringsvorm van de inrichting volgens de uitvinding schematisch -weergegeven. De inrichting bevat als hoofd-5 bestanddeel een geschikt type spectrograaf 1, die is voorzien van een ingangsplaatje 2 met openingen 3 daarin, en van een uitgangsopening h.
• In de spectrograaf 1die schematisch in doorsnede is weergegeven bevinden zich een aantal optische organen om licht dat. op de openingen 3 van het plaatje 2 valt te analyseren en een spectrum van dat licht 10 af te beelden op de uitgangsopening ^. De uitgangsopening kan evenals de ingang bestaan uit een van geschikte openingen voorzien plaatje.
De optische organen in de spectrograaf 1 omvatten bijvoorbeeld een stel geschikte vlakke en holle spiegels 5, 6, 7 en 8' en een optisch rooster 9· Op de openingen 3 in het plaatje 2 vallend licht wordt door 15 de vlakke spiegel 5 gereflecteerd naar de holle spiegel 6 en door deze naar het rooster 9·.Het rooster 9 is het eigenlijke analyseorgaan van de spectrograaf, die het invallende licht scheidt in deelbundels met verschillende golflengte, zodat een spectrum van het licht wordt gevormd. De door het rooster 9 gevormde deelbundels worden via de hol-20 le spiegel 7 en de vlakke spiegel 8 op de uitgangsopening U geprojecteerd. '
In de inrichting volgens de uitvinding is het ingangsplaatje 2 en zijn de optische organen zodanig geconstrueerd dat licht dat op de ene opening 3 valt in de spectrograaf gescheiden blijft van licht dat 25 op de andere opening 3 valt. Aldus worden twee gescheiden spectrums op de uitgangsopening ^ geprojecteerd, die vervolgens verder kunnen worden verwerkt.
In figuur 2 is een bovenaanzicht weergegeven van een geschikt plaatje 2, dat in de inrichting volgens figuur 1 kan worden toegepast.
o . 30 De openingen hebben bij dit plaatje de vorm van nauwe spleten 10 en 11. De vertikale en horizontale afstand tussen de spleten, alsmede de relatieve hoekoriëntatie wordt'afhankelijk van de experimentele vereisten gekozen. De minimale afstand dient zodanig te zijn dat aan de uitgang van de spectrograaf nog gescheiden spectrums worden geprodu-35 ceerd door de optische organen van de spectrograaf en de maximale 790 5 8 71 - 5 -
A
afstand dient zodanig te zijn dat de gescheiden spectrums nog door het actieve oppervlak van een enkel detectieorgaan kunnen worden opgevangen.
In figuur 1 is de stralengang in de speetrograaf van op de in-5 gangsopeningen 3 van het overigens ondoorlatende plaatje 2 vallende licht schematisch aangegeven door de onderbroken lijnen 12.
Bij de weergegeven uitvoeringsvorm wordt te analyseren licht gericht op de openingen in het plaatje 2 met behulp van twee fiber-optische lichtgeleiders 13 en 1U. Deze zijn ieder zodanig opgesteld 10 dat een uiteinde zich nabij een opening in 'het plaatje 2 bevindt. De lichtgeleider 13 kan bijvoorbeeld aldus optisch zijn aangesloten op - · - tt spleet 10 (figuur 2) en lichtgeleider 1¾ op spleet 11 (figuur 2). De lichtgeleiders kunnen op geschikte wijze vast met de ingangsopeningen en derhalve met de speetrograaf zijn verbonden, maar noodzakelijk is 15 dit niet. Aan.het andere uiteinde van de lichtgeleiders 13 en 1k bevinden zich in bedrijf de te analyseren lichtbron en de referentie-lichtbron, die het staMaardspectrum verschaft'. In figuur 1 is dit schematisch weergegeven door de rechthoek 15, die het experiment zou kunnen worden genoemd. Het experiment 15 bevat de standaard lichtbron 20 of oppervlak en de monster lichtbron of oppervlak. In het geval dat het te onderzoeken monster en het referentieoppervlak niet-emitterende oppervlakken zijn kan voor lichtafname door de fiberoptische lichtgeleiders een diffuse lichtbron in de vorm van een zogenaamde Ulbrich-bol worden toegepast, waarbinnen de standaard en het te onderzoeken 25 oppervlak worden opgesteld, en op openingen waarvan de lichtgeleiders zijn aangesloten.
De door de speetrograaf gevormde gescheiden spectrums verlaten de speetrograaf via de uitgang k en worden geprojecteerd op de optische detector 16. De optische detector 16, met een responsiviteit die 30 aangepast dient te zijn aan het golflengtegebied van het rooster 9, kan een op zichzelf bekende vidicon-opneembuis zijn of een diodestel-sel. Eventueel kan tussen de uitgang U van de speetrograaf 1 en de optische detector 16 een geschikt masker 17 zijn opgesteld. Dit facultatieve masker 17, waarvan de vorm wordt voorgeschreven door het 35 type detector dat wordt toegepast en dat eventueel een geheel met de 790 5 8 71 - 6 - detector 1β kan vormen, voorziet in een gescheiden houden van het meet-spectrum en referentie spectrum. Bij toepassing van een enkele uit een groot aantal dioden opgebouwde detector kan een dergelijk masker 17 hijvoorheeld worden gebruikt om de hogere buigingsorden van de spec-5 trums af te schermen.
De uitgangssignalen van de detector 16 worden via het interface 18 doorgegeven aan de inrichting 19 voor verdere verwerking. De inrichting 19 kan bijvoorbeeld een dataprocessor zijn, die de gegevens betreffende referentiespectrum en meetspectrum berekent en op een ge-110 wenste wijze aan de gebruiker van.de inrichting presenteert.
Bij een in de praktijk beproefde spectrofotometer volgens de uitvinding werd een spectrograaf toegepast die was voorzien van een rooster met ’150 lijnen per mm en èen minimale refleetiehoek van 2°36*. Met deze spectrograaf werd een golflengtegebied van ^00-700 nm bestre-15 ken, terwijl het scheidend vermogen 1 nm bedroeg. Twee fiberoptische lichtgeleiders van geschikte glasvezels met de juiste lichttransmis-sieeigenschappen wierpen licht op twee op afstand van elkaar aange·*· brachte spleten in het ingangsplaatje. De spleten hadden ieder een lengte van 5 nm en een breedte van 25 ƒ urn. Met een diodest elsel als 20 detector en een dataprocessor als gegevensverwerkend apparaat bleek het met deze spectrofotometer mogelijk spectrale gebeurtenissen die plaats vonden binnen 500 nanoseconde te registreren, 790 5S 71

Claims (6)

  1. 5 - 7 - «s CONCLUSIES :
  2. 1. Spectrofotometer voorzien van een spectrograaf met een in-gangsopening en een uitgang, welke spectrograaf is ingericht om van op de ingangsopening gericht licht de spectrale energieverdeling te 5 "bepalen en de desbetreffende informatie in de vorm van een spectrum aan de uitgang aan te bieden, en van een detectieorgaan dat het aan de uitgang van de spectrograaf aangeboden spectrum, detecteert en omzet in voor verdere bewerking geschikte signalen, met het kenmerk, dat de ingangsopening van de spectrograaf is ingericht om licht van 10 twee verschillende bronnen afzonderlijk en gescheiden tegelijkertijd te ontvangen.
  3. 2. Spectrofotometer volgens conclusie 1, met het kenmerk, dat de ingangsopening bestaat uit een plaatje van voor licht ondoorlaat-baar materiaal waarin twee spleten zijn voorzien.
  4. 3. Spectrofotometer volgens conclusie 2, met het kenmerk, dat de minimale afstand tussen de twee spleten in het plaatje zodanig is dat aan ds uitgang van de spectrograaf nog gescheiden spectrums wor-. den voortgebracht van licht dat op de ene spleet wordt gericht en van . · licht dat op de andere spleet wordt gericht.
  5. 20. Spectrofotometer volgens conclusies 1-3, met het kenmerk, dat deze is voorzien van twee fiberoptische organen, welke fiberop-tische organen aan hun ene uiteinde zijn aangesloten op de ingangsopening van de spectrograaf om daarop afzonderlijk en gescheiden licht te werpen.
  6. 5. Spectrofotometer volgens conclusies 1-^, met het kenmerk, dat tussen Spectrograaf en detectieorgaan een masker is opgesteld met zodanige vorm en afmetingen dat wordt verhinderd dat hogere buigings-orden van het ene spectrum het andere spectrum beïnvloeden en omgekeerd hogere buigingsorden van het andere spectrum het ene spectrum 30 beïnvloeden. 790 51 71
NL7905871A 1979-07-30 1979-07-30 Spectrofotometer. NL7905871A (nl)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL7905871A NL7905871A (nl) 1979-07-30 1979-07-30 Spectrofotometer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL7905871 1979-07-30
NL7905871A NL7905871A (nl) 1979-07-30 1979-07-30 Spectrofotometer.

Publications (1)

Publication Number Publication Date
NL7905871A true NL7905871A (nl) 1981-02-03

Family

ID=19833620

Family Applications (1)

Application Number Title Priority Date Filing Date
NL7905871A NL7905871A (nl) 1979-07-30 1979-07-30 Spectrofotometer.

Country Status (1)

Country Link
NL (1) NL7905871A (nl)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588656A1 (fr) * 1985-10-16 1987-04-17 Bertin & Cie Appareil de spectro-colorimetrie a fibres optiques
EP0301329A2 (de) * 1987-07-31 1989-02-01 Roggero, Paolo Beleuchtungsvorrichtung zur spektroskopischen Beobachtung von Mineralien, Juwelen o.dgl.
US4841140A (en) * 1987-11-09 1989-06-20 Honeywell Inc. Real-time color comparator
US4875773A (en) * 1988-05-06 1989-10-24 Milton Roy Company Optical system for a multidetector array spectrograph
US4966458A (en) * 1988-05-06 1990-10-30 Milton Roy Company Optical system for a multidetector array spectrograph
US4983039A (en) * 1988-06-24 1991-01-08 Hitachi, Ltd. Spectrometer
US6690468B1 (en) * 1999-08-11 2004-02-10 Wavetek Wandel Goltermann Eningen Gmbh & Co. Arrangement for simultaneous analysis of several optical lines

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588656A1 (fr) * 1985-10-16 1987-04-17 Bertin & Cie Appareil de spectro-colorimetrie a fibres optiques
WO1987002454A1 (fr) * 1985-10-16 1987-04-23 Bertin & Cie Appareil de spectro-colorimetrie a fibres optiques
EP0225210A1 (fr) * 1985-10-16 1987-06-10 Bertin & Cie Appareil de spectro-colorimétrie à fibres optiques
US4758085A (en) * 1985-10-16 1988-07-19 Bertin & Cie Optical fiber spectrometer/colorimeter apparatus
EP0301329A2 (de) * 1987-07-31 1989-02-01 Roggero, Paolo Beleuchtungsvorrichtung zur spektroskopischen Beobachtung von Mineralien, Juwelen o.dgl.
EP0301329A3 (de) * 1987-07-31 1990-08-01 Roggero, Paolo Beleuchtungsvorrichtung zur spektroskopischen Beobachtung von Mineralien, Juwelen o.dgl.
US4841140A (en) * 1987-11-09 1989-06-20 Honeywell Inc. Real-time color comparator
US4875773A (en) * 1988-05-06 1989-10-24 Milton Roy Company Optical system for a multidetector array spectrograph
US4966458A (en) * 1988-05-06 1990-10-30 Milton Roy Company Optical system for a multidetector array spectrograph
US4983039A (en) * 1988-06-24 1991-01-08 Hitachi, Ltd. Spectrometer
US6690468B1 (en) * 1999-08-11 2004-02-10 Wavetek Wandel Goltermann Eningen Gmbh & Co. Arrangement for simultaneous analysis of several optical lines

Similar Documents

Publication Publication Date Title
EP0153139B1 (en) Broadband spectrometer with fiber optic reformattor
US7495762B2 (en) High-density channels detecting device
JP5092104B2 (ja) 分光測定装置、及び分光測定方法
EP2188604B1 (en) Spectrometer for measuring moving sample material and the method
US4411525A (en) Method of analyzing an object by use of scattering light
US9217687B2 (en) Image analysis system and methods for IR optics
US4563090A (en) Grating spectrometer
WO2007061436A1 (en) Self calibration methods for optical analysis system
JPH08338807A (ja) 分光装置
TW544791B (en) Apparatus for 2-D spatially resolved optical emission and absorption spectroscopy
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
JP2001141563A (ja) 分光測定方法と装置および温度測定装置と膜圧測定装置
US6208413B1 (en) Hadamard spectrometer
US4750834A (en) Interferometer including stationary, electrically alterable optical masking device
WO1997043610A1 (en) Broad-band spectrometer with high resolution
CA2070330C (en) High resolution spectroscopy system
US6353476B1 (en) Apparatus and method for substantially simultaneous measurement of emissions
NL7905871A (nl) Spectrofotometer.
EP0721136A1 (fr) Dispositif de mesure colorimétrique d&#39;un écran d&#39;affichage
EP1447651B1 (en) Optical measuring device with wavelength-selective light source
CN210603594U (zh) 一种光谱仪
JPH0224535A (ja) 粒子解析装置
US7538872B1 (en) Diagnostic methods and apparatus for directed energy applications
Stark et al. NIR instrumentation technology
WO2019038823A1 (ja) 遠赤外分光装置、および遠赤外分光方法

Legal Events

Date Code Title Description
A1B A search report has been drawn up
BV The patent application has lapsed