NL2033000B1 - Micro mirror array driving device based on multi-degree-of-freedom flexible hinge - Google Patents

Micro mirror array driving device based on multi-degree-of-freedom flexible hinge Download PDF

Info

Publication number
NL2033000B1
NL2033000B1 NL2033000A NL2033000A NL2033000B1 NL 2033000 B1 NL2033000 B1 NL 2033000B1 NL 2033000 A NL2033000 A NL 2033000A NL 2033000 A NL2033000 A NL 2033000A NL 2033000 B1 NL2033000 B1 NL 2033000B1
Authority
NL
Netherlands
Prior art keywords
flexible hinge
motor
sliding block
degree
driving device
Prior art date
Application number
NL2033000A
Other languages
Dutch (nl)
Other versions
NL2033000A (en
Inventor
Ye Yixiao
Yan Zhenzhuo
Zhang Yin
Wu Jianwei
Zhao Pengyue
Original Assignee
Harbin Inst Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Inst Technology filed Critical Harbin Inst Technology
Publication of NL2033000A publication Critical patent/NL2033000A/en
Application granted granted Critical
Publication of NL2033000B1 publication Critical patent/NL2033000B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Abstract

The present invention provides a micro mirror array driving device based, on a multi—degree—of—freedom. flexible hinge. The driving device includes a plurality of driving units arranged in an array form, an upper end of which is connected to a mirror; each driving unit includes a shell, an actuator, a first flexible hinge, a second flexible hinge, a transmission bar and a sliding block; the actuator is fixed inside the shell and is connected to the sliding block; one end of the first flexible hinge is connected to the sliding block, and the other end is connected to the transmission bar; one end of the second flexible hinge is fixed on the shell, and the other end is connected to the mirror; and the transmission bar is connected to the mirror after passing through the second flexible hinge. The micro mirror array driving device is Heinly used for driving a mirror.

Description

MICRO MIRROR ARRAY DRIVING DEVICE BASED ON MULTI-DEGREE-OF-FREEDOM
FLEXIBLE HINGE
TECHNICAL FIELD
The present invention belongs to the technical field of pre- cision instruments and machinery, in particular to a micro mirror array driving device based on a multi-degree-of-freedom flexible hinge.
BACKGROUND ART
Lithography is a crucial step in a semiconductor manufactur- ing process. As an ultra-precision device that integrates a number of top technologies, a lithography machine realizes a function of etching a circuit pattern on a mask plate to a silicon wafer. In order to change a direction of light entering the mask plate to generate different pupil shapes, it is necessary to use a plurali- ty of micro mirror array units in a lighting system to form a mi- cro mirror array. Each micro mirror array unit rotates around two of their mutually orthogonal axes to change a reflection direction of the incident light. In a working process of a lithography ma- chine, the adjustment accuracy of the pose of the micro mirror ar- ray is not up to the standard, which will affect a final circuit etching effect. Therefore, extremely high requirements are put forward for the adjustment accuracy of the pose of each micro mir- ror array unit. At the same time, in order to improve the surface area occupancy rate of the micro mirror array and its applicabil- ity in a vacuum environment, the size and heat dissipation of a micro mirror array unit driving device are also limited, which further increases the design difficulty.
A fast control reflector system designed by Wu Xin of
Huazhong University of Science and Technology includes a reflector system, a linear voice coil motor, a reflection angle detection system, etc. The device realizes fast adjustment of a pose of a reflector, and the symmetrical distribution of the voice coil mo- tor improves the stability of the adjustment process. However, the device has many driving equipment, so that the cost is high. A large size of the device is not suitable for the application back- ground of the micro mirror array.
A reflector array actuator of an illuminator designed by
Ruipan Chen of Delft University is based on electromagnetic drive, and drives a reflector unit to rotate around two orthogonal axes through a quadrilateral flexible hinge mechanism, which meets the size limit and accuracy of a reflector array of an illuminator.
However, in this design, magnetic crosstalk occurs between the electromagnetic drives of each unit, resulting in poor linearity of an output driving force, and the electromagnetic drive gener- ates a large amount of heat and a small rotation angle.
SUMMARY
The present invention provides a micro mirror array driving device based on a multi-degree-of-freedom flexible hinge in order to solve the problems in the prior art.
In order to achieve the above objective, the present inven- tion adopts the following technical solution: A micro mirror array driving device based on a multi-degree-of-freedom flexible hinge includes a plurality of driving units; the plurality of driving units are arranged in an array form; an upper end of each driving unit is connected to a mirror; the driving unit includes a shell, an actuator, a first flexible hinge, a second flexible hinge, a transmission bar and a sliding block; the actuator is fixed inside the shell; the actuator is connected to the sliding block; one end of the first flexible hinge is connected to the sliding block, and the other end is connected to the transmission bar; one end of the second flexible hinge is fixed on the shell, and the other end is connected to the mirror; and the transmission bar is connected to the mirror after passing through the second flexible hinge.
Much further, the actuator includes a first motor and a sec- ond motor; a first motor fixing end of the first motor is fixed on a shell inner bottom surface of the shell; a second motor fixing end of the second motor is stacked on a first motor output end of the first motor; and center positions of the first motor and the second motor overlap to form a square working region.
Much further, a sliding block first connection end of the sliding block is fixedly connected to a second motor output end of the second motor.
Much further, a concentric circular slot is formed in a cen- ter of the sliding block; the first flexible hinge is located and mounted to the sliding block through the concentric circular slot; and a first flexible hinge first connection end of the first flex- ible hinge is fixedly connected to the sliding block.
Much further, the first flexible hinge is provided with a through hole along a first flexible hinge center axis; and a transmission bar lower end positioning pin of the transmission bar extends into the through hole, so as to be located with the first flexible hinge.
Much further, the first flexible hinge center axis overlaps a geometric center of the sliding block; in an initial state, the first flexible hinge center axis, a second flexible hinge center axis and a transmission bar center axis overlap; the first flexi- ble hinge is provided with a first flexible hinge rotating shaft I and a first flexible hinge rotating shaft II which are orthogonal to each other and are intersected at one point; a plane restrained by the first flexible hinge rotating shaft I and the first flexi- ble hinge rotating shaft II is perpendicular to the first flexible hinge center axis; the second flexible hinge is provided with a second flexible hinge rotating shaft I and a second flexible hinge rotating shaft II which are orthogonal to each other and are in- tersected at one point; and a plane restrained by the second flex- ible hinge rotating shaft I and the second flexible hinge rotating shaft II is perpendicular to the second flexible hinge center ax- is.
Much further, a transmission bar first connection end of the transmission bar is fixedly connected to a first flexible hinge second connection end of the first flexible hinge; a transmission bar second connection end of the transmission bar is fixedly con- nected to a flange first connection end of a flange; a flange sec- ond connection end of the flange is connected to the mirror; and the flange first connection end is also fixedly connected to a second flexible hinge second connection end of the second flexible hinge.
Much further, a second flexible hinge first connection end of the second flexible hinge is fixed at a shell top of the shell; the second flexible hinge is provided with a through hole along the second flexible hinge center axis; and a transmission bar up- per end of the transmission bar extends into the through hole, so as to be located with the second flexible hinge.
Much further, a heat dissipation component and an inclined measurement sensor are mounted inside the shell.
Much further, materials of the first flexible hinge and the second flexible hinge are spring steel, stainless steel, invar steel, titanium alloy or beryllium bronze; and the first flexible hinge and the second flexible hinge are in a form of a leaf spring, a hyperbolic flexible hinge, a parabolic flexible hinge, an inverted parabolic flexible hinge, a secant flexible hinge or a hyperbolic cosine flexible hinge.
Compared with the prior art, the present invention has the beneficial effects that the problems of simultaneously considering kinematic accuracy, motion range, heat dissipation and size con- trol. The micro mirror array driving device has high structural reliability, and the angle adjustment of each reflector unit thus has high repeated positioning accuracy. In the present invention, a transmission mechanism in the driving device has a small trans- mission error due to the integration of the first and second flex- ible hinges. The first and second motors adopt piezoelectric mo- tors with high displacement resolution, small size and low heat dissipation and having a linear output characteristic, so that an actuator not only satisfies a stroke and accuracy, but also is ap- plicable to a vacuum environment.
The micro mirror array driving device provided by the present invention has a large stroke and high accuracy, and can adjust Rx and Ry degrees of freedom of a reflector in each unit. The flexi- ble hinges are fitted to the transmission bar and the sliding block, so that a mechanical fit error in a transmission procedure is reduced, and the transmission accuracy is improved; and an ef- fect of increasing a stroke is achieved. Meanwhile, a single flex- ible hinge is used to limit the degrees of freedom of a reflector along x, y and z directions and around Rz; the equipment composi- tion is simplified; and the running reliability of the device is improved. A piezoelectric ceramic linear motor is used as an actu- ator, which has better output linearity and less heat dissipation 5 than an electromagnetic drive. Two piezoelectric ceramic linear motors are stacked in a vertical direction, so as to simultaneous- ly achieve a sliding block stroke required by the driving device and size limitation of a micro mirror array of a lighting system to the driving device.
Compared with a reflector array actuator of an illuminator in the prior art, magnetic crosstalk is generated between electromag- netic drives of each unit, which causes low output driving force linearity. Furthermore, heat generated by an electromagnetic drive is much greater than that generated by a piezoelectric drive.
Meanwhile, the flexible hinges in the two kinds of drives are dif- ferent. Since the size of a guadrilateral flexible hinge mechanism is limited in the reflector array actuator of the illuminator, the rotating angle of each reflector unit is also much less than that of the micro mirror array driving device.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic structural diagram of a micro mirror array driving device based on a multi-degree-of-freedom flexible hinge of the present invention;
FIG. 2 is a schematic interface diagram of a driving unit of the present invention;
FIG. 3 is a schematic structural diagram of a first flexible hinge of the present invention;
FIG. 4 is a schematic structural diagram of a second flexible hinge of the present invention;
FIG. 5 is a schematic composition diagram of a transmission mechanism of the present invention. 1: driving unit; 2: mirror; 11: shell; 111: shell inner bot- tom surface; 112: shell top; 12: actuator; 121: first motor; 122: first motor fixing end; 123: first motor output end; 124: second motor; 125: second motor fixing end; 126: second motor output end; 13: first flexible hinge; 131: first flexible hinge first connec-
tion end; 132: first flexible hinge second connection end; 133: first flexible hinge rotating shaft I; 134: first flexible hinge rotating shaft II; 135: first flexible hinge center axis; 14: sec- ond flexible hinge; 141: second flexible hinge first connection end; 142: second flexible hinge second connection end; 143: second flexible hinge rotating shaft I; 144: second flexible hinge rotat- ing shaft II; 145: second flexible hinge center axis; 15: trans- mission bar; 151: transmission bar first connection end; 152: transmission bar second connection end;; 153: transmission bar lower end positioning pin; 154: transmission bar upper end; 155: transmission bar center axis; 16: sliding block; 161: sliding block first connection end; 162: concentric circular slot; 17: flange; 171: flange first connection end; and 172: flange second connection end.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The technical solutions in the embodiments of the present in- vention will be described clearly and completely below in combina- tion with the accompanying drawings in the embodiments of the pre- sent invention.
This implementation is described with reference to FIGS. 1-5, a micro mirror array driving device based on a multi-degree-of- freedom flexible hinge includes a plurality of driving units 1; the plurality of driving units 1 are arranged in an array form; an upper end of each driving unit 1 is connected to a mirror 2; the driving unit 1 includes a shell 11, an actuator 12, a first flexi- ble hinge 13, a second flexible hinge 14, a transmission bar 15 and a sliding block 16; the actuator 12 is fixed inside the shell 11; the actuator 12 is connected to the sliding block 16; the ac- tuator 12 drives the sliding block 16 does linear motion; one end of the first flexible hinge 13 is connected to the sliding block 16, and the other end is connected to the transmission bar 15; one end of the second flexible hinge 14 is fixed on the shell 11, and the other end is connected to the mirror 2 and drives the mirror 2 to move; and the transmission bar 15 is connected to the mirror 2 after passing through the second flexible hinge 14.
The actuator 12 includes a first motor 121 and a second motor
124; a first motor fixing end 122 of the first motor 121 is fixed on a shell inner bottom surface 111 of the shell 11; a second mo- tor fixing end 125 of the second motor 124 is stacked on a first motor output end 123 of the first motor 121; and center positions of the first motor 121 and the second motor 124 overlap to form a square working region. The first motor 121 and the second motor 124 are piezoelectric ceramic linear motors. A piezoelectric ce- ramic linear motor is used as an actuator, which has better output linearity and less heat dissipation than an electromagnetic drive.
An ultrasonic motor can also achieve desired kinematic accuracy.
The sliding block 16 is a circular sliding block; and a slid- ing block first connection end 161 of the sliding block 16 is fix- edly connected to a second motor output end 126 of the second mo- tor 124. A concentric circular slot 162 is formed in a center of the sliding block 16; the first flexible hinge 13 is located and mounted to the sliding block 16 through the concentric circular slot 162; and a first flexible hinge first connection end 131 of the first flexible hinge 13 is fixedly connected to the sliding block 16 through a screw.
The first flexible hinge 13 is provided with a through hole along a first flexible hinge center axis 135; and a transmission bar lower end positioning pin 153 of the transmission bar 15 ex- tends into the through hole, so as to be located with the first flexible hinge 13. The first flexible hinge center axis 135 over- laps a geometric center of the sliding block 16; in an initial state, the first flexible hinge center axis 135, a second flexible hinge center axis 145 and a transmission bar center axis 155 over- lap; the first flexible hinge 13 is provided with a first flexible hinge rotating shaft I 133 and a first flexible hinge rotating shaft II 134 which are orthogonal to each other and are intersect- ed at one point; a plane restrained by the first flexible hinge rotating shaft I 133 and the first flexible hinge rotating shaft
II 134 is perpendicular to the first flexible hinge center axis 135; the second flexible hinge 14 is provided with a second flexi- ble hinge rotating shaft I 143 and a second flexible hinge rotat- ing shaft II 144 which are orthogonal to each other and are inter- sected at one point; and a plane restrained by the second flexible hinge rotating shaft I 143 and the second flexible hinge rotating shaft II 144 is perpendicular to the second flexible hinge center axis 145.
A transmission bar first connection end 151 of the transmis- sion bar 15 is fixedly connected to a first flexible hinge second connection end 132 of the first flexible hinge 13; a transmission bar second connection end 152 of the transmission bar 15 is fixed- ly connected to a flange first connection end 171 of a flange 17; a flange second connection end 172 of the flange 17 is connected to the mirror 2; and the flange first connection end 171 is also fixedly connected to a second flexible hinge second connection end 142 of the second flexible hinge 14 through a screw.
A second flexible hinge first connection end 141 of the sec- ond flexible hinge 14 is fixed at a shell top 112 of the shell 11; the second flexible hinge 14 is provided with a through hole along the second flexible hinge center axis 145; and a transmission bar upper end 154 of the transmission bar 15 extends into the through hole, so as to be located with the second flexible hinge 14. The degree of freedom of rotation of the mirror 2 is limited by the second flexible hinge 14.
There is an enough space inside the shell 11 to mount a heat dissipation component that assists in heat dissipation of the mir- ror 2 and an inclined measurement sensor, thus finally achieving high-speed and high-accuracy pose adjustment. The heat dissipation component may be a part of the driving device, such as the second flexible hinge 14 and the shell 11, or may be integrated in the driving device in any form.
Materials of the first flexible hinge 13 and the second flex- ible hinge 14 adopt materials with high fatigue strength, small heat deformation and high stability, such as spring steel, stain- less steel, invar steel, titanium alloy or beryllium bronze, and other common flexible hinge materials; and the first flexible hinge 13 and the second flexible hinge 14 are in a form of a leaf spring, a hyperbolic flexible hinge, a parabolic flexible hinge, an inverted parabolic flexible hinge, a secant flexible hinge or a hyperbolic cosine flexible hinge.
A transmission mechanism composed of the first flexible hinge
13, the second flexible hinge 14, the transmission bar 15 and the sliding block 16 can convert a continuous planar motion in a work- ing region, such as an X-axial linear motion and a Y-axial linear motion, into a continuous rotation motion, such as X-axial rota- tion and Y-axial rotation. The second flexible hinge first connec- tion end 141 of the second flexible hinge 14 is fixed on the shell 11, and the second flexible hinge second connection end 142 is connected to the mirror 2, so as to limit the degree of freedom of motion of the mirror 2. The transmission bar 15 is configured to be a flexible feature along the transmission bar center axis 155, so as to make a response to a change of a relative position be- tween the first flexible hinge 13 and the second flexible hinge 14. This embodiment also includes a control device. The control device is configured to control an output of the actuator 12 to obtain an expected position of the mirror 2. Optional equipment is configured to receive radiation from a radiation source, machine the radiation and transmit the radiation to a target position. The optical equipment includes one or more optical elements. The opti- cal elements include the mirror 2 capable of moving on the driving device. The optical equipment is a part of a lighting system com- posed of one or more optical elements (2a, 2b, 2c...) and associ- ated driving devices (la, 1b, 1c...), that is, a micro mirror ar- ray. Different arrangement forms are achieved according to differ- ent technical requirements, and all micro mirror array units do not have motion interference. For example, the driving devices of the micro mirror array units are respectively located at the left ends, middle ends or right ends below the corresponding reflectors in a staggered arrangement manner. Furthermore, if technical indi- cators, such as a surface area occupancy rate, are satisfied, all the micro mirror array units do not interfere with each other. In this embodiment, FIG. 1 shows a 3x3 micro mirror array.
As shown in FIG. 2, a displacement output of the first motor 121 is parallel to a principal plane direction (a y direction), and a displacement output of the second motor 124 is perpendicular to the principal plane direction (an x direction). The first motor and the second motor are stacked in a manner that the center posi- tions overlap, so that continuous displacement outputs in the square region parallel to an XY plane can be achieved.
As shown in FIGS. 3 and 4, the first flexible hinge 13 and the second flexible hinge 14 can respectively continuously rotate around two orthogonal axes, and an intersection of the two axes overlaps the center axes of the flexible hinges.
As shown in FIGS. 3-5, the transmission mechanism composed of the first flexible hinge 13, the second flexible hinge 14, the transmission bar 15 and the sliding block 16 can achieve conver- sion between a linear moticn and a rotation motion.
During working, the first motor 121 drives the second motor 124 and the sliding block 16 to do linear motion parallel to the Y axis, and the second motor 124 drives the sliding block 16 to do linear motion parallel to the X axis. A transmission part composed of the first flexible hinge 13, the second flexible hinge 14, the transmission bar 15 and the sliding block 16 converts the above linear motion into a rotation motion, so that a linear displace- ment of the sliding block 16 in a plane directly corresponds to a rotation angle of the mirror 2. The transmission bar 15 has a flexible feature along the transmission bar center axis 155 to make a response to a change of a distance between the first flexi- ble hinge 13 and the second flexible hinge 14 in the motion pro- cess. There is an enough space inside the shell 11 to mount a heat dissipation component that assists in heat dissipation of the mir- ror 2, and a displacement sensor used for feedback control, thus finally achieving high-speed and high-accuracy pose adjustment.
The micro mirror array driving device based on the multi- degree-of-freedom flexible hinge provided in the present invention have been described above in detail. Specific examples are used herein to illustrate the principle and implementations of the pre- sent invention. The descriptions of the above embodiments are only used to help understand the method and its core idea of the pre- sent invention. Moreover, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementations and the scope of applica- tion. In summary, the content of this specification should not be construed as limiting the present invention.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Aandrijfinrichting voor een microspiegelarray gebaseerd op een flexibel scharnier met meerdere vrijheidsgraden, gekenmerkt door- dat het een veelvoud aan aandrijfeenheden (1) omvat, waarbij het veelvoud aan aandrijfeenheden (1) in een array-vorm zijn gerang- schikt; een boveneinde van elke aandrijfeenheid (1) is verbonden met een spiegel (2); waarbij de aandrijfeenheid (1) een schaal (11), een actuator (12), een eerste flexibel scharnier (13), een tweede flexibel scharnier (14), een overbrengingsstaaf (15) en een schuifblok (16) omvat; waarbij de actuator (12) is vastgezet in de schaal (11); waarbij de actuator (12) is verbonden met het schuif- blok (16); waarbij een uiteinde van het eerste flexibele scharnier (13) is verbonden met het schuifblok (16), en het andere uiteinde is verbonden met de overbrengingsstaaf (15); waarbij een uiteinde van het tweede flexibele scharnier (14) is bevestigd op de schaal (11), en het andere uiteinde is verbonden met de spiegel (2); en waarbij de overbrengingsstaaf (15) is verbonden met de spiegel (2) na door het tweede flexibele scharnier (14) te zijn gegaan.A micromirror array drive device based on a multi-degree-of-freedom flexible hinge, characterized in that it comprises a plurality of drive units (1), the plurality of drive units (1) being arranged in an array form; an upper end of each drive unit (1) is connected to a mirror (2); wherein the drive unit (1) includes a shell (11), an actuator (12), a first flexible hinge (13), a second flexible hinge (14), a transmission rod (15) and a sliding block (16); wherein the actuator (12) is secured in the shell (11); wherein the actuator (12) is connected to the sliding block (16); wherein one end of the first flexible hinge (13) is connected to the sliding block (16), and the other end is connected to the transmission rod (15); wherein one end of the second flexible hinge (14) is attached to the shell (11), and the other end is connected to the mirror (2); and wherein the transmission rod (15) is connected to the mirror (2) after passing through the second flexible hinge (14). 2. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat de actuator (12) een eerste motor (121) en een tweede motor (124) omvat; waarbij een eerste motorbevesti- gingsuiteinde (122) van de eerste motor (121) is bevestigd op een binnenste bodemoppervlak (111) van de schaal (11); waarbij een tweede motorbevestigingsuiteinde (125) van de tweede motor (124) is gestapeld op een eerste motoruitgangseinde (123) van de eerste motor (121); en waarbij middenposities van de eerste motor (121) en de tweede motor (124) elkaar overlappen om een vierkant werkge- bied te vormen.A micromirror array actuator based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that the actuator (12) comprises a first motor (121) and a second motor (124); wherein a first motor mounting end (122) of the first motor (121) is mounted on an inner bottom surface (111) of the shell (11); wherein a second motor mounting end (125) of the second motor (124) is stacked on a first motor output end (123) of the first motor (121); and wherein center positions of the first motor (121) and the second motor (124) overlap to form a square operating area. 3. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat een eerste verbindingsuiteinde (161) van het schuifblok (16) vast is verbonden met een tweede motoruitgang-A micromirror array driving device based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that a first connecting end (161) of the sliding block (16) is rigidly connected to a second motor output seinde (126) van de tweede motor (124).signal (126) of the second motor (124). 4. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat een concentrische cirkelvormige sleuf (162) is gevormd in een midden van het schuifblok (16); waarbij het eerste flexibele scharnier (13) is gelokaliseerd en gemonteerd op het schuifblok (16) door de concentrische cirkelvormige sleuf (162); en waarbij een eerste verbindingsuiteinde (131) van het eerste flexibele scharnier (13) vast is verbonden met het schuif- blok (16).A micromirror array driving device based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that a concentric circular slot (162) is formed in a center of the sliding block (16); wherein the first flexible hinge (13) is located and mounted on the sliding block (16) through the concentric circular slot (162); and wherein a first connecting end (131) of the first flexible hinge (13) is rigidly connected to the sliding block (16). 5. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat het eerste flexibele scharnier (13) is voorzien van een doorgaand gat langs een middenas (135 ) van het eerste flexibele scharnier; en waarbij een aan een onderste uit- einde gelegen positioneringspen (153) van de overbrengingsstaaf {15) zich uitstrekt in het doorgaande gat, om zodoende te worden geplaatst met het eerste flexibele scharnier (13).A micromirror array driving device based on the multi-degree-of-freedom flexible hinge of claim 1, characterized in that the first flexible hinge (13) has a through hole along a center axis (135) of the first flexible hinge; and wherein a lower end positioning pin (153) of the transmission rod {15) extends into the through hole so as to be positioned with the first flexible hinge (13). 6. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 5, met het kenmerk, dat de eerste flexibele scharnierhartlijn (135) een geometrisch middelpunt van het schuifblok (16) overlapt; waarbij in een initiële toestand de middenas (135) van het eerste flexibele scharnier, een middenas (145) van het tweede flexibele scharnier en een middenas (155) van de transmissiestaaf overlap- pen; waarbij het eerste flexibele scharnier (13) is voorzien van een rotatie-as I (133) van het eerste flexibele scharnier en een rotatie-as II (134) van het eerste flexibele scharnier die lood- recht op elkaar staan en op één punt worden doorgesneden; waarbij een vlak dat wordt begrensd door de rotatie-as I (133) van het eerste flexibele scharnier en de rotatie-as II (134) van het eer- ste flexibele scharnier loodrecht staat op de middenas (135) van het eerste flexibele scharnier; waarbij het tweede flexibele scharnier (14) is voorzien van een rotatie-as I (143) van het tweede flexibele scharnier en een rotatie-as II (144) van het tweede flexibele scharnier die loodrecht op elkaar staan en die op één punt worden doorgesneden; en waarbij een vlak dat wordt be- grensd door de rotatie-as I (143) van het tweede flexibele schar- nier en de rotatie-as II (144) van het tweede flexibele scharnier loodrecht staat op de middenas (145) van het tweede flexibele scharnier.A micromirror array driving device based on the multi-degree-of-freedom flexible hinge of claim 5, characterized in that the first flexible hinge axis (135) overlaps a geometric center of the sliding block (16); wherein in an initial state a center axis (135) of the first flexible hinge, a center axis (145) of the second flexible hinge and a center axis (155) of the transmission rod overlap; wherein the first flexible hinge (13) has a rotation axis I (133) of the first flexible hinge and a rotation axis II (134) of the first flexible hinge perpendicular to each other and fixed at one point cut through; wherein a plane bounded by the rotation axis I (133) of the first flexible hinge and the rotation axis II (134) of the first flexible hinge is perpendicular to the center axis (135) of the first flexible hinge; wherein the second flexible hinge (14) has a rotation axis I (143) of the second flexible hinge and a rotation axis II (144) of the second flexible hinge perpendicular to each other and cut at one point ; and wherein a plane bounded by the axis of rotation I (143) of the second flexible hinge and the axis of rotation II (144) of the second flexible hinge is perpendicular to the center axis (145) of the second flexible hinge. 7. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat een eerste verbindingsuiteinde (151) van de transmissiestaaf (151) vast is verbonden met een tweede verbin- dingseinde (132) van het eerste flexibele scharnier (13); waarbij een tweede verbindingsuiteinde (152) van de transmissiestaaf (15) vast is verbonden met een eerste verbindingsuiteinde (171) van een flens (17); waarbij een tweede verbindingsuiteinde (172) van de flens (17) is verbonden met de spiegel (2); en waarbij het eerste verbindingsuiteinde (171) van de flens ook vast is verbonden met een tweede verbindingsuiteinde (142) van het tweede flexibele scharnier (14).A micromirror array driving device based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that a first connecting end (151) of the transmission rod (151) is fixedly connected to a second connecting end (132) of the first flexible hinge (13); wherein a second connecting end (152) of the transmission rod (15) is rigidly connected to a first connecting end (171) of a flange (17); wherein a second connecting end (172) of the flange (17) is connected to the mirror (2); and wherein the first connecting end (171) of the flange is also rigidly connected to a second connecting end (142) of the second flexible hinge (14). 8. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat een eerste verbindingsuiteinde (141) van het tweede flexibele scharnier (14) is vastgezet op een bovenzijde (112) van de schaal (11); het tweede flexibele scharnier (14) is voorzien van een doorgaand gat langs de middenas (145) van het tweede flexibele scharnier; en een boveneinde van de overbren- gingsstaaf (154) van de overbrengingsstaaf (15) zich uit strekt in het doorgaande gat, om zo te worden geplaatst bij het tweede flexibele scharnier (14).A micromirror array driving device based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that a first connecting end (141) of the second flexible hinge (14) is fixed to a top side (112) of the shell (11 ); the second flexible hinge (14) has a through hole along the center axis (145) of the second flexible hinge; and an upper end of the transmission rod (154) of the transmission rod (15) extends into the through hole to be positioned at the second flexible hinge (14). 9. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat een warmteafvoercomponent en een helling meetsensor in de schaal (11) zijn gemonteerd.A micromirror array driving device based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that a heat dissipation component and an inclination measuring sensor are mounted in the shell (11). 10. Aandrijfinrichting voor een microspiegelarray gebaseerd op het flexibel scharnier met meerdere vrijheidsgraden volgens conclusie 1, met het kenmerk, dat de materialen van het eerste flexibele scharnier (13) en het tweede flexibele scharnier (14) verenstaal, roestvrij staal, invar-staal, titaniumlegering of berylliumbrons zijn; en waarbij het eerste flexibele scharnier (13) en het tweede flexibele scharnier (14) in de vorm zijn van een bladveer, een hy- perbolisch flexibel scharnier, een parabolisch flexibel scharnier, een omgekeerd parabolisch flexibel scharnier, een secans flexibel scharnier of een hyperbolisch cosinus flexibel scharnier.A micromirror array driving device based on the multi-degree-of-freedom flexible hinge according to claim 1, characterized in that the materials of the first flexible hinge (13) and the second flexible hinge (14) are spring steel, stainless steel, invar steel, be titanium alloy or beryllium bronze; and wherein the first flexible hinge (13) and the second flexible hinge (14) are in the form of a leaf spring, a hyperbolic flexible hinge, a parabolic flexible hinge, an inverted parabolic flexible hinge, a secant flexible hinge or a hyperbolic cosine flexible hinge.
NL2033000A 2021-12-16 2022-09-12 Micro mirror array driving device based on multi-degree-of-freedom flexible hinge NL2033000B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111541834.XA CN114153127B (en) 2021-12-16 2021-12-16 Micro mirror array driving device based on multi-degree-of-freedom flexible hinge

Publications (2)

Publication Number Publication Date
NL2033000A NL2033000A (en) 2023-06-28
NL2033000B1 true NL2033000B1 (en) 2024-02-07

Family

ID=80451491

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2033000A NL2033000B1 (en) 2021-12-16 2022-09-12 Micro mirror array driving device based on multi-degree-of-freedom flexible hinge

Country Status (2)

Country Link
CN (1) CN114153127B (en)
NL (1) NL2033000B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466333B2 (en) * 2012-10-15 2019-02-06 エーエスエムエル ネザーランズ ビー.ブイ. Actuating mechanism, optical apparatus, lithographic apparatus, and device manufacturing method
JP2014160211A (en) * 2013-02-20 2014-09-04 Canon Inc Mirror unit and image acquisition device
CN105074899B (en) * 2013-02-25 2017-06-09 苹果公司 Mass transfer tool control device assembly and the miniature pickup array bearing with integrated displacement sensor
CN204203544U (en) * 2014-10-17 2015-03-11 中国科学院西安光学精密机械研究所 A kind of six degree of freedom time mirror adjustment mechanism
CN104375258B (en) * 2014-11-14 2016-06-22 中国工程物理研究院总体工程研究所 Reflecting mirror back support two-freedom rotates flexible hinge
CN105137562B (en) * 2015-10-15 2017-04-26 中国科学院长春光学精密机械与物理研究所 Optical element three-degree-of-freedom micro displacement adjusting device
CN110095860B (en) * 2019-04-29 2021-05-25 汕头大学 Two-stage composite large-stroke high-precision quick reflector
CN110568581B (en) * 2019-09-09 2021-09-03 哈尔滨工业大学 High-precision electric reflector frame

Also Published As

Publication number Publication date
CN114153127A (en) 2022-03-08
CN114153127B (en) 2022-10-04
NL2033000A (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN107464586B (en) Three-degree-of-freedom large-stroke micro-positioning platform with decoupled driving force
AU2005263777B2 (en) Geodesic measuring instrument with a piezo drive
JP7271677B2 (en) Laser measurement modules and laser radar
CN100350213C (en) Probe for high speed scanning
CN102203929A (en) X-y adjustable optical mount
KR100396020B1 (en) Ultra-precision positioning system
CN209774584U (en) Planar three-degree-of-freedom fully-flexible parallel positioning platform
CN203178569U (en) Two-freedom-degree high speed parallel scanning platform
CN106195556A (en) A kind of XY θ plane three-freedom precision positioning platform
NL2033000B1 (en) Micro mirror array driving device based on multi-degree-of-freedom flexible hinge
CN110065926B (en) Two-degree-of-freedom scott-russell flexible micro-nano positioning platform
TW202018367A (en) Cascaded mirror array and scanning system thereof
CN114200782B (en) Flexible two-dimensional guide mechanism
CN111026166A (en) Planar two-degree-of-freedom macro-micro composite positioning system and control method
CN104742115A (en) Two-freedom-degree flexibility parallel alignment device provided with remote rotation center
CN109079552A (en) A kind of three axis cutter servo devices based on compliant parallel mechanism
CN113791493B (en) Quick reflector based on macro-micro two-stage composite actuation
CN114153126B (en) Micro mirror surface group driving device based on bearing centering
CN103176270A (en) Two-degree-of-freedom high-speed parallel scanning platform and perpendicularity error calibration method thereof
CN203350530U (en) Two-freedom-degree high speed parallel scanning platform
CN103197416B (en) Double-freedom-degree high-speed parallel scan platform and perpendicularity error calibrating method
CN115128798A (en) Two-dimensional rapid control reflector with large deflection angle and high vibration resistance
Riza et al. A flexure motion stage system for light beam control
WO2016185872A1 (en) Charged particle beam apparatus and sample elevating apparatus
CN201335912Y (en) Large-stroke planar 3-DOF precision micro-actuator