NL2032954A - Electrophoresis-assisted laser strengthening method and device for steel saw surface - Google Patents

Electrophoresis-assisted laser strengthening method and device for steel saw surface Download PDF

Info

Publication number
NL2032954A
NL2032954A NL2032954A NL2032954A NL2032954A NL 2032954 A NL2032954 A NL 2032954A NL 2032954 A NL2032954 A NL 2032954A NL 2032954 A NL2032954 A NL 2032954A NL 2032954 A NL2032954 A NL 2032954A
Authority
NL
Netherlands
Prior art keywords
electrophoresis
saw blade
module
tooth tip
processing tank
Prior art date
Application number
NL2032954A
Other languages
Dutch (nl)
Other versions
NL2032954B1 (en
Inventor
Zhou Li
Liang Huazhuo
Wang Zan
He Junfeng
Original Assignee
Univ Guangdong Polytechnic Normal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Guangdong Polytechnic Normal filed Critical Univ Guangdong Polytechnic Normal
Publication of NL2032954A publication Critical patent/NL2032954A/en
Application granted granted Critical
Publication of NL2032954B1 publication Critical patent/NL2032954B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/025Connecting cutting edges or the like to tools; Attaching reinforcements to workpieces, e.g. wear-resisting zones to tableware
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0426Fixtures for other work
    • B23K37/0435Clamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed are an electrophoresis—assisted laser strengthening method and device for a steel saw surface. The method includes: fixing a saw blade on a supporting plate by an electromagnetic pressing module; driving an electrophoresis processing tank to move, so as to insert a tooth tip into the electrophoresis processing tank; putting a nanometer‘ material into a nanometer material mixing module, fully conducting mixing and dilution, and conveying a nanometer solution to the electrophoresis processing tank; turning on a power supply, and depositing the nanometer l material on the tooth tip; driving the electrophoresis processing tank to move away from the saw blade; driving a laser head of a laser welding module to align with the tooth tip; and starting the laser welding module, and conducting laser welding to form a bimetallic saw blade. According to the present invention, the nanometer material is stably welded, and, prevented, from. falling off.

Description

P1547 /NL
ELECTROPHORESIS-ASSISTED LASER STRENGTHENING METHOD AND DEVICE FOR
STEEL SAW SURFACE
TECHNICAL FIELD
The present invention relates to a method and a device for manufacturing a saw blade, and particularly relates to an electro- phoresis-assisted laser strengthening method and device for a steel saw surface.
BACKGROUND ART
A bimetallic banded saw blade mainly refers to a banded saw blade having high-speed steel or other high-performance steel as a tooth tip material and spring steel or other common materials as a backing material. The tooth tip material has high hardness, desir- able wear resistance and strong red hardness. The backing material has excellent toughness and fatigue resistance.
During processing of the bimetallic banded saw blade, a bond- ing process of a tooth tip block and the backing material is very critical. Its welding quality directly determines performance of the bimetallic banded saw blade. In the prior art, welding pro- cesses mainly include electron beam welding, upset welding and la- ser welding. The electron beam welding needs to be conducted in a vacuum environment and requires vacuum pumping after each power- on, thereby greatly affecting production efficiency, and leading to high apparatus prices and maintenance cost. The upset welding has low apparatus cost but a large heat affected zone after weld- ing, and welding quality and a product qualification rate are dif- ficult to control. Compared with the electron beam welding, the laser welding requires no vacuum environment, and has low appa- ratus cost and maintenance cost. Compared with the upset welding, the laser welding has an easier-to-control welding process and better weld quality.
However, at present, the bimetallic banded saw blade is la- ser-welded mainly by welding a spring steel band and a high-speed steel band. Because hard alloy is formed through powder sintering,
it cannot be made into a band for continuous laser welding. In ad- dition, in a butt welding positioning between the backing material and a tooth tip block material, welding dislocation will occur due to processing errors of a tooth pitch of the backing material. If two materials are not aligned correctly, the weld quality will be reduced, and saw teeth of a bimetallic saw blade will fall off, thus affecting the service life of a saw blade. Moreover, as the tooth tip material cannot completely match tooth tips of the saw blade in shape, it is difficult to effectively guarantee strength of a welding position during processing, thus easily causing fall- off.
SUMMARY
To solve the existing problems, an objective of the present invention is to provide an electrophoresis-assisted laser strengthening method for a steel saw surface. With an electropho- resis auxiliary system, the strengthening method directionally de- posits a nanometer material so as to fit a complex surface gener- ated by a tooth tip due to processing accuracy, thereby better adapting to a welding process, realizing stable welding, fully us- ing performance of a tooth tip material, and avoiding fall-off.
Another objective of the present invention is to provide an electrophoresis-assisted laser strengthening device for a steel saw surface.
The objective of the present invention is realized by the following technical solutions:
The electrophoresis-assisted laser strengthening method for a steel saw surface includes the following steps: placing a banded saw blade on a supporting plate, and firmly fixing, by an electromagnetic pressing module, a tooth tip to be processed of the banded saw blade on the supporting plate; driving, by an electrophoresis driving mechanism, an electro- phoresis processing tank to move to a predetermined position cor- responding to the tooth tip to be processed, so as to insert the tooth tip to be processed into the electrophoresis processing tank; putting a nanometer material into a nanometer material mixing module, fully conducting mixing and dilution by the nanometer ma- terial mixing module, and conveying a nanometer solution to the electrophoresis processing tank by a conveying pipe; turning on an electrophoresis auxiliary power supply, and starting to directionally deposit the nanometer solution, so as to deposit the nanometer material on the tooth tip; driving, by the electrophoresis driving mechanism, the electrophoresis processing tank to move away from the saw blade after deposition; driving, by a welding driving mechanism, a laser welding mod- ule to move to a position above the tooth tip to be processed of the saw blade, and aligning a laser head of the laser welding mod- ule with the tooth tip to be processed after deposition; and starting the laser welding module, and conducting laser weld- ing on the nanometer material on the tooth tip, so as to form a bimetallic saw blade.
In a preferred solution of the present invention, before matching of the tooth tip, a telescopic driving mechanism drives an electrophoresis auxiliary electrode to extend out of the elec- trophoresis processing tank; and after matching of the tooth tip, the telescopic driving mechanism drives the electrophoresis auxil- iary electrode to retract into the electrophoresis processing tank, and then electrophoresis processing is started.
In a preferred solution of the present invention, after a tooth tip at a previous position is welded, a feeding driving mechanism drives the saw blade to move forward along a guide block, so as to move a next tooth tip to be processed to a pro- cessing station, and then next processing is conducted.
The electrophoresis-assisted laser strengthening device for a steel saw surface includes a clamping mechanism for fixedly clamp- ing a saw blade, a saw blade feeding mechanism for driving the saw blade to move, a welding mechanism for welding tooth tips of the saw blade, and a nanometer electrophoresis strengthening mechanism for depositing a nanometer strengthened material on the tooth tips of the saw blade.
The clamping mechanism includes a supporting plate for sup- porting the saw blade and an electromagnetic pressing module for pressing the saw blade.
The saw blade feeding mechanism includes a guide block and a feeding driving mechanism.
The welding mechanism includes a laser welding module and a welding driving mechanism for driving the laser welding module to move;
The nanometer electrophoresis strengthening mechanism in- cludes a nanometer material mixing module and an electrophoresis mechanism. The electrophoresis mechanism includes an electrophore- sis processing tank, an electrophoresis auxiliary electrode, an electrophoresis auxiliary power supply and an electrophoresis driving mechanism. The electrophoresis auxiliary electrode is ar- ranged in the electrophoresis processing tank. The electrophoresis processing tank is connected to the nanometer material mixing mod- ule by means of a conveying pipe. The electrophoresis auxiliary power supply is connected to the electrophoresis auxiliary elec- trode and the saw blade separately by means of wires.
A working principle of the electrophoresis-assisted laser strengthening device for a steel saw surface is as follows:
During work, a banded saw blade is placed on a supporting plate, and an electromagnetic pressing module firmly fixes a tooth tip to be processed of the banded saw blade on the supporting plate; and an electrophoresis driving mechanism drives an electro- phoresis processing tank to move to a predetermined position cor- responding to the tooth tip to be processed, so as to insert the tooth tip to be processed into the electrophoresis processing tank.
Meanwhile, a nanometer material is put into a nanometer mate- rial mixing module, the nanometer material mixing module fully conducts mixing and dilution, and a conveying pipe conveys a na- nometer solution to the electrophoresis processing tank; and an electrophoresis auxiliary power supply is turned on, processing electrical parameters are output, and the nanometer solution is started to be directionally deposited. The electrophoresis driving mechanism drives the electrophoresis processing tank to move away from the saw blade after deposition.
A welding driving mechanism drives a laser welding module to move to a position above the tooth tip to be processed of the saw blade, and a laser head of the laser welding module is aligned with the tooth tip to be processed after deposition; and the laser welding module is started, laser welding is conducted on a high- performance nanometer tooth tip material, and finally a bimetallic 5 saw blade is formed through laser welding, thereby effectively us- ing a high-performance tooth tip material and stably connecting tooth tips.
A feeding driving mechanism drives the saw blade to move for- ward along a guide block, so as to move a next tooth tip to be processed to a processing station, and then next processing is conducted.
In a preferred solution of the present invention, the guide block is arranged on a bearing plate, and the guide block is pro- vided with a guide groove.
In a preferred solution of the present invention, the feeding driving mechanism includes a feeding driving motor and a feeding transmission assembly. A specific structure may refer to a convey- ing structure in the prior art.
In a preferred solution of the present invention, the welding driving mechanism is composed of a three-dimensional precise dis- placement control system, so as to realize driving in three mutu- ally perpendicular directions.
In a preferred solution of the present invention, the nanome- ter material mixing module includes an ultrasonic vibration mod- ule, a magnetic stirring module, a dilution module, a mixed col- loid attraction module and a solution circulation module. In this way, the same nanoparticles or different particles or other fill- ers may be diluted and fully mixed with a colloidal solution, and a circulation module has functions of filtering and recycling col- loid.
In a preferred solution of the present invention, the elec- trophoresis driving mechanism is composed of a three-dimensional moving platform, so as to control a distance between the electro- phoresis processing tank and the tooth tips of the saw blade in real time, and conduct feedback adjustment, thereby directionally depositing the nanometer material.
Compared with the prior art, the present invention has the following beneficial effects: 1, With the electrophoresis auxiliary system, the present in- vention directionally deposits the nanometer material so as to fit the complex surface generated by the tooth tip due to the pro- cessing accuracy, thereby better adapting to the welding process, realizing stable welding, fully using the performance of the tooth tip material, and avoiding fall-off. 2, Through combined use of laser welding and electrophoresis assistance, the high-performance tooth tip material may be effec- tively used, and the tooth tips may be stably connected.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a structural diagram of an electrophoresis-assisted laser strengthening device for a steel saw surface of the present invention.
FIGs. 2-3 are structural diagrams of an electrophoresis aux- iliary electrode and an electrophoresis processing tank in two different working states of the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
To make those skilled in the art better understand a tech- nical solution of the present invention, the present invention will be further described below with reference to embodiments and accompanying drawings, instead of limiting implementations of the present invention.
With reference to FIG. 1, an electrophoresis-assisted laser strengthening device for a steel saw surface of the embodiment in- cludes a clamping mechanism for fixedly clamping a saw blade 2, a saw blade feeding mechanism for driving the saw blade 2 to move, a welding mechanism for welding the saw blade 2, and a nanometer electrophoresis strengthening mechanism for depositing a nanometer strengthened material on tooth tips of the saw blade 2.
The clamping mechanism includes a supporting plate 1 for sup- porting the saw blade 2 and an electromagnetic pressing module 3 for pressing the saw blade 2. Specifically, the electromagnetic pressing module 3 may refer to an existing structure.
The saw blade feeding mechanism includes a guide block 4 and a feeding driving mechanism 11. The guide block 4 is arranged on a bearing plate, and the guide block 4 is provided with a guide groove. The feeding driving mechanism 11 includes a feeding driv- ing motor and a feeding transmission assembly. A specific struc- ture may refer to a conveying structure in the prior art.
The welding mechanism includes a laser welding module 6 and a welding driving mechanism for driving the laser welding module 6 to move. The welding driving mechanism is composed of a three- dimensional precise displacement control system 5, so as to real- ize driving in three mutually perpendicular directions.
The nanometer electrophoresis strengthening mechanism in- cludes a nanometer material mixing module 12 and an electrophore- sis mechanism. The electrophoresis mechanism includes an electro- phoresis processing tank 9, an electrophoresis auxiliary electrode 8, an electrophoresis auxiliary power supply 7 and an electropho- resis driving mechanism. The electrophoresis auxiliary electrode 8 is arranged in the electrophoresis processing tank 9. The electro- phoresis processing tank 9 is connected to the nanometer material mixing module 12 by means of a conveying pipe. The electrophoresis auxiliary power supply 7 is connected to the electrophoresis aux- iliary electrode 8 and the saw blade 2 separately by means of wires.
With reference to FIG. 1, the nanometer material mixing mod- ule 12 includes an ultrasonic vibration module, a magnetic stir- ring module, a dilution module, a mixed colloid attraction module and a solution circulation module. In this way, the same nanopar- ticles or different particles or other fillers may be diluted and fully mixed with a colloidal solution, and a circulation module has functions of filtering and recycling colloid.
With reference to FIG. 1, the electrophoresis driving mecha- nism is composed of a three-dimensional moving platform 10, so as to control a distance between the electrophoresis processing tank 9 and the tooth tips of the saw blade 2 in real time, and conduct feedback adjustment, thereby directionally depositing the nanome- ter material.
With reference to FIGs. 1-3, an electrophoresis-assisted la- ser strengthening method for a steel saw surface of the embodiment included the following steps:
A banded saw blade 2 was placed on a supporting plate 1, and an electromagnetic pressing module 3 firmly fixed a tooth tip to be processed of the banded saw blade 2 on the supporting plate 1.
An electrophoresis driving mechanism drove an electrophoresis processing tank 9 to move to a predetermined position correspond- ing to the tooth tip to be processed, so as to insert the tooth tip to be processed into the electrophoresis processing tank 9.
Before matching of the tooth tip, an telescopic driving mechanism drove an electrophoresis auxiliary electrode 8 to extend out of the electrophoresis processing tank 9, as shown in FIG. 2. After matching of the tooth tip, the telescopic driving mechanism drove the electrophoresis auxiliary electrode 8 to retract into the electrophoresis processing tank 9, and then electrophoresis pro- cessing was started, as shown in FIG. 3. In this way, when the tooth tip was inserted into the electrophoresis processing tank 9, it may be ensured that the electrophoresis processing tank 9 was filled with a mixed nanoparticle solution and leakage cannot oc- cur, thereby reducing a usage amount of the solution.
A nanometer material was put into a nanometer material mixing module 12, the nanometer material mixing module 12 fully conducted mixing and dilution, and a conveying pipe conveyed a nanometer so- lution to the electrophoresis processing tank 9.
An electrophoresis auxiliary power supply 7 was turned on, and the nanometer solution was started to be directionally depos- ited, so as to deposit the nanometer material on the tooth tip.
The electrophoresis driving mechanism drove the electrophoresis processing tank 9 to move away from the saw blade 2 after deposi- tion.
A welding driving mechanism drove a laser welding module 6 to move to a position above the tooth tip to be processed of the saw blade 2, and a laser head of the laser welding module 6 was aligned with the tooth tip to be processed after deposition.
The laser welding module 6 was started, and laser welding was conducted on the nanometer material on the tooth tip, so as to form a bimetallic saw blade 2.
Furthermore, after a tooth tip at a previous position was welded, a feeding driving mechanism 11 drove the saw blade 2 to move forward along a guide block 4, so as to move a next tooth tip to be processed to a processing station, and then next processing was conducted.
The above description is preferred implementations of the present invention but does not limit implementations of the pre- sent invention. Any other changes, modifications, substitutions, combinations and simplifications made without departing from the spirit and principle of the present invention shall be equivalent replacement methods, and fall within the scope of protection of the present invention.

Claims (9)

CONCLUSIESCONCLUSIONS 1. Door elektroforese ondersteunde laserversterkingsmethode voor een stalen zaagoppervlak, omvattende de volgende stappen: het plaatsen van een bandzaagblad op een steunplaat, en het door een elektromagnetische persmodule stevig vastzetten van een te be- werken tandpunt van het bandzaagblad op de steunplaat; het aandrijven, door een elektroforese-aandrijfmechanisme, van een elektroforese bewerkingstank om te bewegen naar een vooraf bepaal- de positie die overeenkomt met de te bewerken tandpunt, om de te bewerken tandpunt in de elektroforese bewerkingstank in te bren- gen; het plaatsen van een nanometermateriaal in een nanometermateriaal mengmodule, het volledig uitvoeren van het mengen en verdunnen door de nanometermateriaal mengmodule, en het transporteren van een nanometeroplossing naar de elektroforese bewerkingstank door een transportleiding; het inschakelen van een elektroforese hulpvoeding, en beginnen met het gericht afzetten van de nanometeroplossing, om het nanometer- materiaal op de tandpunt af te zetten; het aandrijven, door het elektroforese-aandrijfmechanisme, van de elektroforese bewer- kingstank om na afzetting van het zaagblad weg te bewegen; het aandrijven, door een lasaandrijfmechanisme, van een laserlas- module om te bewegen naar een positie boven de tandpunt van het zaagblad die moet worden bewerkt, en het uitlijnen van een laser- kop van de laserlasmodule met de tandpunt die moet worden verwerkt na afzetting; en het starten van de laserlasmodule en het uitvoeren van laserlassen op het nanometermateriaal op de tandpunt, om een bimetaalzaagblad te vormen.An electrophoresis-assisted laser amplification method for a steel cutting surface, comprising the steps of: placing a bandsaw blade on a backing plate, and firmly fixing a tooth tip of the bandsaw blade to be machined onto the backing plate by an electromagnetic press module; driving, by an electrophoresis driving mechanism, an electrophoresis processing tank to move to a predetermined position corresponding to the tooth tip to be processed, to insert the tooth tip to be processed into the electrophoresis processing tank; placing a nanometer material in a nanometer material mixing module, completely performing mixing and dilution through the nanometer material mixing module, and transporting a nanometer solution to the electrophoresis processing tank through a transfer line; turning on an electrophoresis auxiliary power supply, and commencing targeted deposition of the nanometer solution, to deposit the nanometer material on the tooth tip; driving, by the electrophoresis drive mechanism, the electrophoresis processing tank to move away from the saw blade after deposition; driving, by a welding drive mechanism, a laser welding module to move to a position above the tooth tip of the saw blade to be processed, and aligning a laser head of the laser welding module with the tooth tip to be processed after deposition; and starting the laser welding module and performing laser welding on the nanometer material on the tooth tip to form a bi-metal saw blade. 2. Door elektroforese ondersteunde laserversterkingsmethode voor een stalen zaagoppervlak volgens conclusie 1, waarbij vóór het af- stemmen van de tandpunt, een telescopisch aandrijfmechanisme een elektroforesehulpelektrode aandrijft om uit de elektroforese be- werkingstank te steken; en na afsteming van de tandpunt, het te-The electrophoresis-assisted laser amplification method for a steel cutting surface according to claim 1, wherein before tuning the tooth tip, a telescopic driving mechanism drives an electrophoresis auxiliary electrode to protrude from the electrophoresis processing tank; and after alignment of the tooth tip, the te- lescopische aandrijfmechanisme de elektroforesehulpelektrode aan- drijft om terug te trekken in de elektroforese bewerkingstank, en dan wordt de elektroforesebewerking gestart.lescopic drive mechanism drives the electrophoresis auxiliary electrode to retract into the electrophoresis processing tank, and then the electrophoresis processing is started. 3. Door elektroforese ondersteunde laserversterkingsmethode voor een stalen zaagoppervlak volgens conclusie 1, waarbij nadat een tandpunt op een eerdere positie is gelast, een toevoeraandrijfme- chanisme het zaagblad aandrijft om naar voren te bewegen langs een geleidingsblok, om zo een volgende te bewerken tandpunt naar een bewerkingsstation te verplaatsen, en dan worden elektroforese en lassen voortgezet.The electrophoresis-assisted laser amplification method for a steel cutting surface according to claim 1, wherein after a tooth tip has been welded at a previous position, a feed drive mechanism drives the saw blade to advance along a guide block so as to feed a next tooth tip to be machined to a processing station, and then electrophoresis and welding are continued. 4. Door elektroforese ondersteund laserversterkingsapparaat voor een stalen zaagoppervlak, omvattende een klemmechanisme voor het vast klemmen van een zaagblad, een zaagbladtoevoermechanisme om het zaagblad in beweging te brengen, een lasmechanisme voor het lassen van tandpunten van het zaagblad en een nanometerelektrofo- rese-versterkingsmechanisme voor het afzetten van een nanometer- versterkt materiaal op de tandpunten van het zaagblad, waarbij het klemmechanisme een steunplaat voor het ondersteunen van het zaagblad en een elektromagnetische aandrukmodule voor het aandruk- ken van het zaagblad omvat; het zaagbladtoevoermechanisme een geleidingsblok en een toevoer- aandrijfmechanisme omvat; het lasmechanisme een laserlasmodule en een lasaandrijfmechanisme voor het aandrijven van de laserlasmodule om te bewegen omvat; het versterkingsmechanisme voor nanometerelektroforeseeen module voor het mengen van nanometermateriaal en een elektroforesemecha- nisme omvat , het elektroforesemechanisme een elektroforeseverwer- kingstank, een hulpelektrode voor elektroforese, een hulpvoeding voor elektroforese en een aandrijfmechanisme voor elektroforese omvat, waarbij de hulpelektrode voor elektroforese is opgesteld in de elektroforese verwerkingstank, en de elektroforeseverwer- kingstank is verbonden met de nanometer-materiaalmengmodule door middel van een transportleiding; en waarbij de elektroforese hulp- voeding door middel van draden afzonderlijk is verbonden met de elektroforese hulpelektrode en het zaagblad.4. Electrophoresis-assisted laser amplifying apparatus for a steel cutting surface, comprising a clamping mechanism for clamping a saw blade, a saw blade feed mechanism for moving the saw blade, a welding mechanism for welding tooth tips of the saw blade, and a nanometer electrophoresis amplification mechanism for depositing a nanometer-reinforced material on the tooth tips of the saw blade, the clamping mechanism comprising a support plate for supporting the saw blade and an electromagnetic pressing module for pressing the saw blade; the saw blade feed mechanism includes a guide block and a feed drive mechanism; the welding mechanism includes a laser welding module and a welding drive mechanism for driving the laser welding module to move; the amplifying mechanism for nanometer electrophoresis includes a nanometer material mixing module and an electrophoresis mechanism, the electrophoresis mechanism includes an electrophoresis processing tank, an auxiliary electrophoresis electrode, an auxiliary electrophoresis power supply, and an electrophoresis driving mechanism, the auxiliary electrophoresis electrode being arranged in the electrophoresis processing tank, and the electrophoresis processing tank is connected to the nanometer material mixing module through a transfer line; and wherein the auxiliary electrophoresis power supply is separately connected by wires to the auxiliary electrophoresis electrode and the saw blade. 5. Door elektroforese ondersteund laserversterkingsapparaat voor een stalen zaagoppervlak volgens conclusie 4, waarbij het gelei- dingsblok is aangebracht op een lagerplaat, en het geleidingsblok is voorzien van een geleidingsgroef.The electrophoresis-assisted laser amplification apparatus for a steel cutting surface according to claim 4, wherein the guide block is mounted on a bearing plate, and the guide block has a guide groove. 6. Door elektroforese ondersteund laserversterkingsapparaat voor een stalen zaagoppervlak volgens conclusie 4, waarbij het toevoer- aandrijfmechanisme een toevoeraandrijfmotor en een toevoertrans- missiesamenstel omvat.The electrophoresis-assisted laser amplification apparatus for a steel cutting surface according to claim 4, wherein the feed drive mechanism comprises a feed drive motor and a feed transmission assembly. 7. Door elektroforese ondersteund laserversterkingsapparaat voor een stalen zaagoppervlak volgens conclusie 4, waarbij het lasaan- drijfmechanisme is samengesteld uit een driedimensionaal nauwkeu- rig verplaatsingscontrolesysteem dat in staat is om in drie onder- ling loodrechte richtingen aan te drijven.The electrophoresis-assisted laser amplifying apparatus for a steel cutting surface according to claim 4, wherein the welding driving mechanism is composed of a three-dimensional accurate displacement control system capable of driving in three mutually perpendicular directions. 8. Door elektroforese ondersteund laserversterkingsapparaat voor een stalen zaagoppervlak volgens conclusie 4, waarbij de module voor het mengen van nanometermateriaal een ultrasone vibratiemodu- le, een magnetische roermodule, een verdunningsmodule, een aan- trekkingsmodule voor gemengde colloïde en een circulatiemodule voor oplossing omvat. .The electrophoresis-assisted laser amplification apparatus for a steel cutting surface according to claim 4, wherein the nanometer material mixing module comprises an ultrasonic vibration module, a magnetic stirring module, a dilution module, a mixed colloid attraction module, and a solution circulation module. . 9. Door elektroforese ondersteund laserversterkingsapparaat voor een stalen zaagoppervlak volgens conclusie 4, waarbij het elektro- forese-aandrijfmechanisme is samengesteld uit een driedimensionaal bewegend platform dat in real time een afstand regelt tussen de elektroforesebewerkingstank en de tandpunten van het zaagblad.The electrophoresis-assisted laser amplification apparatus for a steel cutting surface according to claim 4, wherein the electrophoresis driving mechanism is composed of a three-dimensional moving platform that controls a distance in real time between the electrophoresis processing tank and the tooth tips of the saw blade.
NL2032954A 2022-01-07 2022-09-05 Electrophoresis-assisted laser strengthening method and device for steel saw surface NL2032954B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210019344.1A CN114273724B (en) 2022-01-07 2022-01-07 Electrophoresis-assisted laser steel saw surface strengthening method and device

Publications (2)

Publication Number Publication Date
NL2032954A true NL2032954A (en) 2023-07-11
NL2032954B1 NL2032954B1 (en) 2023-10-11

Family

ID=80880621

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032954A NL2032954B1 (en) 2022-01-07 2022-09-05 Electrophoresis-assisted laser strengthening method and device for steel saw surface

Country Status (2)

Country Link
CN (1) CN114273724B (en)
NL (1) NL2032954B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192469A (en) * 2011-03-15 2012-10-11 Nippon Parkerizing Co Ltd Electrodeposition liquid for fixed-abrasive saw wire
WO2018196241A1 (en) * 2017-04-25 2018-11-01 广东工业大学 Electrophoresis-assisted micro-nano particle melting self-assembly surface modification equipment
CN110026683A (en) * 2019-05-27 2019-07-19 广东工业大学 A kind of bi-metal bandsaw blades welder and method
CN112589203A (en) * 2020-12-11 2021-04-02 岳阳市青方环保科技有限公司 Preparation process of bimetallic strip saw blade

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101856758B (en) * 2010-05-28 2012-02-01 河海大学常州校区 Method for welding hard alloy steelwork and 45 steelwork
CN103286451B (en) * 2013-05-29 2015-04-15 常熟理工学院 Laser welding method for Mg-Gr-Y rare-earth magnesium alloy
CN207044501U (en) * 2017-04-27 2018-02-27 广东工业大学 A kind of micro-fluidic chip elastic mould local strengthening shaped device
CN110616451B (en) * 2019-06-21 2021-02-02 西南交通大学 Method for enhancing strength of welding interface of hard alloy and metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192469A (en) * 2011-03-15 2012-10-11 Nippon Parkerizing Co Ltd Electrodeposition liquid for fixed-abrasive saw wire
WO2018196241A1 (en) * 2017-04-25 2018-11-01 广东工业大学 Electrophoresis-assisted micro-nano particle melting self-assembly surface modification equipment
CN110026683A (en) * 2019-05-27 2019-07-19 广东工业大学 A kind of bi-metal bandsaw blades welder and method
CN112589203A (en) * 2020-12-11 2021-04-02 岳阳市青方环保科技有限公司 Preparation process of bimetallic strip saw blade

Also Published As

Publication number Publication date
CN114273724A (en) 2022-04-05
NL2032954B1 (en) 2023-10-11
CN114273724B (en) 2023-05-30

Similar Documents

Publication Publication Date Title
CN111716003B (en) Aluminum alloy pulse laser-TIG electric arc composite additive manufacturing device and method
CN110144583B (en) Wide-beam and adjustable-powder-feeding-angle rapid and efficient semiconductor laser cladding device
CN112108769A (en) Synchronous wire feeding and powder feeding laser cladding welding system and cladding welding method
US20030222059A1 (en) High energy beam cladding
CN109048059B (en) Laser scanning wire filling welding method for thin plate
CN108356387B (en) Welding pool stability regulation and control method based on double-arc vibration and application thereof
NL2032954B1 (en) Electrophoresis-assisted laser strengthening method and device for steel saw surface
US5951884A (en) Electric discharge machining method and apparatus
CN104646831B (en) Hybrid welding apparatus, system, and method for spatially offset components
CN217493098U (en) Laser online cutting machine for pipe making
CN114395787B (en) Local strengthening device and method for multi-metal molten band-shaped saw blade
CN111041400A (en) Piston rod surface alloy cladding processing equipment
CN210255076U (en) Splicing and welding equipment for material strips
KR100458725B1 (en) Laser welder and thereof method of formed sheet for pipe manufacturing
CN112077389A (en) Flying wing relieving device and flying wing method thereof
CN116372374B (en) Double-station laser welding machine and laser welding method for coated sheet
CN219805529U (en) Five-axis laser welding machine
CN114561639B (en) Workpiece surface repairing device
CN210755848U (en) Three-axis adjustable laser welding machine
CN218836481U (en) Split splicing type exchange table of laser cutting machine
CN218016518U (en) Framework transmission device for pipe fitting laser cutting
Egerland et al. Investigation of advanced laser-MAG tandem hybrid welding for joining gap-flawed thin sheet metal parts
CN219026273U (en) Online butt-welding device for metal rod piece
CN217618571U (en) Automatic welding device for triangular prism workpiece
CN215967079U (en) Automatic welding equipment for cutter blank