NL2032786A - Cold-rolled pipe surface carburization depth detection device and detection method thereof - Google Patents

Cold-rolled pipe surface carburization depth detection device and detection method thereof Download PDF

Info

Publication number
NL2032786A
NL2032786A NL2032786A NL2032786A NL2032786A NL 2032786 A NL2032786 A NL 2032786A NL 2032786 A NL2032786 A NL 2032786A NL 2032786 A NL2032786 A NL 2032786A NL 2032786 A NL2032786 A NL 2032786A
Authority
NL
Netherlands
Prior art keywords
cold
curve
laser
rolled pipe
controller
Prior art date
Application number
NL2032786A
Other languages
Dutch (nl)
Other versions
NL2032786B1 (en
Inventor
Wang Shumin
Liang Xiao
Zhang Yun
Li Xinhua
Li Xinzhong
Huang Haoran
Zeng Meilan
Original Assignee
Li Xinzhong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Xinzhong filed Critical Li Xinzhong
Publication of NL2032786A publication Critical patent/NL2032786A/en
Application granted granted Critical
Publication of NL2032786B1 publication Critical patent/NL2032786B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1782In-depth resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a cold-rolled pipe surface carburization depth detection device and detection method. A laser-induced breakdown spectrum device is used to analyze the surface and cut section of the cold-rolled pipe, and the carburization depth is obtained by the spectral analysis of the cut section. Then the CE and the CT curves are obtained by spectral analysis of the outer surface. The characteristics of the CE curve and the CT curve are used as input to construct the neural network model, and the carburization depth of the surface of the unknown cold-rolled pipe is obtained. It avoids the need to grind or cut the cut section when testing real industrial products, and only a small point of the surface needs to be analyzed by laser-induced breakdown spectrum to obtain the carburization depth, which is similar to non-destructive testing and faster.

Description

COLD-ROLLED PIPE SURFACE CARBURIZATION DEPTH DETECTION
DEVICE AND DETECTION METHOD THEREOF
TECHNICAL FIELD
[01] The present invention relates to the field of spectroscopic measurements of heat treatment of cold rolled tubes, and more particularly to a cold-rolled pipe surface carburization depth detection device and detection method.
BACKGROUND ART
[02] Carburization: it is a kind of metal surface treatment, mostly low carbon steel or low alloy steel using carburization. The specific method is to put the workpiece into an active carburizing medium, heat to a single-phase austenite region of 900-950°C, and keep the temperature for a sufficient time, so that the activated carbon atoms decomposed in the carburizing medium penetrate into the surface layer of the steel piece, thereby obtaining a surface layer of high carbon, and the core still maintains the original composition.
[03] In the prior art, the methods for measuring the depth of carburization generally include metallography, direct-reading spectroscopy, stripping chemistry analysis, etc.
According to these solutions, it is generally required that the sample be stripped layer by layer to achieve the measurement of the carburization depth. However, in actual product testing, it is not possible to perform a peel test on all samples, both wasting time and destroying sample surface structure.
[04] Laser-induced breakdown spectrum is a new spectral analysis technology, which uses a high-energy laser to detect the laser breakdown of a point on the surface of the sample, with minimal damage to the material, fast detection speed, green and pollution-free characteristics.
SUMMARY
[05] With regard to the above-mentioned contents, in order to solve the above-mentioned problems, a cold-rolled pipe surface carburization depth detection device is provided, which comprises a control device, a precision sample platform, a displacement controller, a laser emitter, a laser power controller, an optical fiber coupler and an optical spectrum analyzer;
[06] wherein the precision sample platform is used for placing the cold-rolled pipe to be detected, and the hole controls the movement of the cold-rolled pipe to be detected; the displacement controller is connected to the precision sample platform and is used for controlling the movement of the precision sample platform; the displacement controller is connected to the control device, and the control device sends a displacement instruction and a displacement parameter to the displacement controller;
[07] the laser emitter is used for exciting a laser-induced breakdown spectrum on the surface of the cold-rolled pipe to be measured, and the laser power controller is used for controlling the laser power of the laser emitter; the control device is connected to the laser power controller for sending a control parameter of the laser power to the laser power controller;
[08] the optical fiber coupler is used for collecting the plasma plume generated on the surface of the cold-rolled pipe to be measured and coupling same to an optical fiber for transmission to the optical spectrum analyzer; the optical spectrum analyzer is connected to a control device for sending a spectrum analysis result to the control device;
[09] the control device collects the analysis results of the optical spectrum analyzer, and calculates the carbon content at the detection point according to the analysis of the laser-induced breakdown spectrum of the cold-rolled pipe to be detected;
[10] during the detection, the cut section of the cold-rolled pipe to be detected moves under the control of the precision sample platform, the laser emitter emits laser light to excite laser-induced breakdown spectrum at different positions on the cut section of the cold-rolled pipe to be detected, and the optical fiber coupler collects the plasma plume and sends same to the optical spectrum analyzer to obtain the laser-induced breakdown spectrum; the control device calculates the carbon content at different detection points, and then obtains the surface carburization depth of the cold-rolled pipe.
[11] The emission wavelength of the laser emitter is 1064 nm, the single pulse energy is 100 mJ to 1.5 J, and the laser focused spot is 20-100 un;
[12] the displacement accuracy of the precision sample platform is 0.5-1 um, and the minimum step length is 5-10 um; the atomic emission line at 505.2 nm of carbon selected as the analytical line.
[13] The device further comprises a sealed housing, wherein the precision sample platform and the optical fiber coupler are arranged inside the sealed housing, and the sealed housing can be filled with various atmospheres, so as to ensure that the cold-rolled pipe to be tested is subjected to analysis of a laser-induced breakdown spectrum under a determined atmosphere.
[14] A cold-rolled pipe surface carburization depth detection method using a cold-rolled pipe surface carburization depth detection device, comprising the steps of:
[15] step 1: preparing a plurality of cold-rolled pipe samples, respectively performing carburization treatment with different parameters to obtain cold-rolled pipe samples with different carburization depths;
[16] step 2: treatment of the surface of the cold-rolled pipe: cleaning the carburized cold-rolled pipe with a detergent to remove oil stains on the surface; cutting after cleaning, cooling the cutting tool with water when cutting, and then directly polishing the cut section and outer surface with velvet;
[17] step 3: fixing a sample of a cold-rolled pipe on the surface of a precision sample table, using a laser emitter to emit a laser to excite a laser-induced breakdown spectrum at different positions on the cut section of the cold-rolled pipe, and collecting, by an optical fiber coupler, a plasma plume and sending same to an optical spectrum analyzer to obtain a laser-induced breakdown spectrum; controlling, by the precision sample platform, the detection position of the sample of the cold-rolled pipe to move along the radial direction of the cold-rolled pipe, and calculating, by the control device,
the carbon content of different detection points and plotting the carbon content of detection points at different depths from the surface, thereby obtaining the surface carburization depth of the cold-rolled pipe, then obtaining the surface carburization depth of the cold rolled pipe; the method for obtaining the specific carburization depth herein can be directly obtained according to the plotted curve of carbon content with depth, which is not described in detail;
[18] step 4: changing the direction of the sample of the cold-rolled pipe of step 3, so that the laser emitter is aligned with the outer surface of the cold-rolled pipe, then emitting, by the laser emitter, laser light to excite the laser-induced breakdown spectrum at the same position on the outer surface of the cold-rolled pipe to be detected, and collecting, by the optical fiber coupler, the plasma plume and sending same to the optical spectrum analyzer to obtain the laser-induced breakdown spectrum; continuously increasing the single pulse energy of the laser emitted by the laser emitter during the detection process, calculating, the control device, the excitation energy to obtain the carbon content of the laser-induced breakdown spectrum, and plotting a curve of the carbon content varying with the excitation energy, i.e, a CE curve;
[19] step 5: replacing a detection point on the outer surface of the cold-rolled pipe treated in step 4, then emitting, by a laser emitter, laser light to excite a laser-induced breakdown spectrum at a detection position on the outer surface of the cold-rolled pipe, and collecting, by an optical fiber coupler, a plasma plume and sending same to an optical spectrum analyzer to obtain the laser-induced breakdown spectrum; fixing the single pulse energy of the laser emitted by the laser emitter in the detection process, and calculating, by the control device, the excitation energy to obtain the carbon content of the laser-induced breakdown spectrum, and plotting a curve of the carbon content varying with the number of excitation pulses, i.e., a CT curve;
[20] step 6: replacing one cold-rolled pipe sample, and repeating steps 3, 4 and 5 until all the cold-rolled pipe samples have been tested; obtaining the carburization depth corresponding to each the CE curve and the CT curve;
[21] then taking the curve characteristics extracted from the CE curve and the CT curve as an input and the carburization depth as an output to construct a neural network model so as to obtain a carburization depth judgement model, i.e., inputting the curve characteristics of the CE curve and the CT curve to obtain a carburization depth;
[22] step 7: performing carburization treatment on a sample of the cold-rolled pipe 5 to be measured, then cleaning and polishing, and then performing steps 4 and 5 to obtain a CE curve and a CT curve, and inputting curve characteristics of the CE curve and the CT curve into a carburization depth judgement model to obtain a carburization depth.
[23] the characteristics of the CE curve and the CT curve extracted from the construction of neural network model are: range difference of the CE curve, range difference of the CT curve, variance of the CE curve, variance of the CT curve, mean value of the CE curve, mean value of the CT curve, discrete coefficient of the CT curve, and discrete coefficient of the CE curve.
[24] Advantageous effects of the present invention are:
[25] provided is a laser-induced breakdown spectrum method used to analyze the surface and cut section of the cold-rolled pipe, and the carburization depth is obtained by the spectral analysis of the cut section. Then the CE and the CT curves are obtained by spectral analysis of the outer surface. The characteristics of the CE curve and the
CT curve are used as input to construct the neural network model, and the carburization depth of the surface of the unknown cold-rolled pipe is obtained. It avoids the need to grind or cut the cut section when testing real industrial products, and only a small point of the surface needs to be analyzed by laser-induced breakdown spectrum to obtain the carburization depth, which is similar to non-destructive testing and faster.
BRIEF DESCRIPTION OF THE DRAWINGS
[26] The accompanying drawings, which are included to provide a further understanding of the disclosed subject matter, are incorporated in and constitute a part of this description. The drawings also set forth implementations of the disclosed subject matter and, together with the detailed description, serve to explain the principles of implementation of the disclosed subject matter. No attempt is made to show structural details more than is necessary for a fundamental understanding of the disclosed subject matter and the various ways in which it may be practiced.
[27] Fig 1 is a schematic view of the architecture of the device of the present invention;
[28] Fig. 2 is a schematic representation of step 3 of the process of the present invention;
[29] Fig 3 is a schematic representation of steps 4-5 of the process of the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[30] The advantages, characteristics, and means of accomplishing the objectives of the present invention will be apparent from the accompanying drawings and the detailed description that follows.
[31] Example I:
[32] A cold-rolled pipe surface carburization depth detection device comprising a control device, a precision sample platform, a displacement controller, a laser emitter 1, a laser power controller, an optical fiber coupler 2 and an optical spectrum analyzer 3;
[33] the precision sample platform is used for placing the cold-rolled pipe 4 to be detected, and the hole controls the movement of the cold-rolled pipe 4 to be detected; the displacement controller is connected to the precision sample platform and is used for controlling the movement of the precision sample platform; the displacement controller is connected to the control device, and the control device sends a displacement instruction and a displacement parameter to the displacement controller;
[34] the laser emitter 1 is used for exciting a laser-induced breakdown spectrum on the surface of the cold-rolled pipe 4 to be measured, and the laser power controller is used for controlling the laser power of the laser emitter 1; the control device is connected to the laser power controller for sending a control parameter of the laser power to the laser power controller;
[35] the optical fiber coupler 2 is used for collecting the plasma plume generated on the surface of the cold-rolled pipe 4 to be measured and coupling same to an optical fiber for transmission to the optical spectrum analyzer 3; the optical spectrum analyzer 3 is connected to a control device for sending a spectrum analysis result to the control device;
[36] the control device collects the analysis results of the optical spectrum analyzer 3, and calculates the carbon content at the detection point according to the analysis of the laser-induced breakdown spectrum of the cold-rolled pipe 4 to be detected,
[37] during the detection, the cut section of the cold-rolled pipe 4 to be detected moves under the control of the precision sample platform, the laser emitter 1 emits laser light to excite laser-induced breakdown spectrum at different positions on the cut section of the cold-rolled pipe 4 to be detected, and the optical fiber coupler 2 collects the plasma plume and sends same to the optical spectrum analyzer 3 to obtain the laser-induced breakdown spectrum; the control device calculates the carbon content at different detection points, and then obtains the surface carburization depth of the cold-rolled pipe 4.
[38] The emission wavelength of the laser emitter 1 is 1064 nm, the single pulse energy is 100 mJ to 1.5 J, and the laser focused spot is 20-100 um;
[39] the displacement accuracy of the precision sample platform is 0.5-1 um, and the minimum step length is 5-10 um; the atomic emission line at 505.2 nm of carbon selected as the analytical line.
[40] The device further comprises a sealed housing, wherein the precision sample platform and the optical fiber coupler 2 are arranged inside the sealed housing, and the sealed housing can be filled with various atmospheres, so as to ensure that the cold-rolled pipe 4 to be tested is subjected to analysis of a laser-induced breakdown spectrum under a determined atmosphere.
[41] Example 2:
[42] A cold-rolled pipe surface carburization depth detection method using a cold-rolled pipe surface carburization depth detection device, which comprises the steps of:
[43] step 1: preparing a plurality of cold-rolled pipe 4 samples, respectively performing carburization treatment with different parameters to obtain cold-rolled pipe 4 samples with different carburization depths;
[44] step 2: treatment of the surface of the cold-rolled pipe 4: cleaning the carburized cold-rolled pipe 4 with a detergent to remove oil stains on the surface; cutting after cleaning, cooling the cutting tool with water when cutting, and then directly polishing the cut section and outer surface with velvet;
[45] step 3: fixing a sample of a cold-rolled pipe 4 on the surface of a precision sample table, using a laser emitter 1 to emit a laser to excite a laser-induced breakdown spectrum at different positions on the cut section of the cold-rolled pipe 4, and collecting, by an optical fiber coupler 2, a plasma plume and sending same to an optical spectrum analyzer 3 to obtain a laser-induced breakdown spectrum; controlling, by the precision sample platform, the detection position of the sample of the cold-rolled pipe 4 to move along the radial direction of the cold-rolled pipe 4, and calculating, by the control device, the carbon content of different detection points and plotting the carbon content of detection points at different depths from the surface, thereby obtaining the surface carburization depth of the cold-rolled pipe 4;
[46] step 4: changing the direction of the sample of the cold-rolled pipe 4 of step 3, so that the laser emitter 1 is aligned with the outer surface of the cold-rolled pipe 4, then emitting, by the laser emitter 1, laser light to excite the laser-induced breakdown spectrum at the same position on the outer surface of the cold-rolled pipe 4 to be detected, and collecting, by the optical fiber coupler 2, the plasma plume and sending same to the optical spectrum analyzer 3 to obtain the laser-induced breakdown spectrum; continuously increasing the single pulse energy of the laser emitted by the laser emitter 1 during the detection process, calculating, the control device, the excitation energy to obtain the carbon content of the laser-induced breakdown spectrum, and plotting a curve of the carbon content varying with the excitation energy,
1e, a CE curve;
[47] step 5: replacing a detection point on the outer surface of the cold-rolled pipe 4 treated in step 4, then emitting, by a laser emitter 1, laser light to excite a laser-induced breakdown spectrum at a detection position on the outer surface of the cold-rolled pipe 4, and collecting, by an optical fiber coupler 2, a plasma plume and sending same to an optical spectrum analyzer 3 to obtain the laser-induced breakdown spectrum; fixing the single pulse energy of the laser emitted by the laser emitter 1 in the detection process, and calculating, by the control device, the excitation energy to obtain the carbon content of the laser-induced breakdown spectrum, and plotting a curve of the carbon content varying with the number of excitation pulses, i.e., a CT curve;
[48] step 6: replacing one cold-rolled pipe 4 sample, and repeating steps 3, 4 and 5 until all the cold-rolled pipe 4 samples have been tested; obtaining the carburization depth corresponding to each the CE curve and the CT curve;
[49] then taking the curve characteristics extracted from the CE curve and the CT curve as an input and the carburization depth as an output to construct a neural network model so as to obtain a carburization depth judgement model, 1.e., inputting the curve characteristics of the CE curve and the CT curve to obtain a carburization depth;
[50] step 7: performing carburization treatment on a sample of the cold-rolled pipe 4 to be measured, then cleaning and polishing, and then performing steps 4 and 5 to obtain a CE curve and a CT curve, and inputting curve characteristics of the CE curve and the CT curve into a carburization depth judgement model to obtain a carburization depth.
[51] the characteristics of the CE curve and the CT curve extracted from the construction of neural network model are: range difference of the CE curve, range difference of the CT curve, variance of the CE curve, variance of the CT curve, mean value of the CE curve, mean value of the CT curve, discrete coefficient of the CT curve, and discrete coefficient of the CE curve.
[52] Specifically, after extracting the range difference of the CE curve, the range difference of the CT curve, the variance of the CE curve, the variance of the CT curve,
the mean value of the CE curve, the mean value of the CT curve, the discrete coefficient of the CT curve and the discrete coefficient of the CE curve, the neural network model is constructed as an input of an observation and the corresponding carburization depth as an output. Of course, the selection of the neural network model is merely an example method, and other decision trees and random forest methods can also be used for classification discrimination.
[53] Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, a person skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Accordingly, the protection sought herein is as set forth in the claims below.

Claims (5)

S11 - ConclusiesS11 - Conclusions 1. Detectie-inrichting voor de carboneerdiepte van het oppervlak van een koudgewalste pijp, die het volgende omvat: een besturingsinrichting, een precisiemonsterplatform, een verplaatsingsbesturing, een laserzender (1), een laservermogensbesturing, een optische-vezelkoppelaar (2) en een optische- spectrumanalysator (3); met het kenmerk dat het precisiemonsterplatform gebruikt wordt voor het plaatsen van de te detecteren koudgewalste pijp (4), en het gat de beweging van de te detecteren koudgewalste pijp (4) bestuurt; waarbij de verplaatsingsbesturing verbonden wordt met het precistemonsterplatform en gebruikt wordt voor het besturen van de beweging van het precisiemonsterplatform; waarbij de verplaatsingsbesturing verbonden is met de besturingsinrichting, en de besturingsinrichting een verplaatsingsinstructe en een verplaatsingsparameter naar de verplaatsingsbesturing verzendt; de laserzender (1) gebruikt wordt voor de excitatie van een lasergeinduceerd doorbraakspectrum op het oppervlak van de te meten koudgewalste pijp (4), en de laservermogensbesturing gebruikt wordt voor het besturen van het laservermogen van de laserzender (1); de besturingsinrichting verbonden is met de laservermogensbesturing voor het verzenden van een controleparameter van het laservermogen naar de laservermogensbesturing; de optische-vezelkoppelaar (2) gebruikt wordt voor het verzamelen van de plasmapluim die gegenereerd wordt op het oppervlak van de te meten koudgewalste pijp (4) en deze koppelt aan een optische vezel voor transmissie naar de optische- spectrumanalysator (3), waarbij de optische-spectrumanalysator (3) verbonden is met een besturingsinrichting voor het verzenden van een spectrumanalyseresultaat naar de besturingsinrichting; de besturingsinrichting de analyseresultaten van de optische-spectrumanalysator (3) verzamelt en het koolstofgehalte op het detectiepunt berekent aan de hand van de analyse van het lasergeïnduceerde doorbraakspectrum van de te detecteren koudgewalste pijp (4); tijdens de detectie, de doorsnede van de te detecteren koudgewalste pijp (4) onder besturing van het precisiemonsterplatform beweegt, waarbij de laserzender (1)A surface carburizing depth detection device of a cold-rolled pipe, comprising: a controller, a precision sample stage, a displacement controller, a laser emitter (1), a laser power controller, an optical fiber coupler (2), and an optical spectrum analyzer (3); characterized in that the precision sample platform is used for placing the cold-rolled pipe (4) to be detected, and the hole controls the movement of the cold-rolled pipe (4) to be detected; wherein the displacement controller is connected to the precision sample platform and used to control the movement of the precision sample platform; wherein the move controller is connected to the controller, and the controller sends a move instruction and a move parameter to the move controller; the laser emitter (1) is used for the excitation of a laser-induced breakthrough spectrum on the surface of the cold-rolled pipe (4) to be measured, and the laser power control is used for controlling the laser power of the laser emitter (1); the controller is connected to the laser power controller for sending a laser power control parameter to the laser power controller; the optical fiber coupler (2) is used to collect the plasma plume generated on the surface of the cold rolled pipe (4) to be measured and couples it to an optical fiber for transmission to the optical spectrum analyzer (3), the optical spectrum analyzer (3) is connected to a controller for sending a spectrum analysis result to the controller; the controller collects the analysis results from the optical spectrum analyzer (3) and calculates the carbon content at the detection point from the analysis of the laser-induced breakthrough spectrum of the cold-rolled pipe (4) to be detected; during the detection, the cross-section of the cold-rolled pipe (4) to be detected moves under the control of the precision sample platform, the laser emitter (1) laserlicht uitzendt om door het lasergeinduceerde doorbraakspectrum op verschillende plaatsen op de doorsnede van de te detecteren koudgewalste pijp (4) te exciteren, en de optische-vezelkoppelaar (2) de plasmapluim verzamelt en deze naar de optische- spectrumanalysator (3) stuurt om het lasergeinduceerde doorbraakspectrum te verkrijgen; waarbij de besturingsinrichting het koolstofgehalte op verschillende detectiepunten berekent, en dan de carboneerdiepte van het oppervlak van de koudgewalste pijp (4) verkrijgt.emits laser light to be excited by the laser-induced breakthrough spectrum at different places on the cross-section of the cold-rolled pipe (4) to be detected, and the optical fiber coupler (2) collects the plasma plume and sends it to the optical spectrum analyzer (3) to analyze the laser-induced obtain breakthrough spectrum; wherein the controller calculates the carbon content at different detection points, and then obtains the carburization depth of the surface of the cold-rolled pipe (4). 2. Detectie-inrichting voor de carboneerdiepte van het oppervlak van een koudgewalste pijp volgens conclusie 1, met het kenmerk dat de emissiegolflengte van de laserzender (1) 1064 nm is, de enkele-puls-energie 100 mJ tot 1,5 J is, en de laserfocusplek 20-100 um is; de verplaatsingsnauwkeurigheid van het precisiemonsterplatform 0,5-1 pm is, en de minimale staplengte 5-10 um is; waarbij de atomaire emissielijn bij 505,2 nm van koolstof als de analytische lijn wordt geselecteerd.The surface carburizing depth detection device of a cold-rolled pipe according to claim 1, characterized in that the emission wavelength of the laser emitter (1) is 1064 nm, the single pulse energy is 100 mJ to 1.5 J, and the laser focus spot is 20-100 µm; the displacement accuracy of the precision sample stage is 0.5-1 µm, and the minimum step length is 5-10 µm; selecting the atomic emission line at 505.2 nm from carbon as the analytical line. 3. Detectie-inrichting voor de carboneerdiepte van het oppervlak van een koudgewalste pijp volgens conclusie 1, gekenmerkt door verder een afgedichte behuizing te omvatten, waarbij het precisiemonsterplatform en de optische- vezelkoppelaar (2) binnen de afgedichte behuizing zijn aangebracht, en de afgedichte behuizing met diverse atmosferen gevuld kan worden, zo dat de te detecteren koudgewalste pijp (4) aan analyse van een lasergeïnduceerd doorbraakspectrum onderworpen wordt onder een bepaalde atmosfeer.The carburizing depth detection device of the surface of a cold-rolled pipe according to claim 1, characterized by further comprising a sealed housing, wherein the precision sample stage and the optical fiber coupler (2) are disposed within the sealed housing, and the sealed housing can be filled with various atmospheres, so that the cold-rolled pipe (4) to be detected is subjected to analysis of a laser-induced breakthrough spectrum under a certain atmosphere. 4. Werkwijze voor het detecteren van de carboneerdiepte van het oppervlak van een koudgewalste pijp met behulp van de detectie-inrichting voor de carboneerdiepte van het oppervlak van een koudgewalste pijp volgens een van conclusies 1-3, gekenmerkt doordat het de volgende stappen omvat: stap 1: het voorbereiden van een veelheid van monsters van koudgewalste pijp (4), het respectievelijk uitvoeren van carboneringsbehandelingen met verschillende parameters om monsters van koudgewalste pijp (4) met verschillende carboneerdieptes te verkrijgen; stap 2: het behandelen van het oppervlak van de koudgewalste pijp (4): het reinigen van de gecarboniseerde koudgewalste pijp (4) met een reinigingsmiddel om olievlekken op het oppervlak te verwijderen; het snijden na reiniging, het afkoelen van het snijgereedschap met water tijdens het snijden, en vervolgens direct het met fluweel polijsten van het gesneden deel en het buitenoppervlak;A method of detecting the carburizing depth of the surface of a cold-rolled pipe using the carburizing depth of the surface of a cold-rolled pipe detecting device according to any one of claims 1 to 3, characterized in that it comprises the following steps: step 1: preparing a plurality of samples of cold-rolled pipe (4), respectively carrying out carburizing treatments with different parameters to obtain samples of cold-rolled pipe (4) with different carburizing depths; step 2: treating the surface of the cold-rolled pipe (4): cleaning the carburized cold-rolled pipe (4) with a cleaning agent to remove oil stains on the surface; cutting after cleaning, cooling the cutting tool with water during cutting, and then directly velvet polishing the cut part and the outer surface; stap 3: het fixeren van een monster van een koudgewalste pijp (4) op het oppervlak van het precisiemonsterplatform, het gebruik van een laserzender (1) om een laser uit te zenden om een lasergeinduceerd doorbraakspectrum te exciteren op verschillende posities op de doorsnede van de koudgewalste pijp (4), en het door een optische-vezelkoppelaar (2) verzamelen van een plasmapluim en het daarvan verzenden naar een optische-spectrumanalysator (3) om een lasergeinduceerd doorbraakspectrum te verkrijgen; het, door het precisiemonsterplatform besturen van de detectiepositie van het monster van de koudgewalste pijp (4) om te bewegen langs de radiale richting van de koudgewalste pijp (4), en het door de besturingsinrichting berekenen van het koolstofgehalte van verschillende detectiepunten en het koolstofgehalte van de detectiepunten op verschillende dieptes vanaf het oppervlak uit te zetten, waardoor de carboneerdiepte aan het oppervlak van de koudgewalste pijp (4) verkregen wordt;step 3: fixing a sample of a cold-rolled pipe (4) on the surface of the precision sample platform, using a laser emitter (1) to emit a laser to excite a laser-induced breakthrough spectrum at different positions on the cross-section of the cold-rolled pipe (4), and collecting a plasma plume through an optical fiber coupler (2) and sending it to an optical spectrum analyzer (3) to obtain a laser-induced breakthrough spectrum; controlling the detection position of the sample of the cold-rolled pipe (4) by the precision sample platform to move along the radial direction of the cold-rolled pipe (4), and calculating by the control device the carbon content of various detection points and the carbon content of plotting the detection points at different depths from the surface, thereby obtaining the carburizing depth at the surface of the cold rolled pipe (4); stap 4: het veranderen van de richting van het monster van de koudgewalste pijp (4) van stap 3, zodat de laserzender (1) uitgelijnd is met het buitenoppervlak van de koudgewalste pijp (4), vervolgens het door de laserzender (1) uitzenden van laserlicht om het lasergeinduceerde doorbraakspectrum te exciteren op dezelfde positie op het buitenoppervlak van de te detecteren koudgewalste pijp (4), en het door de optische- vezelkoppelaar (2) opvangen van de plasmapluim en het verzenden ervan naar de optische-spectrumanalysator (3) om het lasergeinduceerde doorbraakspectrum te verkrijgen; het ononderbroken verhogen van de enkele-puls-energie van de laser uitgezonden door de laserzender (1) tijdens het detectieproces, het door de besturingsinrichting berekenen van de excitatie-energie voor het verkrijgen van het koolstofgehalte van het lasergeïnduceerde doorbraakspectrum, en het plotten van een kromme van het koolstofgehalte variërend met de excitatie-energie, dat wil zeggen een CE-kromme;step 4: changing the direction of the sample of the cold-rolled pipe (4) of step 3 so that the laser emitter (1) is aligned with the outer surface of the cold-rolled pipe (4), then emitting it from the laser emitter (1) of laser light to excite the laser-induced breakthrough spectrum at the same position on the outer surface of the cold-rolled pipe to be detected (4), and capturing the plasma plume by the optical fiber coupler (2) and transmitting it to the optical spectrum analyzer (3) to obtain the laser-induced breakthrough spectrum; continuously increasing the single-pulse energy of the laser emitted from the laser emitter (1) during the detection process, calculating the excitation energy by the controller to obtain the carbon content of the laser-induced breakthrough spectrum, and plotting a curve of the carbon content varying with the excitation energy, i.e. a CE curve; stap 5: het vervangen van een detectiepunt op het buitenoppervlak van de koudgewalste pijp (4) die in stap 4 behandeld is, vervolgens het door een laserzender (1) uitzenden van laserlicht om een lasergeinduceerd doorbraakspectrum te exciteren op een detectiepunt op het buitenoppervlak van de koudgewalste pijp (4), en het door een optische-vezelkoppelaar (2) verzamelen van een plasmapluim en het verzenden daarvan naar een optische-spectrumanalysator (3) om het lasergeinduceerde doorbraakspectrum te verkrijgen; het vastleggen van de enkele-puls-energie die door de laserzender (1) in het detectieproces uitgezonden wordt, en het door de besturingsinrichting berekenen van de excitatie-energie om het koolstofgehalte van het lasergeinduceerde doorbraakspectrum te verkrijgen, en het plotten van een kromme van het koolstofgehalte variérend met het aantal excitatie-pulsen, dat wil zeggen een CT-kromme; stap 6: het vervangen van een monster van de koudgewalste pijp (4) en het herhalen van de stappen 3, 4 en 5 totdat alle monsters van de koudgewalste pijp (4) getest zijn; het verkrijgen van de carboneerdiepte die overeenkomt met zowel de CE-kromme als de CT-kromme; daarna het nemen van de krommekenmerken die uit de CE-kromme en de CT- kromme gehaald worden als input en de carboneerdiepte als output om een neuraal netwerkmodel te construeren om zo een carboneerdieptebeoordelingsmodel te verkrijgen, dat wil zeggen het invoeren van de krommekenmerken van de CE-kromme en de CT-kromme om een carboneerdiepte te verkrijgen; stap 7: het uitvoeren van carboneringsbehandelingen op een monster van de te meten koudgewalste pijp (4), vervolgens het reinigen en polijsten, en vervolgens het uitvoeren van stappen 4 en 5 om een CE-kromme en een CT-kromme te verkrijgen, en het invoeren van krommekenmerken van de CE-kromme en de CT-kromme in een carboneerdieptebeoordelingsmodel om een carboneerdiepte te verkrijgen.step 5: replacing a detection point on the outer surface of the cold-rolled pipe (4) treated in step 4, then emitting laser light from a laser emitter (1) to excite a laser-induced breakthrough spectrum at a detection point on the outer surface of the cold-rolled pipe (4), and collecting a plasma plume through an optical fiber coupler (2) and sending it to an optical spectrum analyzer (3) to obtain the laser-induced breakthrough spectrum; recording the single pulse energy emitted from the laser emitter (1) in the detection process, and calculating the excitation energy by the controller to obtain the carbon content of the laser-induced breakthrough spectrum, and plotting a curve of the carbon content varying with the number of excitation pulses, i.e. a CT curve; step 6: replacing a sample of the cold-rolled pipe (4) and repeating steps 3, 4 and 5 until all samples of the cold-rolled pipe (4) have been tested; obtaining the carburizing depth corresponding to both the CE curve and the CT curve; then taking the curve features extracted from the CE curve and the CT curve as input and the carburizing depth as output to construct a neural network model so as to obtain a carburizing depth assessment model, i.e. inputting the curve features of the CE curve and the CT curve to obtain a carburizing depth; step 7: performing carburization treatments on a sample of the cold-rolled pipe (4) to be measured, then cleaning and polishing, and then performing steps 4 and 5 to obtain a CE curve and a CT curve, and entering curve characteristics of the CE curve and the CT curve into a carburizing depth assessment model to obtain a carburizing depth. 5. Werkwijze voor het detecteren van de carboneerdiepte van het oppervlak van een koudgewalste pijp volgens conclusie 4, met het kenmerk dat: de kenmerken van de CE-kromme en de CT-kromme die uit de constructie van het neurale netwerkmodel worden afgeleid het volgende zijn: verschil in bereik van de CE-kromme, verschil in bereik van de CT-kromme, variantie van de CE-kromme, variantie van de CT-kromme, gemiddelde waarde van de CE-kromme, gemiddelde waarde van de CT-kromme, discrete coëfficiënt van de CT-kromme en discrete coëfficiënt van de CE-kromme.The method for detecting the carburizing depth of the surface of a cold-rolled pipe according to claim 4, characterized in that : the characteristics of the CE curve and the CT curve derived from the construction of the neural network model are as follows : difference in range of the CE curve, difference in range of the CT curve, variance of the CE curve, variance of the CT curve, mean value of the CE curve, mean value of the CT curve, discrete coefficient of the CT curve and discrete coefficient of the CE curve.
NL2032786A 2021-09-08 2022-08-18 Cold-rolled pipe surface carburization depth detection device and detection method thereof NL2032786B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111048453.8A CN113624747A (en) 2021-09-08 2021-09-08 Device and method for detecting surface carburization depth of cold-rolled tube

Publications (2)

Publication Number Publication Date
NL2032786A true NL2032786A (en) 2023-03-14
NL2032786B1 NL2032786B1 (en) 2023-12-07

Family

ID=78389390

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032786A NL2032786B1 (en) 2021-09-08 2022-08-18 Cold-rolled pipe surface carburization depth detection device and detection method thereof

Country Status (2)

Country Link
CN (1) CN113624747A (en)
NL (1) NL2032786B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161013A (en) * 2019-05-14 2019-08-23 上海交通大学 Laser induced breakdown spectroscopy data processing method and system based on machine learning
JP6656970B2 (en) * 2016-03-22 2020-03-04 一般財団法人電力中央研究所 Steel carbon concentration measurement method, measurement device, and measurement program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6656970B2 (en) * 2016-03-22 2020-03-04 一般財団法人電力中央研究所 Steel carbon concentration measurement method, measurement device, and measurement program
CN110161013A (en) * 2019-05-14 2019-08-23 上海交通大学 Laser induced breakdown spectroscopy data processing method and system based on machine learning

Also Published As

Publication number Publication date
CN113624747A (en) 2021-11-09
NL2032786B1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US6407811B1 (en) Ambient methods and apparatus for rapid laser trace constituent analysis
Kim et al. Quantitative analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy
Noll et al. Laser-induced breakdown spectroscopy
US5798832A (en) Process and device for determining element compositions and concentrations
Bette et al. High speed laser-induced breakdown spectrometry for scanning microanalysis
US20100324832A1 (en) Method and system to measure the concentration of constituent elements in an inhomogeneous material using libs
US20030218745A1 (en) Portable laser plasma spectroscopy apparatus and method for in situ identification of deposits
CN109444111B (en) Optical fiber LIBS detection system and method capable of selecting double-pulse mode
JP6022210B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
CN106932382A (en) A kind of method that laser cleaning effect judges
CN105572103A (en) Method for quantitatively detecting multiple heavy metals in leather at same time based on LIBS (Laser-Induced Breakdown Spectroscopy) technology
Du et al. Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy
JP5840400B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
Palanco et al. Development of a portable laser-induced plasma spectrometer with fully-automated operation and quantitative analysis capabilities
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
KR20110077388A (en) Method for analyzing of heavy metals
NL2032786B1 (en) Cold-rolled pipe surface carburization depth detection device and detection method thereof
Ledesma et al. Laser induced breakdown spectroscopy of polymer matrix composites for real-time analysis of trace surface contaminants: A review
Sattar et al. Exploring the potential and recent advancement in laser Opto-ultrasonic detection for material characterization: A state-of-the-art review
CN111044506A (en) Method for detecting water content of aluminum phosphate dirt
JP6656970B2 (en) Steel carbon concentration measurement method, measurement device, and measurement program
Farooq et al. Determination of the Gold Alloys Composition by Laser-Induced Plasma Spectroscopy Using an Algorithm for Matching Experimental and Calculated Values of Electron Number Density
Orzi et al. Identification and measurement of dirt composition of manufactured steel plates using laser-induced breakdown spectroscopy
CN105044051B (en) A kind of multi-parameter portable water quality detection system based on LIBS
91 Laser-induced breakdown spectroscopy (LIBS) in cultural heritage